The Association between Somatotropin Therapy and the Risk of SARS-CoV-2 Infection in Children with Short Stature: A Population-Based Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Methods
2.3. SARS-CoV-2 Testing
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Coronavirus COVID-19 Dashboard. Available online: https://covid19.who.int (accessed on 8 December 2021).
- World Health Organisation (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available online: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19) (accessed on 17 August 2022).
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Carducci, F.I.C.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Oualha, M.; Bendavid, M.; Berteloot, L.; Corsia, A.; Lesage, F.; Vedrenne, M.; Salvador, E.; Grimaud, M.; Chareyre, J.; de Marcellus, C.; et al. Severe and fatal forms of COVID-19 in children. Arch. Pediatr. 2020, 27, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, H.; Lu, X.-X.; Xiao, H.; Ren, J.; Zhang, F.-R.; Liu, Z.-S. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study. World J. Pediatr. 2020, 16, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; Eggo, R.M. CMMID COVID-19 working group. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 2020, 26, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch. Dis. Child. 2020, 106, 429–439. [Google Scholar] [CrossRef]
- Macario, E.; Hersch, E.C.; Merriam, G.R. Growth hormone (GH)-releasing hormone and GH secretagogues in normal aging: Fountain of Youth or Pool of Tantalus? Clin. Interv. Aging 2008, 3, 121–129. [Google Scholar] [CrossRef]
- Cohen, P.; Rogol, A.; Deal, C.L.; Saenger, P.; Reiter, E.O.; Ross, J.L.; Chernausek, S.D.; Savage, M.O.; Wit, J.M. Consensus Statement on the Diagnosis and Treatment of Children with Idiopathic Short Stature: A Summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J. Clin. Endocrinol. Metab. 2008, 93, 4210–4217. [Google Scholar] [CrossRef]
- Besedovsky, H.O.; Del Rey, A. Immune-Neuro-Endocrine Interactions: Facts and Hypotheses. Endocr. Rev. 1996, 17, 64–102. [Google Scholar] [CrossRef]
- Bozzola, M.; De Benedetti, F.; De Amici, M.; Jouret, B.; Travaglino, P.; Pagani, S.; Conte, F.; Tauber, M. Stimulating effect of growth hormone on cytokine release in children. Eur. J. Endocrinol. 2003, 149, 397–401. [Google Scholar] [CrossRef]
- Weigent, D.A.; Baxter, J.B.; Wear, W.E.; Smith, L.R.; Bost, K.L.; Blalock, J.E. Production of immunoreactive growth hormone by mononuclear leukocytes. FASEB J. 1988, 2, 2812–2818. [Google Scholar] [CrossRef]
- Bernton, E.W.; Beach, J.E.; Holaday, J.W.; Smallridge, R.C.; Fein, H.G.; Prober, J.; Trainor, G.; Dam, R.; Hobbs, F.; Robertson, C.; et al. Release of Multiple Hormones by a Direct Action of Interleukin-1 on Pituitary Cells. Science 1987, 238, 519–521. [Google Scholar] [CrossRef]
- Berczi, I. Pituitary hormones and immune function. Acta Paediatr. 1997, 86, 70–75. [Google Scholar] [CrossRef]
- Lindboe, J.B.; Langkilde, A.; Eugen-Olsen, J.; Hansen, B.R.; Haupt, T.H.; Petersen, J.; Andersen, O. Low-dose growth hormone therapy reduces inflammation in HIV-infected patients: A randomized placebo-controlled study. Infect. Dis. 2016, 48, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, T.; Chodick, G.; Shalev, V.; Goldstein, D.; Gomez, R.; Landau, Z. Real-World Treatment Patterns and Outcomes of Growth Hormone Treatment Among Children in Israel Over the Past Decade (2004–2015). Front. Pediatr. 2021, 9, 711979. [Google Scholar] [CrossRef]
