Overweight/Obese Schoolchildren with Low Muscle Strength Have a Lower Cardiorespiratory Capacity and Greater Cardiovascular Risk: Results of the School Health Survey of the Extreme South of Chile 2019
Abstract
:1. Introduction
2. Methodology
2.1. Variables
- -
- Nutritional status: Bodyweight of the schoolchildren was measured with a SECA® brand digital scale (model 804, Chino, CA, USA). The waist circumference was measured while standing with a 1.5 m tape, and the height was measured with a SECA® brand portable stadiometer (model 213, Chino, CA, USA). These measures were performed according to the standardized procedures described by the International Society of Film anthropometry (ISAK) [35] and according to the Habicht method [36]. Subsequently, the BMI was calculated to obtain the BMI/age indicator, and to classify the nutritional status of each child according to sex, considering as malnutrition a standard deviation (SD) ≥ −2, risk of malnutrition SD ≥ −1, and normality between 0.99 and −0.99 SD. Overweight, obesity, and severe obesity were determined by values of ≥1 SD, ≥2 SD, and ≥3 SD, respectively [37].
- -
- Muscle strength: The lower limbs’ muscle strength was evaluated through the long jump test, using the reference evaluations recommended by the Alpha Fitness battery for the school population in which low strength and high strength are defined according to age and sex. The mean for boys between 9 and 12.9 years old was 138.8 cm and the mean for girls between 9 and 12.9 years old was 121.6 cm [38].
- -
- -
- Cardiorespiratory capacity: The 20 m shuttle run test was used, measuring the time (s), the speed (m/s), and the number of shuttles completed, according to the protocol and reference values of the Alpha Fitness battery for the school population [38].
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Muscle Strength and Cardiovascular Risk
4.2. Muscle Strength and Cardiovascular Capacity
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and cardiovascular disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 June 2021).
- de Quadros, T.M.B.; Gordia, A.P.; Silva, L.R. Anthropometry and Clustered Cardiometabolic Risk Factors in Young People: A Systematic Review. Rev. Paul. Pediatr. 2017, 35, 340–350. [Google Scholar] [CrossRef] [Green Version]
- De Quadros, T.M.B.; Gordia, A.P.; Andaki, A.C.R.; Mendes, E.L.; Mota, J.; Silva, L.R. Utility of anthropometric indicators to screen for clustered cardiometabolic risk factors in children and adolescents. J. Pediatr. Endocrinol. Metab. 2019, 32, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Wong, M.; Khalechelvam, P.; Tam, W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: A meta-analysis. Obes. Rev. 2016, 17, 1258–1275. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.; Szmuchrowski, L.A.; Prado, L.S.; Couto, B.P.; Machado, J.C.Q.; Damasceno, V.O.; Lamounier, J.A. Selected anthropometric variables and aerobic fitness as predictors of cardiovascular disease risk in children. Biol. Sport 2015, 32, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Suaréz-Ortegón, M.F.; Aguilar de Plata, A.C. Asociación entre adiposidad y factores de riesgo cardiovascular en infantes pre-púberes. Endocrinol. Nutr. 2011, 58, 457–463. [Google Scholar] [CrossRef]
- Freedman, D.S.; Khan, L.K.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: The Bogalusa heart study. Pediatrics 2001, 108, 712–718. [Google Scholar] [CrossRef]
- Umer, A.; Kelley, G.A.; Cottrell, L.E.; Giacobbi, P.; Innes, K.E.; Lilly, C.L. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health 2017, 17, 683. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; What level of fitness should raise a red flag? A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- Blair, S.N. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA J. Am. Med. Assoc. 1989, 262, 2395–2401. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sport. Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- Bermejo-Cantarero, A.; Álvarez-Bueno, C.; Martínez-Vizcaino, V.; Redondo-Tébar, A.; Pozuelo-Carrascosa, D.P.; Sánchez-López, M. Relationship between both cardiorespiratory and muscular fitness and health-related quality of life in children and adolescents: A systematic review and meta-analysis of observational studies. Health Qual. Life Outcomes 2021. [CrossRef]
