Effects of Integrative Autism Therapy on Multiple Physical, Sensory, Cognitive, and Social Integration Domains in Children and Adolescents with Autism Spectrum Disorder: A 4-Week Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design
2.3. Clinical Outcome Measurements
2.3.1. Pediatric Balance Scale
2.3.2. Short Sensory Profile
2.3.3. Functional Independence Measure
2.3.4. Childhood Autism Rating Scale
2.3.5. Canadian Occupational Performance Measure
2.3.6. Short Falls Efficacy Scale
2.3.7. Pediatric Quality of Life
2.4. Intervention
2.5. Statistical Analyses
3. Results
3.1. Demographic Characteristics of Participants
3.2. Clinical Outcome Measurements
3.2.1. Pediatric Balance Scale
3.2.2. Short Sensory Profile
3.2.3. Functional Independence Measure
3.2.4. Childhood Autism Rating Scale
3.2.5. Canadian Occupational Performance Measure
3.2.6. Short Falls Efficacy Scale
3.2.7. Pediatric Quality of Life
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill. Summ. 2021, 70, 1. [Google Scholar] [CrossRef] [PubMed]
- Atun-Einy, O.; Lotan, M.; Harel, Y.; Shavit, E.; Burstein, S.; Kempner, G. Physical therapy for young children diagnosed with Autism Spectrum Disorders–clinical frameworks model in an Israeli setting. Front. Pediatr. 2013, 1, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef]
- Hannant, P.; Tavassoli, T.; Cassidy, S. The role of sensorimotor difficulties in autism spectrum conditions. Front. Neurol. 2016, 7, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, I.; Honan, I. Effectiveness of paediatric occupational therapy for children with disabilities: A systematic review. Aust. Occup. Ther. J. 2019, 66, 258–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Hucker, A.; Matthews, T.; Grohmann, D.; Laws, K.R. Cognitive behavioural therapy for anxiety in children and young people on the autism spectrum: A systematic review and meta-analysis. BMC Psychol. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Bourgois, A. Social Integration Therapy for Autism Spectrum Disorder, Nursing Capstones. Ph.D Thesis, University of North Dakota, Grand Forks, ND, USA, 20 March 2017. [Google Scholar]
- Hirvikoski, T.; Jonsson, U.; Halldner, L.; Lundequist, A.; de Schipper, E.; Nordin, V.; Bölte, S. A systematic review of social communication and interaction interventions for patients with autism spectrum disorder. Scand. J. Child Adolesc. Psychiatry Psychol. 2014, 3, 147–168. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.-Y. Motor proficiency and physical fitness in adolescent males with and without autism spectrum disorders. Autism 2014, 18, 156–165. [Google Scholar] [CrossRef]
- McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics 2014, 133, 872–883. [Google Scholar] [CrossRef] [Green Version]
- Van Heijst, B.F.; Geurts, H.M. Quality of life in autism across the lifespan: A meta-analysis. Autism 2015, 19, 158–167. [Google Scholar] [CrossRef]
- Hirvikoski, T.; Mittendorfer-Rutz, E.; Boman, M.; Larsson, H.; Lichtenstein, P.; Bölte, S. Premature mortality in autism spectrum disorder. Br. J. Psychiatry 2016, 208, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Casanova, M.F. The neuropathology of autism. Brain Pathol. 2007, 17, 422–433. [Google Scholar] [CrossRef]
- Karimi, P.; Kamali, E.; Mousavi, S.M.; Karahmadi, M. Environmental factors influencing the risk of autism. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2017, 22, 27. [Google Scholar] [CrossRef]
- Rylaarsdam, L.; Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 2019, 13, 385. [Google Scholar] [CrossRef]
- Gray, D.E. Gender and coping: The parents of children with high functioning autism. Soc. Sci. Med. 2003, 56, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Camarata, S. Early identification and early intervention in autism spectrum disorders: Accurate and effective? Int. J. Speech Lang. Pathol. 2014, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pozo, P.; Sarriá, E.; Brioso, A. Family quality of life and psychological well-being in parents of children with autism spectrum disorders: A double ABCX model. J. Intellect. Disabil. Res. 2014, 58, 442–458. [Google Scholar] [CrossRef]
