Vojta Therapy Affects Trunk Control and Postural Sway in Children with Central Hypotonia: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Outcome Measures
2.2.1. Abdominal Muscle Thickness
2.2.2. Segmental Assessment of Trunk Control (SATCo)
2.2.3. Postural Sway in Sitting
2.2.4. Gross Motor Function
2.2.5. Trunk Angle
2.3. Intervention
2.4. Statistical Analysis
3. Results
3.1. General and Clinical Characteristics of the Participants
3.2. Comparison of Change Rate of Abdominal Muscle Thicknesses
3.3. Comparison of SATCo Scores
3.4. Comparison of Trunk Angles in the Sagittal Plane during the Static Control of SATCo
3.5. Comparison of Postural Sway in the Sagittal and Coronal Planes during the Reactive Control of SATCo
3.6. Comparison of Gross Motor Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lisi, E.C.; Cohn, R.D. Genetic evaluation of the pediatric patient with hypotonia: Perspective from a hypotonia specialty clinic and review of the literature. Dev. Med. Child Neurol. 2011, 53, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.H., Jr.; Grant, E.; Pierson, C.R. Case records of the Massachusetts General Hospital. Case 35-2006: A newborn boy with hypotonia. N. Engl. J. Med. 2006, 355, 2132–2142. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.R. Congenital hypotonia: Clinical and developmental assessment. Dev. Med. Child Neurol. 2008, 50, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Paleg, G.; Romness, M.; Livingstone, R. Interventions to improve sensory and motor outcomes for young children with central hypotonia: A systematic review. J. Pediatr. Rehabil. Med. 2018, 11, 57–70. [Google Scholar] [CrossRef]
- Kaler, J.; Hussain, A.; Patel, S.; Majhi, S. Neuromuscular junction disorders and floppy infant syndrome: A comprehensive review. Cureus 2020, 12, e6922. [Google Scholar] [CrossRef]
- Karthikbabu, S.; Nayak, A.; Vijayakumar, K.; Misri, Z.; Suresh, B.; Ganesan, S.; Joshua, A.M. Comparison of physio ball and plinth trunk exercises regimens on trunk control and functional balance in patients with acute stroke: A pilot randomized controlled trial. Clin. Rehabil. 2011, 25, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Akasaka, K.; Otsudo, T.; Sawada, Y.; Okubo, Y. Deep abdominal muscle thickness measured under sitting conditions during different stability tasks. J. Phys. Ther. Sci. 2016, 28, 900–905. [Google Scholar] [CrossRef]
- Duncan, K.; Goodworth, A.; Da Costa, C.S.N.; Wininger, M.; Saavedra, S. Parent handling of typical infants varies segmentally across development of postural control. Exp. Brain Res. 2018, 236, 645–654. [Google Scholar] [CrossRef]
- Curtis, D.J.; Butler, P.; Saavedra, S.; Bencke, J.; Kallemose, T.; Sonne-Holm, S.; Woollacott, M. The central role of trunk control in the gross motor function of children with cerebral palsy: A retrospective cross-sectional study. Dev. Med. Child Neurol. 2015, 57, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Pin, T.W.; Butler, P.B.; Cheung, H.M.; Shum, S.L. Relationship between segmental trunk control and gross motor development in typically developing infants aged from 4 to 12 months: A pilot study. BMC Pediatr. 2019, 19, 425. [Google Scholar] [CrossRef]
