Clinical Validation of a New Optical Biometer for Myopia Control in a Healthy Pediatric Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Measurements
2.2. Myah Device
2.3. Myopia Master Device
2.4. Statistical Analysis
3. Results
3.1. Repeatability of Myah Device
3.2. Agreement between Myah and Myopia Master Devices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Tedja, M.S.; Haarman, A.E.G.; Meester-Smoor, M.A.; Kaprio, J.; Mackey, D.A.; Guggenheim, J.A.; Hammond, C.J.; Verhoeven, V.J.M.; Klaver, C.C.W.; CREAM Consortium. IMI—Myopia Genetics Report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M89–M105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gözüm, N.; Cakir, M.; Gücukoglu, A.; Sezen, F. Relationship between retinal lesions and axial length, age and sex in high myopia. Eur. J. Ophthalmol. 1997, 7, 277–282. [Google Scholar] [CrossRef]
- Saw, S.M.; Gazzard, G.; Shih-Yen, E.C.; Chua, W.H. Myopia and associated pathological complications. Ophthalmic Physiol. Opt. 2005, 25, 381–391. [Google Scholar] [CrossRef]
- Mitry, D.; Charteris, D.G.; Fleck, B.W.; Campbell, H.; Singh, J. The epidemiology of rhegmatogenous retinal detachment: Geographical variation and clinical associations. Br. J. Ophthalmol. 2010, 94, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Bullimore, M.A.; Brennan, N.A. Myopia Control: Why Each Diopter Matters. Optom. Vis. Sci. 2019, 96, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Brennan, N.A.; Toubouti, Y.M.; Cheng, X.; Bullimore, M.A. Efficacy in myopia control. Prog. Retin. Eye Res. 2021, 83, 100923. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Robboy, M.W.; Hilmantel, G.; Tarver, M.E.; Afshari, N.A.; Dhaliwal, D.K.; Morse, C.L.; Quinn, C.J.; Repka, M.X.; Eydelman, M.B. Food and Drug Administration, American Academy of Ophthalmology, American Academy of Optometry, American Association for Pediatric Ophthalmology and Strabismus, American Optometric Association, American Society of Cataract and Refractive Surgery, and Contact Lens Association of Ophthalmologists Co-Sponsored Workshop: Controlling the Progression of Myopia: Contact Lenses and Future Medical Devices. Eye Contact Lens 2018, 44, 205–211. [Google Scholar]
- Sheng, H.; Bottjer, C.A.; Bullimore, M.A. Ocular component measurement using the Zeiss IOLMaster. Optom. Vis. Sci. 2004, 81, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Yuhao, Y.; Yu, Z.; Tian, H.; Zhang, X.; Miao, H.; Qin, B.; Zhou, X. Accuracy of axial length, keratometry, and refractive measurement with Myopia Master in children with ametropia. PREPRINT (Version 1). Res. Sq. 2022, PPR492295. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measurement error. BMJ 1996, 313, 744. [Google Scholar] [CrossRef]
- Rauscher, F.G.; Hiemisch, A.; Kiess, W.; Michael, R. Feasibility and repeatability of ocular biometry measured with Lenstar LS 900 in a large group of children and adolescents. Ophthalmic Physiol. Opt. 2021, 41, 512–522. [Google Scholar] [CrossRef]
- Yu, X.; Chen, H.; Savini, G.; Zheng, Q.; Song, B.; Tu, R.; Huang, J.; Wang, Q. Precision of a new ocular biometer in children and comparison with IOLMaster. Sci. Rep. 2018, 8, 1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Zhao, Y.; Savini, G.; Yu, G.; Yu, J.; Chen, Z.; Tu, R.; Zhao, Y. Reliability of a New Swept-Source Optical Coherence Tomography Biometer in Healthy Children, Adults, and Cataract Patients. J. Ophthalmol. 2020, 2020, 8946364. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Berrow, E.J.; Naroo, S.A.; Wolffsohn, J.S.; Uthoff, D.; Holland, D.; Shah, S. Validity and repeatability of the Aladdin ocular biometer. Br. J. Ophthalmol. 2014, 98, 256–258. [Google Scholar] [CrossRef] [Green Version]
- Fukumitsu, H.; Camps, V.J.; Piñero, D.P. Intrasession Repeatability of Biometric Measurements Obtained with a Low-Coherence Interferometry System in Pseudophakic Eyes. Curr. Eye Res. 2020, 45, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.H.; Wilson, M.E. Biometry data from caucasian and african-american cataractous pediatric eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4671–4678. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, P.; Morini, C.; Piga, S.; Cuttini, M.; Vadalà, P. Corneal curvature and axial length values in children with congenital/infantile cataract in the first 42 months of life. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4774–4778. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Ritchey, E.R.; Shah, S.; Leveziel, N.; Bourne, R.; Flitcroft, D.I. The Risks and Benefits of Myopia Control. Ophthalmology 2021, 128, 1561–1579. [Google Scholar] [CrossRef] [PubMed]