- Leidy, M.S.; Guerra, N.G.; Toro, R.I. Positive parenting, family cohesion, and child social competence among immigrant Latino families. J. Fam. Psychol. 2010, 24, 252. [Google Scholar] [CrossRef] [Green Version]
- Schopler, E.; Mesibov, G.B. The Effects of Autism on the Family; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Ruggeri, A.; Dancel, A.; Johnson, R.; Sargent, B. The effect of motor and physical activity intervention on motor outcomes of children with autism spectrum disorder: A systematic review. Autism 2020, 24, 544–568. [Google Scholar] [CrossRef]
- Guest, L.; Balogh, R.; Dogra, S.; Lloyd, M. Examining the impact of a multi-sport camp for girls ages 8–11 with autism spectrum disorder. Ther. Recreat. J. 2017, 51, 109. [Google Scholar] [CrossRef]
- Gabriels, R.L.; Pan, Z.; Dechant, B.; Agnew, J.A.; Brim, N.; Mesibov, G. Randomized controlled trial of therapeutic horseback riding in children and adolescents with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketcheson, L.; Hauck, J.; Ulrich, D. The effects of an early motor skill intervention on motor skills, levels of physical activity, and socialization in young children with autism spectrum disorder: A pilot study. Autism 2017, 21, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputo, G.; Ippolito, G.; Mazzotta, M.; Sentenza, L.; Muzio, M.R.; Salzano, S.; Conson, M. Effectiveness of a multisystem aquatic therapy for children with autism spectrum disorders. J. Autism Dev. Disord. 2018, 48, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Case-Smith, J.; Weaver, L.L.; Fristad, M.A. A systematic review of sensory processing interventions for children with autism spectrum disorders. Autism 2015, 19, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhaneck, H.; Spitzer, S.L.; Bodison, S.C. A systematic review of interventions to improve the occupation of play in children with autism. OTJR: Occup. Particip. Health 2020, 40, 83–98. [Google Scholar] [CrossRef]
- Smith, M.C. Sensory Integration: Theory and Practice, 3rd ed; FA Davis: Philadelphia, PA, USA, 2019; pp. 2–20. [Google Scholar]
- Virués-Ortega, J. Applied behavior analytic intervention for autism in early childhood: Meta-analysis, meta-regression and dose–response meta-analysis of multiple outcomes. Clin. Psychol. Rev. 2010, 30, 387–399. [Google Scholar] [CrossRef]
- Cooper, J.O.; Heron, T.E.; Heward, W.L. Applied Behavior Analysis, 2nd ed; Pearson: New York, NY, USA, 2007; pp. 21–32. [Google Scholar]
- Lim, H.A.; Draper, E. The effects of music therapy incorporated with applied behavior analysis verbal behavior approach for children with autism spectrum disorders. J. Music Ther. 2011, 48, 532–550. [Google Scholar] [CrossRef]
- Leaf, J.B.; Leaf, J.A.; Milne, C.; Taubman, M.; Oppenheim-Leaf, M.; Torres, N.; Townley-Cochran, D.; Leaf, R.; McEachin, J.; Yoder, P. An evaluation of a behaviorally based social skills group for individuals diagnosed with autism spectrum disorder. J. Autism Dev. Disord. 2017, 47, 243–259. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Her, J.-G.; Woo, J.-H.; Ko, J. Reliability of the pediatric balance scale in the assessment of the children with cerebral palsy. J. Phys. Ther. Sci. 2012, 24, 301–305. [Google Scholar] [CrossRef] [Green Version]
- O'Brien, J.; Tsermentseli, S.; Cummins, O.; Happé, F.; Heaton, P.; Spencer, J. Discriminating children with autism from children with learning difficulties with an adaptation of the Short Sensory Profile. Early Child Dev. Care 2009, 179, 383–394. [Google Scholar] [CrossRef]