- Martin, K.; Kaltenmark, T.; Lewallen, A.; Smith, C.; Yoshida, A. Clinical characteristics of hypotonia: A survey of pediatric physical and occupational therapists. Pediatr. Phys. Ther. 2007, 19, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Seyyar, G.K.; Aras, B.; Aras, O. Trunk control in children with ataxic cerebral palsy. Percept. Mot. Skills 2019, 126, 815–827. [Google Scholar] [CrossRef]
- Ardolino, E.; Flores, M.; Manella, K. Gross motor outcomes after dynamic weight-bearing in 2 children with trunk hypotonia: A case series. Pediatr. Phys. Ther. 2017, 29, 360–364. [Google Scholar] [CrossRef]
- Olson, M.W. Trunk muscle activation during sub-maximal extension efforts. Man. Ther. 2010, 15, 105–110. [Google Scholar] [CrossRef]
- Ali, M.S.; Abd El-Aziz, H.G. Effect of whole-body vibration on abdominal thickness and sitting ability in children with spastic diplegia. J. Taibah Univ. Med. Sci. 2020, 16, 379–386. [Google Scholar] [CrossRef]
- Sung, Y.H.; Ha, S.Y. The Vojta approach changes thicknesses of abdominal muscles and gait in children with spastic cerebral palsy: A randomized controlled trial, pilot study. Technol. Health Care 2020, 28, 293–301. [Google Scholar] [CrossRef]
- Thöne-Mühling, M.; Kripfgans, O.D.; Mengel, R. Ultrasonography for noninvasive and real-time evaluation of peri-implant soft and hard tissue: A case series. Int. J. Implant Dent. 2021, 7, 95. [Google Scholar] [CrossRef]
- Alsakhawi, R.S.; Elshafey, M.A. Effect of core stability exercises and treadmill training on balance in children with Down syndrome: Randomized controlled trial. Adv. Ther. 2019, 36, 2364–2373. [Google Scholar] [CrossRef]
- Andrzejewska, M.; Sutkowska, E.; Kuciel, N. The rehabilitation of a child with a sotos syndrome. case report. Wiad. Lek. 2018, 71, 1849–1853. [Google Scholar]
- Lucas, B.R.; Elliott, E.J.; Coggan, S.; Pinto, R.Z.; Jirikowic, T.; McCoy, S.W.; Latimer, J. Interventions to improve gross motor performance in children with neurodevelopmental disorders: A meta-analysis. BMC Pediatr. 2016, 16, 193. [Google Scholar] [CrossRef]
- Valentín-Gudiol, M.; Mattern-Baxter, K.; Girabent-Farrés, M.; Bagur-Calafat, C.; Hadders-Algra, M.; Angulo-Barroso, R.M. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst. Rev. 2017, 7, CD009242. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.H.; Helsper, J.; Farid, M.S.; Grzegorzek, M. A computer vision-based system for monitoring Vojta therapy. Int. J. Med. Inform. 2018, 113, 85–95. [Google Scholar] [CrossRef]
- Bäkström, B.; Dahlgren, L. Vojta self-training: Vojta Self-training: Experiences of six neurologically impaired people: A qualitative study. Physiotherapy 2000, 86, 567–574. [Google Scholar] [CrossRef]
- Epple, C.; Maurer-Burkhard, B.; Lichti, M.C.; Steiner, T. Vojta therapy improves postural control in very early stroke rehabilitation: A randomised controlled pilot trial. Neurol. Res. Pract. 2020, 2, 23. [Google Scholar] [CrossRef]
- Ha, S.Y.; Sung, Y.H. Effects of Vojta method on trunk stability in healthy individuals. J. Exerc. Rehabil. 2016, 12, 542–547. [Google Scholar] [CrossRef]
