Maternal Multiple Sclerosis and Offspring’s Cognitive and Behavioral Development: What Do We Know until Now?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Is Maternal MS Associated with an Increased Risk of Neurodevelopmental Disorders in Offspring?
4.2. Are the Available Studies on the Topic Methodologically Well Conducted?
4.3. Is Maternal Treatment for MS during Pregnancy Associated with an Increased Risk of Neurodevelopmental Disorders in Offspring?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estes, M.L.; McAllister, A.K. Maternal immune activation: Implications for neuropsychiatric disorders. Science 2016, 353, 772–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, M.D. Baby brains reflect maternal inflammation. Nat. Neurosci. 2018, 21, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Knuesel, I.; Chicha, L.; Britschgi, M.; Schobel, S.A.; Bodmer, M.; Hellings, J.A.; Toovey, S.; Prinssen, E.P. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014, 10, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, R.; Santos, S.; Duijts, L.; Felix, J.F. Childhood Health Consequences of Maternal Obesity during Pregnancy: A Narrative Review. Ann. Nutr. Metab. 2016, 69, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Segovia, S.A.; Vickers, M.H.; Reynolds, C.M. The impact of maternal obesity on inflammatory processes and consequences for later offspring health outcomes. J. Dev. Orig. Health Dis. 2017, 8, 529–540. [Google Scholar] [CrossRef]
- Rakers, F.; Rupprecht, S.; Dreiling, M.; Bergmeier, C.; Witte, O.W.; Schwab, M. Transfer of maternal psychosocial stress to the fetus. Neurosci. Biobehav. Rev. 2020, 117, 185–197. [Google Scholar] [CrossRef]
- Graham, A.M.; Rasmussen, J.M.; Rudolph, M.D.; Heim, C.M.; Gilmore, J.H.; Styner, M.; Potkin, S.G.; Entringer, S.; Wadhwa, P.D.; Fair, D.A.; et al. Maternal Systemic Interleukin-6 During Pregnancy Is Associated With Newborn Amygdala Phenotypes and Subsequent Behavior at 2 Years of Age. Biol. Psychiatry 2018, 83, 109–119. [Google Scholar] [CrossRef]
- Spann, M.N.; Monk, C.; Scheinost, D.; Peterson, B.S. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior. J. Neurosci. 2018, 38, 2877–2886. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, M.D.; Graham, A.M.; Feczko, E.; Miranda-Dominguez, O.; Rasmussen, J.M.; Nardos, R.; Entringer, S.; Wadhwa, P.D.; Buss, C.; Fair, D.A. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 2018, 21, 765–772. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Moffitt, T.E.; Eugen-Olsen, J.; Belsky, D.W.; Danese, A.; Harrington, H.; Houts, R.M.; Poulton, R.; Sugden, K.; Williams, B.; et al. Cumulative childhood risk is associated with a new measure of chronic inflammation in adulthood. J. Child Psychol. Psychiatry 2019, 60, 199–208. [Google Scholar] [CrossRef]
- Romer, G.; Barkmann, C.; Schulte-Markwort, M.; Thomalla, G.; Riedesser, P. Children of Somatically Ill Parents: A Methodological Review. J. Child Psychol. Psychiatry 2002, 7, 17–38. [Google Scholar] [CrossRef]
- Barkmann, C.; Romer, G.; Watson, M.; Schulte-Markwort, M. Parental physical illness as a risk for psychosocial maladjustment in children and adolescents: Epidemiological findings from a national survey in Germany. Psychosomatics 2007, 48, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Sieh, D.S.; Meijer, A.M.; Oort, F.J.; Visser-Meily, J.M.; Van der Leij, D.A. Problem behavior in children of chronically ill parents: A meta-analysis. Clin. Child Fam. Psychol. Rev. 2010, 13, 384–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, S.E.; Michelsen, S.I.; Andersen, A.; Tolstrup, J.S.; Thygesen, L.C. Identifying and Characterizing Children of Parents with a Serious Illness Using Survey and Register Data. Clin. Epidemiol. 2021, 13, 253–263. [Google Scholar] [CrossRef]