- Kidd, D.; Stewart, G.; Baldry, J.; Johnson, J.; Rossiter, D.; Petruckevitch, A.; Thompson, A. The Functional Independence Measure: A comparative validity and reliability study. Disabil. Rehabil. 1995, 17, 10–14. [Google Scholar] [CrossRef]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Schopler, E.; Reichler, R.J.; DeVellis, R.F.; Daly, K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Dev. Disord. 1980, 10, 91–103. [Google Scholar] [CrossRef]
- Garfin, D.G.; McCallon, D. Validity and reliability of the Childhood Autism Rating Scale with autistic adolescents. J. Autism Dev. Disord. 1988, 18, 367–378. [Google Scholar] [CrossRef]
- Lammi, B.M.; Law, M. The effects of family-centred functional therapy on the occupational performance of children with cerebral palsy. Can. J. Occup. Ther. 2003, 70, 285–297. [Google Scholar] [CrossRef]
- Berardi, A.; Galeoto, G.; Guarino, D.; Marquez, M.A.; De Santis, R.; Valente, D.; Caporale, G.; Tofani, M. Construct validity, test-retest reliability, and the ability to detect change of the Canadian occupational performance measure in a spinal cord injury population. Spinal Cord Ser. Cases 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Azad, A.; Mehraban, A.H.; Mehrpour, M.; Mohammadi, B. Clinical assessment of fear of falling after stroke: Validity, reliability and responsiveness of the Persian version of the Fall Efficacy Scale-International. Med. J. Islam. Repub. Iran 2014, 28, 131. [Google Scholar]
- Ulus, Y.; Durmus, D.; Akyol, Y.; Terzi, Y.; Bilgici, A.; Kuru, O. Reliability and validity of the Turkish version of the Falls Efficacy Scale International (FES-I) in community-dwelling older persons. Arch. Gerontol. Geriatr. 2012, 54, 429–433. [Google Scholar] [CrossRef]
- Desai, A.D.; Zhou, C.; Stanford, S.; Haaland, W.; Varni, J.W.; Mangione-Smith, R.M. Validity and responsiveness of the pediatric quality of life inventory (PedsQL) 4.0 generic core scales in the pediatric inpatient setting. JAMA Pediatr. 2014, 168, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
- Varni, J.W.; Burwinkle, T.M.; Seid, M.; Skarr, D. The PedsQL™* 4.0 as a pediatric population health measure: Feasibility, reliability, and validity. Ambul. Pediatr. 2003, 3, 329–341. [Google Scholar] [CrossRef]
- Park, J.H.; Shurtleff, T.; Engsberg, J.; Rafferty, S.; You, J.Y.; You, I.Y.; You, S.H. Comparison between the robo-horse and real horse movements for hippotherapy. Biomed. Mater. Eng. 2014, 24, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Zwicker, J.G.; Mayson, T.A. Effectiveness of treadmill training in children with motor impairments: An overview of systematic reviews. Pediatr. Phys. Ther. 2010, 22, 361–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novakovic, N.; Milovancevic, M.P.; Dejanovic, S.D.; Aleksic, B. Effects of Snoezelen—Multisensory environment on CARS scale in adolescents and adults with autism spectrum disorder. Res. Dev. Disabil. 2019, 89, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Kose, L.K.; Fox, L.; Storch, E.A. Effectiveness of cognitive behavioral therapy for individuals with autism spectrum disorders and comorbid obsessive-compulsive disorder: A review of the research. J. Dev. Phys. Disabil. 2018, 30, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.; Schumm, J.S.; Sinagub, J.M. Focus Group Interviews in Education And Psychology; Sage: Newcastle upon Tyne, UK, 1996. [Google Scholar]
- Hinton, P.; McMurray, I.; Brownlow, C. SPSS Explained; Routledge: London, UK, 2014. [Google Scholar]
- Casey, A.F.; Quenneville-Himbeault, G.; Normore, A.; Davis, H.; Martell, S.G. A therapeutic skating intervention for children with autism spectrum disorder. Pediatr. Phys. Ther. 2015, 27, 170–177. [Google Scholar] [CrossRef]
- Kalaichandran, K.; Swarnakumari, P.; Sankar, R. Occupational Therapy and Yoga for Children with Autism Spectrum Disorder for Rehabilitation Professional. Int. J. Curr. Res. Rev. 2021, 13, 70. [Google Scholar] [CrossRef]