- Merzon, E.; Manor, I.; Rotem, A.; Schneider, T.; Vinker, S.; Cohen, A.G.; Lauden, A.; Weizman, A.; Green, I. ADHD as a Risk Factor for Infection With Covid-19. J. Atten. Disord. 2020, 25, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Merzon, E.; Green, I.; Shpigelman, M.; Vinker, S.; Raz, I.; Golan-Cohen, A.; Eldor, R. Haemoglobin A1c is a predictor of COVID-19 severity in patients with diabetes. Diabetes Metab. Res. Rev. 2020, 37, e3398. [Google Scholar] [CrossRef]
- Green, I.; Merzon, E.; Vinker, S.; Golan-Cohen, A.; Magen, E. COVID-19 Susceptibility in Bronchial Asthma. J. Allergy Clin. Immunol. Pract. 2020, 9, 684–692.e1. [Google Scholar] [CrossRef] [PubMed]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Cohen, A.G.; Green, I.; Frenkel-Morgenstern, M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. Flu vaccine could cut COVID risk. Nature 2022, 605, 602. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Chinn, J.; De Ferrante, M.; Kirby, K.A.; Hohmann, S.F.; Amin, A. Male gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS ONE 2021, 16, e0254066. [Google Scholar] [CrossRef]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; A Jebb, S. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: A prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.A.; Gerstein, M.; Yaniv, N.; Richenberg, Y.; Jacobson, E.; Marton, S.; Hoshen, M.; Zemer, V.S. Attention-Deficit/Hyperactivity Disorder as a Risk Factor for COVID-19 Infection. J. Atten. Disord. 2021, 26, 985–990. [Google Scholar] [CrossRef]
- Meazza, C.; Pagani, S.; Travaglino, P.; Bozzola, M. Effect of growth hormone (GH) on the immune system. Pediatr. Endocrinol Rev. 2004, 1 (Suppl. S3), 490–495. [Google Scholar]
Variables | Total | SARS-CoV-2 Positive | SARS-CoV-2 Negative | p-Value | |
---|---|---|---|---|---|
2382 (100%) | 421 (17.67%) | 1961 (82.33%) | |||
Age years, mean ± SD | 13.14 ± 4.29 | 13.84 ± 3.91 | 13.02 ± 4.34 | 0.038 | |
Gender | Male | 1457 (61.17%) | 294 (69.83%) | 1163 (59.31%) | 0.001 |
Female | 925 (38.83%) | 127 (30.17%) | 798 (40.69%) | ||
SES | Low | 1268 (53.23%) | 301 (71.50%) | 967 (49.31%) | 0.001 |
Middle | 821 (34.47%) | 108 (25.65%) | 713 (36.36) | ||
High | 293 (12.3%) | 12 (2.85%) | 281 (14.33%) | ||
Height (percentile), Mean ± SD | 12.31 ± 16.45 | 11.09 ± 16.41 | 12.57 ± 16.45 | 0.1005 | |
Weight (percentile), Mean ± SD | 23.95 ± 28.85 | 24.87 ± 29.37 | 23.76 ± 28.74 | 0.512 | |
BMI (percentile), Mean ± SD | 43.21 ± 33.04 | 46.45 ± 34.35 | 42.38 ± 32.69 | 0.0225 | |
Glucose (mg/dL), Mean ± SD | 86.84 ± 10.95 | 87.26 ± 10.61 | 86.74 ± 11.02 | 0.413 | |
25-OH Vitamin D3 (ng/mL), Mean ± SD | 22.81 ± 9.15 | 20.11 ± 7.86 | 23.40 ± 9.31 | 0.001 | |
TSH (mIU/L), Mean ± SD | 2.39 ± 1.33 | 2.41 ± 1.31 | 2.38 ± 1.34 | 0.6978 | |
IGF-1 (ng/mL), Mean ± SD | 175.52 ± 115.54 | 176.26 ± 105.61 | 175.35 ± 117.59 | 0.8844 |
Variable N (%) | Total | SARS-CoV-2 Positive | SARS-CoV-2 Negative | p-Value |
---|---|---|---|---|
2382 (100%) | 421 (17.67%) | 1961 (82.33%) | ||
Diabetes mellitus | 20 (0.84%) | 6 (1.43%) | 14 (0.71%) | 0.056 |
Bronchial asthma | 453 (19.02%) | 65 (15.44%) | 388 (19.79%) | 0.039 |
Influenza vaccination 2019–2020 | 352 (14.78%) | 39 (9.26%) | 313 (15.96%) | 0.0003 |
ADHD | 529 (22.21%) | 119 (28.27%) | 410 (20.91%) | 0.001 |
Low 25-OH vitamin D3 * | 490 (20.57%) | 115 (27.32 %) | 375 (19.12%) | 0.001 |
Missing data | 1125 (47.23%) | 196 (46.56%) | 929 (47.37%) | |
Obesity ** | 440 (18.47%) | 92 (21.85%) | 348 (17.75%) | 0.0488 |
Somatotropin treatment | 191 (8.02%) | 22 (5.23%) | 169 (8.62%) | 0.0200 |
Variables | Somatotropin Treated | Somatotropin Untreated | p-Value | |
---|---|---|---|---|
191 (8.02%) | 2191 (91.98%) | |||