- Lavie, C.J.; Kachur, S.; Sui, X. Impact of fitness and changes in fitness on lipids and survival. Prog. Cardiovasc. Dis. 2019, 62, 431–435. [Google Scholar] [CrossRef]
- DuBose, K.D.; Eisenmann, J.C.; Donnelly, J.E. Aerobic fitness attenuates the metabolic syndrome score in normal-weight, at-risk-for-overweight, and overweight children. Pediatrics 2007, 120, e1262–e1268. [Google Scholar] [CrossRef]
- Mesa, J.L.; Ruiz, J.R.; Ortega, F.B.; Wärnberg, J.; González-Lamuño, D.; Moreno, L.A.; Gutiérrez, Á.; Castillo, M.J. Aerobic physical fitness in relation to blood lipids and fasting glycaemia in adolescents: Influence of weight status. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 285–293. [Google Scholar] [CrossRef]
- Artero, E.G.; Ruiz, J.R.; Ortega, F.B.; España-Romero, V.; Vicente-Rodríguez, G.; Molnar, D.; Gottrand, F.; González-Gross, M.; Breidenassel, C.; Moreno, L.A.; et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: The HELENA study. Pediatr. Diabetes 2011, 12, 704–712. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Correa-Bautista, J.E.; Olloquequi, J.; Ramírez-Vélez, R. Health-related physical fitness and weight status in 13- to 15-year-old Latino adolescents. A pooled analysis. J. Pediatr. (Rio. J.). 2019, 95, 435–442. [Google Scholar] [CrossRef]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sports Exerc. 2009, 41, 1361–1367. [Google Scholar] [CrossRef]
- Grontved, A.; Ried-Larsen, M.; Moller, N.C.; Kristensen, P.L.; Froberg, K.; Brage, S.; Andersen, L.B. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br. J. Sports Med. 2015, 49, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, M.D.; Saltarelli, W.A.; Visich, P.S.; Gordon, P.M. Strenǵth capacity and cardiometabolic risk clustering in adolescents. Pediatrics 2014, 133, e896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, S.; Kirkman, D.L.; Garten, R.S.; Rodriguez-Miguelez, P.; Artero, E.G.; Lee, D.C.; Lavie, C.J. Muscular Strength and Cardiovascular Disease: An updated state-of-the-art narrative review. J. Cardiopulm. Rehabil. Prev. 2020, 40, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Albornoz-Guerrero, J.; García, S.; de Sevilla, G.G.P.; Cigarroa, I.; Zapata-Lamana, R. Characteristics of multicomponent interventions to treat childhood overweight and obesity in extremely cold climates: A systematic review of a randomized controlled trial. Int. J. Environ. Res. Public Health 2021, 18, 3098. [Google Scholar] [CrossRef]
- Young, T.K. Are the circumpolar inuit becoming obese? Am. J. Hum. Biol. 2007, 19, 181–189. [Google Scholar] [CrossRef]
- Habibzadeh, N. Why Physiologically Cold weather can Increase Obesity Rates? Int. Physiol. J. 2018, 2, 11–13. [Google Scholar] [CrossRef]
- Morrison, S.F. Central control of body temperature [version 1; referees: 3 approved]. F1000 Res. 2016, 5, 880. [Google Scholar] [CrossRef] [Green Version]
- Braghetto, I.; Taladriz, C.; Lanzarini, E.; Romero, C. Plasma ghrelin levels in the late postoperative period of vertical sleeve gastrectomy. Rev. Med. Chil. 2015, 143, 864–869. [Google Scholar] [CrossRef] [Green Version]
- Santana, A.; Butorovic, N.; Olave, C. Variación de la temperatura en punta arenas (chile) en los últimos 120 años. An. Del Inst. Patagon. 2009, 37, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Junaeb Informe Mapa Nutricional 2018. Available online: https://www.junaeb.cl/wp-content/uploads/2019/12/Informe-Mapa-Nutricional-2018.pdf (accessed on 1 June 2021).