- Kim, M.; Park, C.; Jeon, H.; Choi, W.J.; You, S.J.H. Comparative effects of community-based family-child-centered care and conventional pediatric rehabilitation for cerebral palsy. NeuroRehabilitation 2021, 49, 533–546. [Google Scholar] [CrossRef]
- Barbosa, A.W.C.; Guedes, C.A.; Bonifácio, D.N.; de Fátima Silva, A.; Martins, F.L.M.; Barbosa, M.C.S.A. The Pilates breathing technique increases the electromyographic amplitude level of the deep abdominal muscles in untrained people. J. Bodyw. Mov. Ther. 2015, 19, 57–61. [Google Scholar] [CrossRef]
- Kashefimehr, B.; Kayihan, H.; Huri, M. The effect of sensory integration therapy on occupational performance in children with autism. OTJR Occup. Particip. Health 2018, 38, 75–83. [Google Scholar] [CrossRef]
- Thye, M.D.; Bednarz, H.M.; Herringshaw, A.J.; Sartin, E.B.; Kana, R.K. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev. Cogn. Neurosci. 2018, 29, 151–167. [Google Scholar] [CrossRef]
- Brandwein, A.B.; Foxe, J.J.; Butler, J.S.; Russo, N.N.; Altschuler, T.S.; Gomes, H.; Molholm, S. The development of multisensory integration in high-functioning autism: High-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cereb. Cortex 2013, 23, 1329–1341. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Rodgers, J.; McConachie, H. Restricted and repetitive behaviours, sensory processing and cognitive style in children with autism spectrum disorders. J. Autism Dev. Disord. 2009, 39, 635–642. [Google Scholar] [CrossRef]
- Smith, J. Multisensory Learning and its Effect on Students with Autism. Master's Thesis, St. John Fisher College, New York, NY, USA, 2 May 2019. [Google Scholar]
- Papavasiliou, A.S.; Nikaina, I.; Rizou, J.; Alexandrou, S. The effect of a psycho-educational program on CARS scores and short sensory profile in autistic children. Eur. J. Paediatr. Neurol. 2011, 15, 338–344. [Google Scholar] [CrossRef]
- Pan, C.-Y.; Chu, C.-H.; Tsai, C.-L.; Sung, M.-C.; Huang, C.-Y.; Ma, W.-Y. The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism 2017, 21, 190–202. [Google Scholar] [CrossRef]
- Fugate, J.M.; Macrine, S.L.; Cipriano, C. The role of embodied cognition for transforming learning. Int. J. Sch. Educ. Psychol. 2019, 7, 274–288. [Google Scholar] [CrossRef]
- Hebert, E.P.; Landin, D. Effects of a learning model and augmented feedback on tennis skill acquisition. Res. Q. Exerc. Sport 1994, 65, 250–257. [Google Scholar] [CrossRef]
- Hill, J.; Ziviani, J.; Driscoll, C.; Teoh, A.L.; Chua, J.M.; Cawdell-Smith, J. Canine assisted occupational therapy for children on the autism spectrum: A pilot randomised control trial. J. Autism Dev. Disord. 2020, 50, 4106–4120. [Google Scholar] [CrossRef]
- Little, L.M.; Pope, E.; Wallisch, A.; Dunn, W. Occupation-based coaching by means of telehealth for families of young children with autism spectrum disorder. Am. J. Occup. Ther. 2018, 72, 7202205020p1–7202205020p7. [Google Scholar] [CrossRef]
- Steiner, W.A.; Ryser, L.; Huber, E.; Uebelhart, D.; Aeschlimann, A.; Stucki, G. Use of the ICF model as a clinical problem-solving tool in physical therapy and rehabilitation medicine. Phys. Ther. 2002, 82, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Gomes, P.; Lima, L.H.; Bueno, M.K.; Araújo, L.A.; Souza, N.M. Autism in Brazil: A systematic review of family challenges and coping strategies. J. Pediatr. (Rio J.) 2015, 91, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; You, J.S.H. Innovative robotic hippotherapy improves postural muscle size and postural stability during the quiet stance and gait initiation in a child with cerebral palsy: A single case study. NeuroRehabilitation 2018, 42, 247–253. [Google Scholar] [CrossRef]
- Drew, T.; Kalaska, J.; Krouchev, N. Muscle synergies during locomotion in the cat: A model for motor cortex control. J. Physiology. 2008, 586, 1239–1245. [Google Scholar] [CrossRef]