- Li, Y.M.; Ou, J.J.; Liu, L.; Zhang, D.; Zhao, J.P.; Tang, S.Y. Association Between Maternal Obesity and Autism Spectrum Disorder in Offspring: A Meta-analysis. J. Autism Dev. Disord. 2016, 46, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Maher, G.M.; O’Keeffe, G.W.; Kearney, P.M.; Kenny, L.C.; Dinan, T.G.; Mattsson, M.; Khashan, A.S. Association of Hypertensive Disorders of Pregnancy With Risk of Neurodevelopmental Disorders in Offspring: A Systematic Review and Meta-analysis. JAMA Psychiatry 2018, 75, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Netsi, E.; Pearson, R.M.; Murray, L.; Cooper, P.; Craske, M.G.; Stein, A. Association of Persistent and Severe Postnatal Depression With Child Outcomes. JAMA Psychiatry 2018, 75, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.M.; Benham, J.L.; Dewey, D.; Sanchez, J.J.; Murphy, H.R.; Feig, D.S.; Donovan, L.E. Neurocognitive and behavioural outcomes in offspring exposed to maternal pre-existing diabetes: A systematic review and meta-analysis. Diabetologia 2019, 62, 1561–1574. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Nielsen, T.C.; Mohammad, S.S.; Hofer, M.J.; Gold, W.; Brilot, F.; Lain, S.J.; Nassar, N.; et al. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: A systematic review. Transl. Psychiatry 2021, 11, 71. [Google Scholar] [CrossRef]
- Siracusano, M.; Riccioni, A.; Gialloreti, L.E.; Carloni, E.; Baratta, A.; Ferrara, M.; Arturi, L.; Lisi, G.; Adulti, I.; Rossi, R.; et al. Maternal Perinatal Depression and Risk of Neurodevelopmental Disorders in Offspring: Preliminary Results from the SOS MOOD Project. Children 2021, 8, 1150. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Sand, I.K. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028928. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Jordana, A.; Montalban, X. Multiple Sclerosis: Epidemiologic, Clinical, and Therapeutic Aspects. Neuroimaging Clin. 2017, 27, 195–204. [Google Scholar] [CrossRef]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Thiel, S.; Langer-Gould, A.; Rockhoff, M.; Haghikia, A.; Queisser-Wahrendorf, A.; Gold, R.; Hellwig, K. Interferon-beta exposure during first trimester is safe in women with multiple sclerosis-A prospective cohort study from the German Multiple Sclerosis and Pregnancy Registry. Mult. Scler. J. 2016, 22, 801–809. [Google Scholar] [CrossRef]
- Hakkarainen, K.M.; Juuti, R.; Burkill, S.; Geissbühler, Y.; Sabidó, M.; Popescu, C.; Suzart-Woischnik, K.; Hillert, J.; Artama, M.; Verkkoniemi-Ahola, A.; et al. Pregnancy outcomes after exposure to interferon beta: A register-based cohort study among women with MS in Finland and Sweden. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420951072. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Duarte Caron, F.; Wicklein, E.M.; Bhatti, A.; Adamo, A. Pregnancy outcomes from the global pharmacovigilance database on interferon beta-1b exposure. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420910310. [Google Scholar] [CrossRef] [Green Version]
- Sandberg-Wollheim, M.; Neudorfer, O.; Grinspan, A.; Weinstock-Guttman, B.; Haas, J.; Izquierdo, G.; Riley, C.; Ross, A.P.; Baruch, P.; Drillman, T.; et al. Pregnancy Outcomes from the Branded Glatiramer Acetate Pregnancy Database. Int. J. MS Care 2018, 20, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Gold, R.; Phillips, J.T.; Havrdova, E.; Bar-Or, A.; Kappos, L.; Kim, N.; Thullen, T.; Valencia, P.; Oliva, L.; Novas, M.; et al. Delayed-Release Dimethyl Fumarate and Pregnancy: Preclinical Studies and Pregnancy Outcomes from Clinical Trials and Postmarketing Experience. Neurol. Ther. 2015, 4, 93–104. [Google Scholar] [CrossRef]