- da Silva, V.S.; Vieira, M.F.S. International society for the advancement of kinanthropometry (Isak) global: International accreditation scheme of the competent anthropometrist. Rev. Bras. Cineantropometria Desempenho Hum. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Habicht, J.-P. Estandarización de metodos epidemiologicos cuantitativos sobre el terreno. Bol. Oficina Sanit. Panam. 1974, 76, 375–384. [Google Scholar]
- Ministerio de Salud. Patrones de Crecimiento Para la Evaluación Nutricional de Niños, Niñas y Adolescentes Desde el Nacimiento a 19 Años de Edad. Available online: https://diprece.minsal.cl/wp-content/uploads/2018/07/Patrones-de-Crecimiento-para-la-Evaluación-Nutrición-de-niños-niñas-y-adolescentes-desde-el-nacimiento-a-19-años.pdf (accessed on 8 April 2021).
- Mauro Darío Santander, M.; Santander, M.D.; Gastón García, L.C.; Jeremías Secchi, M.D.; Zuñiga, M.; Gutiérrez, M.; Salas Lic Carlos Arcuri, N.R. Physical fitness standards in students from the province of Neuquén, Argentina. Physical Fitness Assessment Plan study. Arch. Argent. Pediatr. 2019. [Google Scholar] [CrossRef]
- José Hernández Rodríguez, P.N.D.J. Índice cintura/talla y su utilidad para detectar riesgo cardiovascular y metabólico. Rev. Cuba. Endocrinol. 2015, 26, 66–76. [Google Scholar]
- Aguilar-Morales, I.; Colin-Ramirez, E.; Rivera-Mancía, S.; Vallejo, M.; Vázquez-Antona, C. Performance of waist-to-height ratio, waist circumference, and body mass index in discriminating cardio-metabolic risk factors in a sample of school-aged Mexican children. Nutrients 2018, 10, 1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zermeño Ugalde, P.; Gallegos García, V.; Gaytán Hernández, D.; Castro Ramírez, R.A. Relación del índice cintura-talla (ICT) con cintura e índice de cintura cadera como predictor para obesidad y riesgo metabólico en adolescentes de secundaria. RESPYN Rev. Salud Pública Nutr. 2020, 19. [Google Scholar] [CrossRef]
- Manuel Moreno, G. Definición y clasificación de la obesidad. Rev. Médica Clínica Las Condes 2012, 23, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Educación. Programa de Integración Escolar PIE. 2021. Educación Escolar. Available online: https://escolar.mineduc.cl/apoyo-la-trayectoria-educactiva/programa-integracion-escolar/ (accessed on 1 June 2021).
- García-Artero, E.; Ortega, F.B.; Ruiz, J.R.; Mesa, J.L.; Delgado, M.; González-Gross, M.; García-Fuentes, M.; Vicente-Rodríguez, G.; Gutiérrez, Á.; Castillo, M.J. Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (avena study). Rev. Esp. Cardiol. 2007, 60, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Peña-Ibagon, J.C.; Martínez-Torres, J.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Lobelo, F.; García-Hermoso, A. Handgrip strength cutoff for cardiometabolic risk index among Colombian children and adolescents: The Fuprecol Study. Sci. Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Zaqout, M.; Michels, N.; Bammann, K.; Ahrens, W.; Sprengeler, O.; Molnar, D.; Hadjigeorgiou, C.; Eiben, G.; Konstabel, K.; Russo, P.; et al. Influence of physical fitness on cardio-metabolic risk factors in European children. The Idefics study. Int. J. Obes. 2016, 40, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef]