- Buckhurst, P.J.; Wolffsohn, J.S.; Shah, S.; Naroo, S.A.; Davies, L.N.; Berrow, E.J. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br. J. Ophthalmol. 2009, 93, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Song, J.S.; Yoon, D.Y.; Hyon, J.Y.; Jeon, H.S. Comparison of Ocular Biometry and Refractive Outcomes Using IOL Master 500, IOL Master 700, and Lenstar LS900. Korean J. Ophthalmol. 2020, 34, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, S.; Asharlous, A.; Riazi, A.; Khabazkhoob, M.; Moalej, A. Differences and Limits of Agreement among Pentacam, Corvis-ST, and IOL-Master 700 Optical Biometric Devices regarding Central Corneal Thickness Measurements. J. Curr. Ophthalmol. 2022, 34, 44–49. [Google Scholar]
- Sabur, H.; Takes, O. Agreement of axial length and anterior segment parameters measured with the MYAH device compared to Pentacam AXL and IOLMaster 700 in myopic children. Int. Ophthalmol. 2022, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.W.; Chan, R.; Cheng, R.C.; Cho, P. Effect of cycloplegia on axial length and anterior chamber depth measurements in children. Clin. Exp. Optom. 2009, 92, 476–481. [Google Scholar] [CrossRef]
- Huang, J.; McAlinden, C.; Su, B.; Pesudovs, K.; Feng, Y.; Hua, Y.; Yang, F.; Pan, C.; Zhou, H.; Wang, Q. The effect of cycloplegia on the lenstar and the IOLMaster biometry. Optom. Vis. Sci. 2012, 89, 1691–1696. [Google Scholar] [CrossRef]
Parameter | 1st Measurement (Mean ± SD) | 2nd Measurement (Mean ± SD) | 3rd Measurement (Mean ± SD) | p-Value |
---|---|---|---|---|
K1 (mm) | 7.90 ± 0.27 | 7.90 ± 0.27 | - | 0.29 |
K2 (mm) | 7.71 ± 0.27 | 7.71 ± 0.27 | - | 0.85 |
WTW (mm) | 12.13 ± 0.41 | 12.12 ± 0.42 | - | 0.58 |
AL (mm) | 23.87 ± 1.27 | 23.87 ± 1.27 | 23.87 ± 1.27 | 0.89 |
Parameter | Sw (95% CI) | Precision (95% CI) | Repeatability (95% CI) | CoV % (95% CI) | ICC |
---|---|---|---|---|---|
K1 (mm) | 0.02 (0.01/0.02) | 0.04 (0.03/0.04) | 0.10 (0.07/0.12) | 0.22 (0.16/0.29) | 1.00 (0.99/1.00) |
K2 (mm) | 0.02 (0.02/0.03) | 0.04 (0.03/0.05) | 0.06 (0.04/0.08) | 0.28 (0.20/0.35) | 0.99 (0.99/1.00) |
WTW (mm) | 0.07 (0.05/0.09) | 0.14 (0.10/0.18) | 0.20 (0.14/0.25) | 0.59 (0.43/0.75) | 0.97 (0.95/0.98) |
AL (mm) | 0.02 (0.01/0.02) | 0.03 (0.02/0.04) | 0.05 (0.03/0.06) | 0.07 (0.05/0.09) | 1.00 (1.00/1.00) |
Parameter | Mean Difference (95% CI) | Lower LoA (95% CI) | Upper LoA (95% CI) |
---|---|---|---|
K1 (mm) | −0.01 (−0.03/0.01) | −0.10 (−0.13/−0.07) | 0.08 (0.05/0.11) |
K2 (mm) | −0.06 (−0.07/−0.04) | −0.13 (−0.15/−0.10) | 0.01 (−0.01/0.04) |
WTW (mm) | 0.15 (0.05/0.26) | −0.37 (−0.55/−0.19) | 0.67 (0.49/0.86) |
AL (mm) | 0.03 (0.01/0.05) | −0.09 (−0.13/−0.05) | 0.15 (0.11/0.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Plaza, E.; Molina-Martín, A.; Arias-Puente, A.; Piñero, D.P. Clinical Validation of a New Optical Biometer for Myopia Control in a Healthy Pediatric Population. Children 2022, 9, 1713. https://doi.org/10.3390/children9111713
Martínez-Plaza E, Molina-Martín A, Arias-Puente A, Piñero DP. Clinical Validation of a New Optical Biometer for Myopia Control in a Healthy Pediatric Population. Children. 2022; 9(11):1713. https://doi.org/10.3390/children9111713
Chicago/Turabian StyleMartínez-Plaza, Elena, Ainhoa Molina-Martín, Alfonso Arias-Puente, and David P. Piñero. 2022. "Clinical Validation of a New Optical Biometer for Myopia Control in a Healthy Pediatric Population" Children 9, no. 11: 1713. https://doi.org/10.3390/children9111713
APA StyleMartínez-Plaza, E., Molina-Martín, A., Arias-Puente, A., & Piñero, D. P. (2022). Clinical Validation of a New Optical Biometer for Myopia Control in a Healthy Pediatric Population. Children, 9(11), 1713. https://doi.org/10.3390/children9111713