- Hellwig, K.; Rog, D.; McGuigan, C.; Houtchens, M.K.; Bruen, D.R.; Mokliatchouk, O.; Branco, F.; Peng, X.; Everage, N.J. Interim Analysis of Pregnancy Outcomes After Exposure to Dimethyl Fumarate in a Prospective International Registry. Neurol. Neuroimmunol. Neuroinflamm. 2021, 9, e1114. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Dassan, P.; Roberts, M.; Giovannoni, G.; Nelson-Piercy, C.; Brex, P.A. UK consensus on pregnancy in multiple sclerosis: ‘Association of British Neurologists’ guidelines. Pract. Neurol. 2019, 19, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauliat, E.; Onken, M.; Weber-Schoendorfer, C.; Rousson, V.; Addor, M.C.; Baud, D.; Théaudin, M.; Diav-Citrin, O.; Cottin, J.; Agusti, A.; et al. Pregnancy outcome following first-trimester exposure to fingolimod: A collaborative ENTIS study. Mult. Scler. J. 2021, 27, 475–478. [Google Scholar] [CrossRef]
- Geissbühler, Y.; Vile, J.; Koren, G.; Guennec, M.; Butzkueven, H.; Tilson, H.; MacDonald, T.M.; Hellwig, K. Evaluation of pregnancy outcomes in patients with multiple sclerosis after fingolimod exposure. Ther. Adv. Neurol. Disord. 2018, 11, 1756286418804760. [Google Scholar] [CrossRef] [Green Version]
- Varytė, G.; Arlauskienė, A.; Ramašauskaitė, D. Pregnancy and multiple sclerosis: An update. Curr. Opin. Obstet. Gynecol. 2021, 33, 378–383. [Google Scholar] [CrossRef]
- Barataud-Reilhac, A.; Kerbrat, S.; Roux, J.; Guilleux, A.; Polard, E.; Leray, E. Teriflunomide-exposed pregnancies in a French cohort of patients with multiple sclerosis. Neurol. Clin. Pract. 2020, 10, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Landi, D.; Bovis, F.; Grimaldi, A.; Annovazzi, P.O.; Bertolotto, A.; Bianchi, A.; Borriello, G.; Brescia Morra, V.; Bucello, S.; Buscarinu, M.C.; et al. Exposure to natalizumab throughout pregnancy: Effectiveness and safety in an Italian cohort of women with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, jnnp-2022-329657. [Google Scholar] [CrossRef] [PubMed]
- Chey, S.Y.; Kermode, A.G. Pregnancy outcome following exposure to ocrelizumab in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2022, 8, 20552173221085737. [Google Scholar] [CrossRef]
- Voskuhl, R.; Momtazee, C. Pregnancy: Effect on Multiple Sclerosis, Treatment Considerations, and Breastfeeding. Neurotherapeutics 2017, 14, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Pozzilli, C.; Pugliatti, M.; ParadigMS Group. An overview of pregnancy-related issues in patients with multiple sclerosis. Eur. J. Neurol. 2015, 22, 34–39. [Google Scholar] [CrossRef]
- Ysrraelit, M.C.; Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019, 156, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, R.D.; Voskuhl, R.R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol. 2012, 33, 105–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukusic, S.; Coyle, P.K.; Jurgensen, S.; Truffinet, P.; Benamor, M.; Afsar, S.; Purvis, A.; Poole, E.M.; Chambers, C. Pregnancy outcomes in patients with multiple sclerosis treated with teriflunomide: Clinical study data and 5 years of post-marketing experience. Mult. Scler. J. 2020, 26, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, S.; Michel, L.; Leguy, S.; Lebrun-Frenay, C. Pregnancy with multiple sclerosis. Rev. Neurol. 2021, 177, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Paavilainen, T.; Kurki, T.; Parkkola, R.; Färkkilä, M.; Salonen, O.; Dastidar, P.; Elovaara, I.; Airas, L. Magnetic resonance imaging of the brain used to detect early post-partum activation of multiple sclerosis. Eur. J. Neurol. 2007, 14, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Krysko, K.M.; Rutatangwa, A.; Krishnakumar, T.; Chen, C.; Rowles, W.; Zhao, C.; Houtchens, M.K.; Bove, R. Clinical and Radiologic Disease Activity in Pregnancy and Postpartum in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e959. [Google Scholar] [CrossRef]