- Adjenti, S.K.; Louw, G.J.; Jelsma, J.; Unger, M. An ultrasonographic analysis of the activation patterns of abdominal muscles in children with spastic type cerebral palsy and in typically developing individuals: A comparative study. Arch. Physiother. 2018, 8, 9. [Google Scholar] [CrossRef]
- Teyhen, D.S.; Williamson, J.N.; Carlson, N.H.; Suttles, S.T.; O’Laughlin, S.J.; Whittaker, J.L.; Goffar, S.L.; Childs, J.D. Ultrasound characteristics of the deep abdominal muscles during the active straight leg raise test. Arch. Physiother. Med. Rehabil. 2009, 90, 761–767. [Google Scholar] [CrossRef]
- Hansen, L.; Erhardsen, K.T.; Bencke, J.; Magnusson, S.P.; Curtis, D.J. The reliability of the segmental assessment of trunk control (SATCo) in children with cerebral palsy. Phys. Occup. Ther. Pediatr. 2018, 38, 291–304. [Google Scholar] [CrossRef]
- da Costa, C.S.; Saavedra, S.L.; Rocha, N.A.; Woollacott, M.H. Effect of biomechanical constraints on neural control of head stability in children with moderate to severe cerebral palsy. Phys. Ther. 2017, 97, 374–385. [Google Scholar] [CrossRef]
- Chiappedi, M.; Toraldo, A.; Mandrini, S.; Scarpina, F.; Aquino, M.; Magnani, F.G.; Bejor, M. Easy quantitative methodology to assess visual-motor skills. Neuropsychiatr. Dis. Treat. 2013, 9, 93–100. [Google Scholar] [CrossRef]
- Palisano, R.J.; Hanna, S.E.; Rosenbaum, P.L.; Russell, D.J.; Walter, S.D.; Wood, E.P.; Raina, P.S.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmark, E.; Hägglund, G.; Jarnlo, G.B. Reliability of the gross motor function measure in cerebral palsy. Scand. J. Rehabil. Med. 1997, 29, 25–28. [Google Scholar] [PubMed]
- Goda, H.; Hatta, T.; Kishigami, H.; Suzuki, A.; Ikeda, T. Does a novel-developed product of wheelchair incorporating pelvic support prevent forward head posture during prolonged sitting? PLoS ONE 2015, 10, e0142617. [Google Scholar] [CrossRef] [PubMed]
- Assaiante, C.; Mallau, S.; Viel, S.; Jover, M.; Schmitz, C. Development of postural control in healthy children: A functional approach. Neural Plast. 2005, 12, 109–118. [Google Scholar] [CrossRef]
- Saxena, S.; Rao, B.K.; Kumaran, S. Analysis of postural stability in children with cerebral palsy and children with typical development: An observational study. Pediatr. Phys. Ther. 2014, 26, 325–330. [Google Scholar] [CrossRef]
- Urquhart, D.M.; Hodges, P.W.; Allen, T.J.; Story, I.H. Abdominal muscle recruitment during a range of voluntary exercises. Man. Ther. 2005, 10, 144–153. [Google Scholar] [CrossRef]
- Masaki, M.; Maruyama, S.; Inagaki, Y.; Ogawa, Y.; Sato, Y.; Yokota, M.; Takeuchi, M.; Kasahara, M.; Minakawa, K.; Kato, K.; et al. Comparison of the Upper and Lower Extremity and Trunk Muscle Masses between Children with Down Syndrome and Children with Typical Development. Dev. Neurorehabilit. 2022, 25, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Son, M.S.; Jung, D.H.; You, J.S.H.; Yi, C.H.; Jeon, H.S.; Cha, Y.J. Effects of dynamic neuromuscular stabilization on diaphragm movement, postural control, balance and gait performance in cerebral palsy. NeuroRehabilitation 2017, 41, 739–746. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Kyvelidou, A.; Harbourne, R.T.; Willett, S.L.; Stergiou, N. Sitting postural control in infants with typical development, motor delay, or cerebral palsy. Pediatr. Phys. Ther. 2013, 25, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Peeters, L.H.C.; Kingma, I.; Faber, G.S.; van Dieën, J.H.; de Groot, I.J.M. Trunk, head and pelvis interactions in healthy children when performing seated daily arm tasks. Exp. Brain Res. 2018, 236, 2023–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyvelidou, A.; Harbourne, R.T.; Stergiou, N. Severity and characteristics of developmental delay can be assessed using variability measures of sitting posture. Pediatr. Phys. Ther. 2010, 22, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Dastmanesh, S.; Shojaeddin, S.S. The effects of core stabilization training on postural control in subjects with chronic ankle instability. J. Jahrom Univ. Med. Sci. 2011, 9, 13–22. [Google Scholar]
- Watanabe, S.; Eguchi, A.; Kobara, K.; Ishida, H. Influence of trunk muscle co-contraction on spinal curvature during sitting for desk work. Electromyogr. Clin. Neurophysiol. 2007, 47, 273–278. [Google Scholar]
- Yoon, H.S.; Cha, Y.J.; You, J.S.H. Effects of dynamic core-postural chain stabilization on diaphragm movement, abdominal muscle thickness, and postural control in patients with subacute stroke: A randomized control trial. NeuroRehabilitation 2020, 46, 381–389. [Google Scholar] [CrossRef]
- Frank, C.; Kobesova, A.; Kolar, P. Dynamic neuromuscular stabilization & sports rehabilitation. Int J. Sports Phys. Ther. 2013, 8, 62–73. [Google Scholar]
- Santamaria, V.; Rachwani, J.; Saavedra, S.; Woollacott, M. Effect of segmental trunk support on posture and reaching in children with cerebral palsy. Pediatr. Phys. Ther. 2016, 28, 285–293. [Google Scholar] [CrossRef]
- Fan, C.; Fede, C.; Gaudreault, N.; Porzionato, A.; Macchi, V.; DE Caro, R.; Stecco, C. Anatomical and functional relationships between external abdominal oblique muscle and posterior layer of thoracolumbar fascia. Clin. Anat. 2018, 31, 1092–1098. [Google Scholar] [CrossRef]
Experimental (n = 10) | Control (n = 10) | p | |
---|---|---|---|
Gender (M/F) | 4 (40%)/6 (60%) | 6 (60%)/4 (40%) | |
Age (months) | 45.00 ± 18.95 | 51.70 ± 27.42 | 0.533 |
Heights (cm) | 91.89 ± 12.62 | 95.73 ± 16.10 | 0.560 |
Weight (kg) | 13.21 ± 3.37 | 14.35 ± 5.87 | 0.601 |
Diagnosis | |||
Genetic disorder | 2 (20%) | 3 (30%) | |
Charge syndrome | 1 (10%) | ||
Angelman syndrome | 1 (10%) | ||
Joubert syndrome | 1 (10%) | 1 (10%) | |
Pierre Robin syndrome | 1 (10%) | ||
Coffine–Lowry syndrome | 1 (10%) | ||
Unknown | 5 (50%) | 4 (40%) | |
Gross motor function | |||
Walk independently | 3 (30%) | 5 (50%) | |
Walk-through walkers | 5 (50%) | 5 (50%) | |
Maintain sitting position | 2 (20%) |
Experimental | Control | |||||
---|---|---|---|---|---|---|
Pre | Post | Post–Pre | Pre | Post | Post–Pre | |
EO | 32.10 ± 35.77 | 36.83 ± 34.78 | 4.64 ± 31.28 | 30.92 ± 42.07 | 42.05 ± 45.55 | 11.13 ± 34.21 |
IO | 32.21 ± 23.17 | 40.67 ± 30.88 † | 8.46 ± 39.70 | 26.57 ± 21.03 | 16.51 ± 24.64 * | −10.05 ± 17.55 |
TrA | 27.04 ± 25.54 | 36.44 ± 28.28 † | 9.39 ± 44.25 † | 33.92 ± 22.77 | 2.85 ± 13.29 * | −31.07 ± 28.62 |
RA | 31.33 ± 22.71 | 47.87 ± 45.13 | 16.54 ± 41.17 | 38.40 ± 23.33 | 36.11 ± 19.17 | −2.29 ± 15.46 |