- Moliner-Urdiales, D.; Ruiz, J.R.; Vicente-Rodriguez, G.; Ortega, F.B.; Rey-Lopez, J.P.; España-Romero, V.; Casajús, J.A.; Molnar, D.; Widhalm, K.; Dallongeville, J.; et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: The Helena study. Br. J. Sports Med. 2011, 45, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Hermoso, A.; Ramírez-Vélez, R.; Saavedra, J.M. Exercise, health outcomes, and pædiatric obesity: A systematic review of meta-analyses. J. Sci. Med. Sport 2019, 22, 76–84. [Google Scholar] [CrossRef]
- Cattuzzo, M.T.; dos Santos Henrique, R.; Ré, A.H.N.; de Oliveira, I.S.; Melo, B.M.; de Sousa Moura, M.; de Araújo, R.C.; Stodden, D. Motor competence and health related physical fitness in youth: A systematic review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef]
- Ryan, R.M.; Williams, G.C.; Patrick, H.; Deci, E.L. Self-Determination Theory and Physical Activity: The Dynamics of Motivation in Development and Wellness. Hell. J. Psychol. 2009, 6, 107–124. [Google Scholar]
- Fox, K.R.; Corbin, C.B. The Physical Self-Perception Profile: Devlopment and Preliminary Validation. J. Sport Exerc. Psychol. 2016, 11, 408–430. [Google Scholar] [CrossRef]
- Lubans, D.R.; Plotnikoff, R.C.; Lubans, N.J. Review: A systematic review of the impact of physical activity programmes on social and emotional well-being in at-risk youth. Child. Adolesc. Ment. Health 2012, 17, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Carraça, E.V.; Markland, D.; Silva, M.N.; Ryan, R.M. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.R.; Ortega, F.B.; Lee, D.C.; Martínez-Vizcaíno, V. Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113.e5. [Google Scholar] [CrossRef]
- Fraser, B.J.; Blizzard, L.; Cleland, V.; Schmidt, M.D.; Smith, K.J.; Gall, S.L.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Factors associated with persistently high muscular power from childhood to adulthood. Med. Sci. Sports Exerc. 2020, 52, 49–55. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Weaver, R.G.; Riley, N.; Beets, M.W.; Lubans, D.R. Behavioral Correlates of Muscular Fitness in Children and Adolescents: A Systematic Review. Sport Med. 2019. [Google Scholar] [CrossRef]
- Delgado Floody, P.A.; Martínez Salazar, C.; Caamaño Navarrete, F.; Jerez Mayorga, D.; Osorio Poblete, A.; García Pinillos, F.; Latorre Román, P. [Dissatisfaction with body image and its relation to nutritional status, cardiometabolic risk and cardiorespiratory capacity in public school children]. Nutr. Hosp. 2017, 34, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Burns, R.D.; Hannon, J.C.; Brusseau, T.A. Factors Influencing Muscular Strength and Endurance in Disadvantaged Children from Low-Income Families. Int. J. Exerc. Sci. 2016, 9, 306–317. [Google Scholar]
- Grøntved, A.; Ried-Larsen, M.; Ekelund, U.; Froberg, K.; Brage, S.; Andersen, L.B. Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and β-cell function in young adulthood: The european youth heart study. Diabetes Care 2013, 36, 2575–2581. [Google Scholar] [CrossRef] [Green Version]
- Bonney, E.; Ferguson, G.; Smits-Engelsman, B. Relationship between body mass index, cardiorespiratory and musculoskeletal fitness among south african adolescent girls. Int. J. Environ. Res. Public Health 2018, 15, 1087. [Google Scholar] [CrossRef] [Green Version]
- OMS. Directrices de la OMS Sobre Actividad Física y Hábitos Sedentarios.World Health Organization. 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/337004/9789240014817-spa.pdf?sequence=1&isAllowed=y (accessed on 1 June 2021).