- Andersen, J.B.; Moberg, J.Y.; Niclasen, J.; Laursen, B.; Magyari, M. Mental health among children of mothers with multiple sclerosis: A Danish cohort and register-based study. Brain Behav. 2018, 8, e01098. [Google Scholar] [CrossRef] [Green Version]
- Carta, A.; Zarbo, I.R.; Scoppola, C.; Pisuttu, G.; Conti, M.; Melis, M.C.; Martino, F.; Serra, A.; Biancu, M.A.; Guerini, F.R.; et al. Maternal multiple sclerosis is not a risk factor for neurodevelopmental disorders in offspring. Mult. Scler. J. Exp. Transl. Clin. 2021, 7, 20552173211017301. [Google Scholar] [CrossRef]
- Diareme, S.; Tsiantis, J.; Kolaitis, G.; Ferentinos, S.; Tsalamanios, E.; Paliokosta, E.; Anasontzi, S.; Lympinaki, E.; Anagnostopoulos, D.C.; Voumvourakis, C.; et al. Emotional and behavioural difficulties in children of parents with multiple sclerosis: A controlled study in Greece. Eur. Child Adolesc. Psychiatry 2006, 15, 309–318. [Google Scholar] [CrossRef]
- Bogosian, A.; Hadwin, J.; Hankins, M.; Moss-Morris, R. Parents’ expressed emotion and mood, rather than their physical disability are associated with adolescent adjustment: A longitudinal study of families with a parent with multiple sclerosis. Clin. Rehabil. 2016, 30, 303–311. [Google Scholar] [CrossRef]
- Razaz, N.; Tremlett, H.; Boyce, W.T.; Guhn, M.; Joseph, K.S.; Marrie, R.A. Impact of parental multiple sclerosis on early childhood development: A retrospective cohort study. Mult. Scler. J. 2015, 21, 1172–1183. [Google Scholar] [CrossRef] [Green Version]
- Razaz, N.; Joseph, K.S.; Boyce, W.T.; Guhn, M.; Forer, B.; Carruthers, R.; Marrie, R.A.; Tremlett, H. Children of chronically ill parents: Relationship between parental multiple sclerosis and childhood developmental health. Mult. Scler. J. 2016, 22, 1452–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahlanza, T.D.; Manieri, M.C.; Klawiter, E.C.; Solomon, A.J.; Lathi, E.; Ionete, C.; Berriosmorales, I.; Severson, C.; Stankiewicz, J.; Cabot, A.; et al. Prospective growth and developmental outcomes in infants born to mothers with multiple sclerosis. Mult. Scler. J. 2021, 27, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.; James-Roberts, I.S.; Ashley, S.; Tilney, C.; Brougham, B.; Edwards, L.; Baldus, C.; Romer, G. Factors associated with emotional and behavioural problems among school age children of breast cancer patients. Br. J. Cancer 2006, 94, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Wehner, N.G.; Shopp, G.; Osterburg, I.; Fuchs, A.; Buse, E.; Clarke, J. Postnatal development in cynomolgus monkeys following prenatal exposure to natalizumab, an alpha4 integrin inhibitor. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2009, 86, 144–156. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Herbstritt, S.; Gold, R.; Amezcua, L.; Koren, G.; Hellwig, K. Pregnancy and fetal outcomes following natalizumab exposure in pregnancy. A prospective, controlled observational study. Mult. Scler. J. 2015, 21, 198–205. [Google Scholar] [CrossRef]
- Thöne, J.; Thiel, S.; Gold, R.; Hellwig, K. Treatment of multiple sclerosis during pregnancy—Safety considerations. Expert Opin Drug Saf. 2017, 16, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Varytė, G.; Zakarevičienė, J.; Ramašauskaitė, D.; Laužikienė, D.; Arlauskienė, A. Pregnancy and Multiple Sclerosis: An Update on the Disease Modifying Treatment Strategy and a Review of Pregnancy’s Impact on Disease Activity. Medicina 2020, 56, 49. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, Y.D.; Finkelsztejn, A.; Kaimen-Maciel, D.R.; Grzesiuk, A.K.; Gallina, A.S.; Lopes, J.; Morales, N.M.; Alves-Leon, S.V.; de Almeida, S.M. Long-term use of glatiramer acetate by 11 pregnant women with multiple sclerosis: A retrospective, multicentre case series. CNS Drugs 2010, 24, 969–976. [Google Scholar] [CrossRef]