Mean age (years ± SD) | 12.89 ± 3.67 | 13.06 ± 4.37 | 0.269 | |
Gender | Male | 132 (69.11%) | 1325 (60.47%) | 0.018 |
Female | 59 (30.89%) | 866 (39.53%) | ||
SES | Low | 104 (54.45%) | 1164 (53.13%) | 0.059 |
Middle | 60 (31.41%) | 761 (34.73%) | ||
High | 27 (14.14%) | 266 (12.14%) | ||
Height (percentile), Mean ± SD | 13.03 ± 17.29 | 11.86 ± 15.46 | 0.326 | |
Weight (percentile), Mean ± SD | 20.59 ± 25.52 | 24.26 ± 29.16 | 0.856 | |
BMI (percentile), Mean ± SD | 42.86 ± 32.57 | 43.93 ± 33.05 | 0.482 | |
25-OH vitamin D3 (ng/mL), Mean ± SD | 25.14 ± 11.31 | 22.59 ± 8.89 | 0.006 | |
IGF-1 (ng/mL), Mean ± SD | 273.30 ± 146.15 | 166.99 ± 108.41 | 0.001 | |
Bronchial asthma | 42 (21.99%) | 411 (18.76%) | 0.275 | |
Influenza vaccination 2019–2020 | 37 (19.37%) | 315 (14.38%) | 0.062 | |
ADHD | 47 (24.61%) | 482 (22%) | 0.405 | |
Low 25-OH vitamin D3 * | 77 (40.31%) | 911 (41.58 %) | 0.060 | |
Missing data | 84 (43.98%) | 1048 (47.83%) | ||
Obesity ** | 28 (14.66%) | 412 (18.80%) | 0.157 |
Crude OR | Adjusted OR | ||||||
---|---|---|---|---|---|---|---|
Variables | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age categories | <6 (reference) | 1 | |||||
6–10 years | 1.74 | 0.80–3.79 | 0.159 | 2.51 | 0.55–11.32 | 0.233 | |
10–15 years | 2.73 | 1.30–5.73 | 0.008 | 2.44 | 0.56–10.57 | 0.232 | |
15+ | 3.92 | 1.88–8.17 | 0.001 | 3.96 | 0.93–16.92 | 0.063 | |
Male gender | 1.58 | 1.26–1.99 | 0.001 | 1.83 | 1.32–2.56 | 0.006 | |
Low SES | 2.57 | 2.04–3.24 | 0.001 | 2.03 | 1.46–2.811 | 0.001 | |
Diabetes mellitus | 2.01 | 0.96–5.26 | 0.055 | 2.17 | 0.60–7.82 | 0.232 | |
Bronchial asthma | 0.69 | 0.51–0.92 | 0.04 | 0.72 | 0.48–1.08 | 0.112 | |
Influenza vaccination 2019–2020 | 0.54 | 0.38-–0.76 | 0.001 | 0.40 | 0.23–0.71 | 0.002 | |
ADHD | 1.49 | 1.17–1.89 | 0.001 | 1.60 | 1.14–2.25 | 0.032 | |
Low 25-OH vitamin D3 * | 2.00 | 1.30–3.07 | 0.002 | 1.68 | 1.23–2.31 | 0.015 | |
Obesity ** | 1.29 | 1.001–1.68 | 0.049 | 1.58 | 1.09–2.29 | 0.022 | |
Somatotropin treatment | 0.58 | 0.37–0.92 | 0.021 | 0.47 | 0.24–0.94 | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brill, G.; Manor, I.; Bril Paroz, R.; Ashkenazi, S.; Cohen, S.; Golan-Cohen, A.; Green, I.; Israel, A.; Vinker, S.; Weizman, A.; et al. The Association between Somatotropin Therapy and the Risk of SARS-CoV-2 Infection in Children with Short Stature: A Population-Based Cross-Sectional Study. Children 2022, 9, 1844. https://doi.org/10.3390/children9121844
Brill G, Manor I, Bril Paroz R, Ashkenazi S, Cohen S, Golan-Cohen A, Green I, Israel A, Vinker S, Weizman A, et al. The Association between Somatotropin Therapy and the Risk of SARS-CoV-2 Infection in Children with Short Stature: A Population-Based Cross-Sectional Study. Children. 2022; 9(12):1844. https://doi.org/10.3390/children9121844
Chicago/Turabian StyleBrill, Gherta, Iris Manor, Roberta Bril Paroz, Shai Ashkenazi, Shira Cohen, Avivit Golan-Cohen, Ilan Green, Ariel Israel, Shlomo Vinker, Abraham Weizman, and et al. 2022. "The Association between Somatotropin Therapy and the Risk of SARS-CoV-2 Infection in Children with Short Stature: A Population-Based Cross-Sectional Study" Children 9, no. 12: 1844. https://doi.org/10.3390/children9121844
APA StyleBrill, G., Manor, I., Bril Paroz, R., Ashkenazi, S., Cohen, S., Golan-Cohen, A., Green, I., Israel, A., Vinker, S., Weizman, A., & Merzon, E. (2022). The Association between Somatotropin Therapy and the Risk of SARS-CoV-2 Infection in Children with Short Stature: A Population-Based Cross-Sectional Study. Children, 9(12), 1844. https://doi.org/10.3390/children9121844