- Martínez-Vizcaíno, V.; Garrido-Miguel, M.; Redondo-Tébar, A.; Notario-Pacheco, B.; Rodríguez-Martín, B.; Sánchez-López, M. The “Fat but Fit” Paradigm from a Children’s Health-Related Quality of Life Perspective. Child. Obes. 2021, 2021, 0041. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Esteban-Cornejo, I.; Olloquequi, J.; Ramírez-Vélez, R. Cardiorespiratory Fitness and Muscular Strength as Mediators of the Influence of Fatness on Academic Achievement. J. Pediatr. 2017, 187, 127–133.e3. [Google Scholar] [CrossRef]
- Zhou, Z.; Macpherson, J.; Gray, S.R.; Gill, J.M.R.; Welsh, P.; Celis-Morales, C.; Sattar, N.; Pell, J.P.; Ho, F.K. Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK Biobank participants. Diabetologia 2021, 64, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
Grade | Boys | Girls | p |
---|---|---|---|
Fifth grade | 73 (24.2%) | 93 (31.8%) | 0.079 |
Sixth grade | 88 (29.1%) | 65 (22.3%) | |
Seventh grade | 67 (22.2%) | 56 (19.2%) | |
Eighth grade | 74 (24.5%) | 78 (26.7%) | |
School integration program | |||
Yes | 64 (21.2%) | 35 (12.0%) | 0.003 * |
No | 238 (78.8%) | 257 (88.0%) | |
Place of residence | |||
Urban | 292 (96.7%) | 289 (99.0%) | 0.057 |
Rural | 10 (3.3%) | 3 (1.0%) | |
Nutritional status | |||
Malnutrition | 1 (0.3%) | 1 (0.3%) | 0.170 |
Risk of malnutrition | 5 (1.7%) | 4 (1.4%) | |
Normal | 82 (27.2%) | 80 (27.4%) | |
Overweight | 78 (25.8%) | 102 (34.9%) | |
Obesity | 110 (36.4%) | 89 (30.5%) | |
Severe obesity | 26 (8.6%) | 16 (5.5%) | |
Muscular strength | |||
High | 57 (18.9%) | 84 (28.8%) | 0.005 * |
Low | 245 (81.1%) | 208 (71.2%) | |
Central obesity | |||
Normal adiposity | 133 (44.0%) | 139 (47.6%) | 0.338 |
Moderate adiposity | 45 (14.9%) | 50 (17.1%) | |
Excess of adiposity | 124 (41.1%) | 103 (35.3%) |
Total Sample | High Strength-NW n = 53 | High Strength-OO n = 85 | Low Strength-NW n = 109 | Low Strength-OO n = 336 | p-Values |
---|---|---|---|---|---|
Anthropometry | |||||
Age (years) | 11.9 [11.6–12.2] | 11.9 [11.7–12.2] | 12.3 [12.1–12.6] | 12.0 [11.9–12.2] | 0.094 |
Weight (kg) | 44.3 [42.2–46.5] a | 60.7 [57.9–63.4] b | 45.0 [43.4–46.7] a | 61.4 [59.9–62.9] b | 0.000 |
Height (m) | 1.53 [1.50–1.56] | 1.54 [1.52–1.56] | 1.52 [1.50–1.54] | 1.52 [1.51–1.53] | 0.470 |
BMI (kg/m2) | 18.8 [18.4–19.2] a | 25.4 [24.6–26.1] b | 19.3 [19.0–19.6] a | 26.3 [25.8–26.7] b | 0.000 |
WC (cm) | 65.49 [63.54–67.44] a | 75 [72.56–77.44] b | 65.61 [64.42–66.81] a | 78.11 [77.09–79.13] c | 0.000 |
WtH (cm/cm) | 0.43 [0.42–0.44] a | 0.49 [0.47–0.50] b | 0.43 [0.43–0.44] a | 0.51 [0.51–0.52] c | 0.000 |
Boys | High Strength-NW n = 23 | High Strength-OO n = 33 | Low Strength-NW n = 59 | Low Strength-OO n = 181 | p-Values |
Anthropometry | |||||
Age (years) | 12.3 [11.9–12.8] | 11.9 [11.4–12.3] | 12.6 [12.2–12.9] | 12.1 [11.9–12.2] | 0.037 |