- Hellwig, K.; Haghikia, A.; Gold, R. Pregnancy and natalizumab: Results of an observational study in 35 accidental pregnancies during natalizumab treatment. Mult. Scler. J. 2011, 17, 958–963. [Google Scholar] [CrossRef]
Medication | Timing of Exposure (Trimester of Pregnancy) | Offspring’s Outcomes | Current Recommendation |
---|---|---|---|
IFN | I-II-III | no increased risk of: major congenital anomalies, spontaneous abortions, ectopic pregnancy, non-live birth. | -continue until conception -in the case of unplanned pregnancy: no evidence to consider termination |
GA | I-II | no increased risk of: major congenital anomalies, spontaneous abortions, ectopic pregnancy, non-live birth | safe to continue until conception and throughout pregnancy |
DMF | I | no increased risk of: inborn defects, premature births, spontaneous abortions | not recommended |
fingolimod | I-II-III | no increased risk of: major congenital anomalies | stop at least 2 months prior to conception (washout) and eventually switch to other DMT |
teriflunomide | I | no increased risk of: major congenital anomalies, spontaneous abortions, ectopic pregnancy, non-live birth | stop the treatment and use an accelerated elimination procedure |
natalizumab | I-II | no increased risk of: major congenital anomalies, spontaneous abortions; haematological adverse event must be better analyzed. | consider treating in pregnancy; last dose: 34 weeks |
ocrelizumab | I | no increased risk of: spontaneous abortions or congenital anomalies | stop at least 12 months prior to conception (washout) |
Year | Authors | Country | Study Design | Parent Sample | Offspring Sample | Control Group | Outcome | Offspring’s Evaluation Tools | Main Findings | Limits | Strengths |
---|---|---|---|---|---|---|---|---|---|---|---|
2006 | Diareme et al. | Greece | Case-control | N = 101 (46 M; 55 F) | N = 56 (31 M; 25 F: MA 9.9 yrs) | N = 128 PARENTS (64 M; 64 F) N = 64 CHILDREN (32 M; 32 F; MA 10.3 yrs) | -Child emotional and behavioral problems -Parental depression -Family disfunction | -CBCL (<11 yrs) -YSR (>11 yrs) -FAD | -Association between maternal MS and offspring’s emotional and behavioral problems -Stronger association in the presence of maternal depression and family dysfunction -MS mothers are more frequently depressed | -Use of teacher, parental, child report -Lack of clinical objective development evaluation | -Control group -Standardized instruments |
2015 | Razaz et. al. | Canada | Population-based retrospective cohort (health database) | N = 153 (23 M; 130 F) | N = 53 (MA 5.7 yrs) | N = 876 PARENTS without MS and respective OFFSPRING (MA 5.7 yrs) | Child development at 5 years of age | Teacher Report: EDI | -No association between maternal MS and development vulnerability in offspring -Association between maternal psychiatric comorbidity and parental MS duration and development vulnerability in offspring | -Use of teacher report -Lack of clinical objective development evaluation -Retrospective info | -Large sample size -Control group |
2016 | Bogosian et al. | London, UK | Longitudinal Study (baseline, 6 months distance) | N = 56 MS (mean age: 45.96 yrs), N = 40 partners without MS (mean age: 47.2 yrs) | N = 75 (age range 12–19 yrs) | NO | Internalizing and externalizing problems in offspring | Strength and Difficulties Questionnaire | -Association between parental psychiatric comorbidities and offspring behavioral problems -No association between the severity and type of parental MS and offspring difficulties | -No control group -Lack of clinical objective development evaluation -small sample size | -Longitudinal study |