Experimental | Control | ||||
---|---|---|---|---|---|
Pre | Post | Post–Pre | Pre | Post | Post–Pre |
14.20 ± 3.57 | 15.10 ± 3.09 * | 0.80 ± 0.76 | 15.70 ± 2.43 | 16.20 ± 2.14 * | 0.50 ± 0.82 |
Experimental | Control | |||||
---|---|---|---|---|---|---|
Pre | Post | Post–Pre | Pre | Post | Post–Pre | |
T3 | 81.45 ± 7.44 | 83.90 ± 7.29 *,† | 2.45 ± 4.36 † | 79.87 ± 5.56 | 78.42 ± 6.69 | −1.45 ± 3.35 |
T7 | 83.72 ± 7.56 | 84.38 ± 5.52 † | 0.65 ± 5.18 | 80.51 ± 4.20 | 80.14 ± 6.03 | −0.36 ± 5.59 |
T11 | 83.24 ± 9.19 | 85.73 ± 8.48 † | 2.49 ± 6.14 † | 81.65 ± 4.08 | 79.85 ± 6.04 | −1.80 ± 5.52 |
L3 | 84.93 ± 7.47 | 87.11 ± 9.04 † | 2.17 ± 7.82 † | 85.71 ± 3.13 | 79.77 ± 5.74 * | −5.93 ± 5.95 |
S1 | 84.56 ± 5.73 | 85.35 ± 6.98 † | 0.78 ± 6.93 | 83.26 ± 6.69 | 79.97 ± 5.67 | −3.28 ± 9.60 |
Experimental | Control | ||||||
---|---|---|---|---|---|---|---|
Pre | Post | Post–Pre | Pre | Post | Post–Pre | ||
Sagittal plane | T3 | 25.57 ± 8.40 † | 21.46 ± 5.52 | −3.0 ± 8.63 | 19.99 ± 5.22 | 18.55 ± 5.78 | −1.44 ± 4.30 |
T7 | 22.18 ± 6.56 | 18.35 ± 5.40 | −3.82 ± 8.70 | 22.02 ± 8.53 | 21.94 ± 8.68 | −0.07 ± 6.16 | |
T11 | 20.70 ± 5.51 | 20.57 ± 2.89 | −0.13 ± 5.46 | 18.23 ± 3.54 | 19.01 ± 6.53 | 0.78 ± 7.53 | |
L3 | 24.41 ± 5.82 | 20.14 ± 3.56 * | −4.26 ± 6.61 † | 21.11 ± 5.36 | 21.70 ± 3.52 | −0.59 ± 6.94 | |
S1 | 29.41 ± 3.16 † | 24.55 ± 3.36 * | −4.85 ± 4.46 † | 21.77 ± 6.61 | 22.70 ± 5.74 | 0.92 ± 3.45 | |
Coronal plane | T3 | 10.82 ± 3.58 | 9.30 ± 2.43 | −1.52 ± 4.04 | 11.00 ± 5.21 | 10.00 ± 2.71 | −1.00 ± 4.05 |
T7 | 12.08 ± 1.95 | 11.05 ± 3.12 | −1.02 ± 4.29 | 11.42 ± 3.57 | 11.14 ± 1.91 | −0.28 ± 2.74 | |
T11 | 12.85 ± 3.97 | 11.58 ± 3.28 | −1.26 ± 5.84 | 11.22 ± 3.80 | 11.35 ± 3.94 | 0.13 ± 5.11 | |
L3 | 15.10 ± 6.95 | 11.87 ± 3.85 * | −3.22 ± 6.27 | 11.85 ± 4.43 | 11.28 ± 3.99 | −0.57 ± 2.92 | |
S1 | 16.75 ± 4.40 † | 14.04 ± 4.40 * | −2.71 ± 4.69 † | 12.49 ± 4.56 | 13.85 ± 4.14 | 1.42 ± 5.03 |
Experimental | Control | |||||
---|---|---|---|---|---|---|
Pre | Post | Post–Pre | Pre | Post | Post–Pre | |
GMFM-88 | 52.10 ± 19.12 | 54.46 ± 18.74 * | 2.36 ± 1.07 † | 61.40 ± 17.12 | 63.12 ± 17.30 * | 1.72 ± 0.49 |
GMFM-sitting | 74.90 ± 25.88 | 78.32 ± 25.25 * | 3.33 ± 2.53 | 84.74 ± 16.03 | 86.97 ± 14.40 * | 2.22 ± 1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.-Y.; Sung, Y.-H. Vojta Therapy Affects Trunk Control and Postural Sway in Children with Central Hypotonia: A Randomized Controlled Trial. Children 2022, 9, 1470. https://doi.org/10.3390/children9101470
Ha S-Y, Sung Y-H. Vojta Therapy Affects Trunk Control and Postural Sway in Children with Central Hypotonia: A Randomized Controlled Trial. Children. 2022; 9(10):1470. https://doi.org/10.3390/children9101470
Chicago/Turabian StyleHa, Sun-Young, and Yun-Hee Sung. 2022. "Vojta Therapy Affects Trunk Control and Postural Sway in Children with Central Hypotonia: A Randomized Controlled Trial" Children 9, no. 10: 1470. https://doi.org/10.3390/children9101470
APA StyleHa, S. -Y., & Sung, Y. -H. (2022). Vojta Therapy Affects Trunk Control and Postural Sway in Children with Central Hypotonia: A Randomized Controlled Trial. Children, 9(10), 1470. https://doi.org/10.3390/children9101470