Weight (kg) | 47.1 [44.1–50.1] a | 63.3 [57.4–69.3] b | 44.9 [42.5–47.4] a | 62.1 [60.2–64.1] b | 0.000 |
Height (m) | 1.58 [1.53–1.62] | 1.56 [1.52–1.60] | 1.52 [1.49–1.55] | 1.54 [1.52–1.56] | 0.155 |
BMI (kg/m2) | 18.8 [18.4–19.3] a | 25.7 [24.2–27.3] b | 19.2 [18.8–19.6] a | 26.0 [25.4–26.5] b | 0.000 |
WC (cm) | 67.6 [64.1–71.1] a | 77.9 [73.4–82.5] b | 66.7 [64.9–68.5] a | 78.8 [77.3–80.3] b | 0.000 |
WtH (cm/cm) | 0.43 [0.41–0.45] a | 0.50 [0.48–0.52] b | 0.44 [0.43–0.45] a | 0.51 [0.50–0.52] b | 0.000 |
Girls | High Strength-NW n = 30 | High Strength-OO n = 52 | Low Strength-NW n = 50 | Low Strength-OO n = 155 | p-Values |
Anthropometry | |||||
Age (years) | 11.6 [11.0–12.0] | 12.0 [11.6–12.4] | 12.1 [11.7–12.4] | 12.0 [11.7–12.2] | 0.403 |
Weight (kg) | 42.2 [39.3–45.1] a | 59.0 [56.5–61.5] b | 45.2 [43.0–47.4] a | 60.5 [58.3–62.7] b | 0.000 |
Height (m) | 1.49 [1.46–1.53] | 1.53 [1.51–1.55] | 1.52 [1.50–1.55] | 1.50 [1.49–1.51] | 0.099 |
BMI (kg/m2) | 18.7 [18.1–19.4] a | 25.2 [24.4–26.0] b | 19.4 [18.9–19.9] a | 26.6 [25.9–27.3] b | 0.000 |
WC (cm) | 63.9 [61.7–66.0] a | 73.1 [70.4–75.9] b | 64.4 [62.9–65.9] a | 77.3 [75.9–78.7] c | 0.000 |
WtH (cm/cm) | 0.43 [0.42–0.44] a | 0.48 [0.46–0.50] b | 0.42 [0.41–0.43] a | 0.52 [0.51–0.53] c | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albornoz-Guerrero, J.; Zapata-Lamana, R.; Reyes-Molina, D.; Cigarroa, I.; García Pérez de Sevilla, G.; García-Merino, S. Overweight/Obese Schoolchildren with Low Muscle Strength Have a Lower Cardiorespiratory Capacity and Greater Cardiovascular Risk: Results of the School Health Survey of the Extreme South of Chile 2019. Children 2021, 8, 734. https://doi.org/10.3390/children8090734
Albornoz-Guerrero J, Zapata-Lamana R, Reyes-Molina D, Cigarroa I, García Pérez de Sevilla G, García-Merino S. Overweight/Obese Schoolchildren with Low Muscle Strength Have a Lower Cardiorespiratory Capacity and Greater Cardiovascular Risk: Results of the School Health Survey of the Extreme South of Chile 2019. Children. 2021; 8(9):734. https://doi.org/10.3390/children8090734
Chicago/Turabian StyleAlbornoz-Guerrero, Javier, Rafael Zapata-Lamana, Daniel Reyes-Molina, Igor Cigarroa, Guillermo García Pérez de Sevilla, and Sonia García-Merino. 2021. "Overweight/Obese Schoolchildren with Low Muscle Strength Have a Lower Cardiorespiratory Capacity and Greater Cardiovascular Risk: Results of the School Health Survey of the Extreme South of Chile 2019" Children 8, no. 9: 734. https://doi.org/10.3390/children8090734
APA StyleAlbornoz-Guerrero, J., Zapata-Lamana, R., Reyes-Molina, D., Cigarroa, I., García Pérez de Sevilla, G., & García-Merino, S. (2021). Overweight/Obese Schoolchildren with Low Muscle Strength Have a Lower Cardiorespiratory Capacity and Greater Cardiovascular Risk: Results of the School Health Survey of the Extreme South of Chile 2019. Children, 8(9), 734. https://doi.org/10.3390/children8090734