2016 | Razaz et. al. | Canada | Population-based retrospective cohort study (health database) | N = 783 (240 M; 543 F) | N = 783 tot. (380 M; 403 F; MA 5.6 yrs). | N = 2988 PARENTS (2211 F; 777 M) N = 2988 CHILDREN (1450 F; 1538 M; MA 5.7 yrs) | Child development at 5 years of age | Teacher Report: EDI | -No association between maternal MS and offspring’s developmental vulnerability -Association between maternal psychiatric comorbidity and offspring’s developmental vulnerability | -Use of teacher report -Lack of clinical objective development evaluation | -Large sample size -Control group |
2018 | Andersen et al. | Copenhagen (Denmark) | Cohort- and register-based study | N = 382 F | N = 382 (MA 11 yrs) −48.5% M −51.5% F | N = 68.177 PARENTS (F) N = 6.177 CHILDREN (50.3% M 49.7% F MA 11 yrs) | Offspring mental health status at age 11 | SDQ (Questionnaire) | -No association between maternal MS and offspring mental status at 11 yrs of age | -Use of teacher, parental, child questionnaires -Register-based study -Lack of clinical development evaluation | -Large sample size -Control group |
2021 | Carta et al. | Sassary, Italy | Retrospective Observational Study | N = 206 F | N = 361(167 M; 194 F; MA 22.9 yrs) 13 received immune treatment in pregnancy | NO | NDDs | -screening questionnaire -standardized evaluation on a selected sample: WISC-IV, Leiter-R, CPM, SPM, ADOS-2, CPRS. | -No association between maternal MS and NDDs -Weak association between MS treatment during pregnancy and NDDs | -Retrospective study (clinical records) -Enrollment bias | -Control group -Large sample size |
2021 | Mahlanza et al. | Boston (USA) | Prospective multicenter cohort study | N = 92 F | N = 48 (22 M; 26 F; 0–12 months) | NO | Anthropometric measures (weight, length, head circumference) developmental outcome checklist | -Telephone interviews -Medical records | -No pediatric developmental difficulties -Larger head circumference measurements in children of MS mothers | -No control group -Lack of clinical development evaluation -Focused on anthropometric outcome | -Prospective study -Longitudinal analysis of offspring’s growth |
Study | Maternal MS Risk for NDDs | Maternal MS Treatment and NDDs | Maternal MS, Psychiatric Comorbidities and Risk for NDDs | Quality of Methodology |
---|---|---|---|---|
Diareme et al. 2006 | Yes | − | Yes | + + + |
Razaz et al. 2015 | No | − | Yes | + + |
Bogosian et al. 2016 | No | − | Yes | + + |
Razaz et al. 2016 | No | − | Yes | + + |
Andersen et al. 2018 | No | − | − | + + |
Carta et al. 2021 | No | Yes | − | + |
Mahlanza et al. 2021 | No | − | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siracusano, M.; Carloni, E.; Riccioni, A.; Ferrara, M.; Scoppola, C.; Arturi, L.; Niolu, C.; Marfia, G.A.; Mazzone, L. Maternal Multiple Sclerosis and Offspring’s Cognitive and Behavioral Development: What Do We Know until Now? Children 2022, 9, 1716. https://doi.org/10.3390/children9111716
Siracusano M, Carloni E, Riccioni A, Ferrara M, Scoppola C, Arturi L, Niolu C, Marfia GA, Mazzone L. Maternal Multiple Sclerosis and Offspring’s Cognitive and Behavioral Development: What Do We Know until Now? Children. 2022; 9(11):1716. https://doi.org/10.3390/children9111716
Chicago/Turabian StyleSiracusano, Martina, Elisa Carloni, Assia Riccioni, Marialaura Ferrara, Chiara Scoppola, Lucrezia Arturi, Cinzia Niolu, Girolama Alessandra Marfia, and Luigi Mazzone. 2022. "Maternal Multiple Sclerosis and Offspring’s Cognitive and Behavioral Development: What Do We Know until Now?" Children 9, no. 11: 1716. https://doi.org/10.3390/children9111716
APA StyleSiracusano, M., Carloni, E., Riccioni, A., Ferrara, M., Scoppola, C., Arturi, L., Niolu, C., Marfia, G. A., & Mazzone, L. (2022). Maternal Multiple Sclerosis and Offspring’s Cognitive and Behavioral Development: What Do We Know until Now? Children, 9(11), 1716. https://doi.org/10.3390/children9111716