- Pitetti, K.H.; Rendoff, A.D.; Grover, T.; Beets, M.W. The efficacy of a 9-month treadmill walking program on the exercise capacity and weight reduction for adolescents with severe autism. J. Autism Dev. Disord. 2007, 37, 997–1006. [Google Scholar] [CrossRef]
- Srinivasan, S.M.; Pescatello, L.S.; Bhat, A.N. Current perspectives on physical activity and exercise recommendations for children and adolescents with autism spectrum disorders. Phys. Ther. 2014, 94, 875–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheldavi, H.; Shakerian, S.; Boshehri, S.N.S.; Zarghami, M. The effects of balance training intervention on postural control of children with autism spectrum disorder: Role of sensory information. Res. Autism Spectr. Disord. 2014, 8, 8–14. [Google Scholar] [CrossRef]
- Fong, S.S.; Guo, X.; Liu, K.P.; Ki, W.; Louie, L.H.; Chung, R.C.; Macfarlane, D.J. Task-specific balance training improves the sensory organisation of balance control in children with developmental coordination disorder: A randomised controlled trial. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Azar, N.R.; McKeen, P.; Carr, K.; Sutherland, C.A.; Horton, S. Impact of motor skills training in adults with autism spectrum disorder and an intellectual disability. J. Dev. Disabilities. 2016, 22, 28. [Google Scholar]
- Puts, N.A.; Wodka, E.L.; Tommerdahl, M.; Mostofsky, S.H.; Edden, R.A. Impaired tactile processing in children with autism spectrum disorder. J. Neurophysiol. 2014, 111, 1803–1811. [Google Scholar] [CrossRef]
- Sailesh, K.; Manyam, R.; Jinu, K. Beneficial effects of vestibular stimulation on learning and memory: An overview. MOJ Anat Physiol. 2018, 5, 212–213. [Google Scholar]
- Abbruzzese, G.; Trompetto, C.; Mori, L.; Pelosin, E. Proprioceptive rehabilitation of upper limb dysfunction in movement disorders: A clinical perspective. Front.Hum. Neurosci. 2014, 8, 961. [Google Scholar] [CrossRef] [Green Version]
- Maurice, C.E.; Green, G.E.; Luce, S.C. Behavioral Intervention for Young Children with Autism: A Manual for Parents and Professionals; Pro-ed: American Psychological Association: Washington, DC, USA, 1996. [Google Scholar]
- Sunaryadi, Y. The role of augmented feedback on motor skill learning. In Proceedings of the 6th International Conference on Educational, Management, Administration and Leadership, 28 August 2016; pp. 271–275. [Google Scholar]
- Weaver, L.L. Effectiveness of work, activities of daily living, education, and sleep interventions for people with autism spectrum disorder: A systematic review. Am. J. Occup. Therapy. 2015, 69, 6905180020p1–6905180020p11. [Google Scholar] [CrossRef] [PubMed]
- Dilshad, R.M.; Latif, M.I. Focus group interview as a tool for qualitative research: An analysis. Pak. J. Soc. Sci. (PJSS) 2013, 33. [Google Scholar]
- Ziolko, M.E. Counseling parents of children with disabilities: A review of the literature and implications for practice. J. Rehabil. 1991, 57, 29. [Google Scholar]
Participation ID | Group | Sex | Age | Height | Weight | BMI | Intellectual Level (CARS) | Communication (FIM) | Social Cognition (FIM) |
---|---|---|---|---|---|---|---|---|---|
1 | CAT | Male | 5 | 103 | 20 | 18.85 | 4 | 7 | 9 |
2 | CAT | Male | 4 | 95 | 17 | 18.83 | 3 | 8 | 9 |
3 | CAT | Male | 5 | 108 | 20 | 17.14 | 4 | 7 | 11 |
4 | CAT | Female | 15 | 138 | 29 | 15.22 | 2 | 7 | 11 |
5 | CAT | Male | 12 | 133 | 29 | 16.39 | 2 | 7 | 10 |
6 | CAT | Male | 9 | 148 | 41 | 18.71 | 2 | 8 | 10 |
7 | CAT | Male | 5 | 97 | 26 | 27.63 | 4 | 6 | 9 |
8 | CAT | Female | 9 | 139 | 21 | 10.86 | 3 | 10 | 11 |
9 | CAT | Female | 8 | 130 | 42 | 24.85 | 3 | 9 | 11 |
10 | CAT | Male | 11 | 145 | 35 | 16.64 | 5 | 8 | 10 |
Mean | 7/3 | 8.30 | 123.60 | 28.00 | 18.51 | 3.20 | 7.70 | 10.10 | |
SD | 3.62 | 20.60 | 8.93 | 4.75 | 1.03 | 1.16 | 0.88 | ||
11 | IAT | Female | 5 | 103 | 17 | 16.02 | 3 | 7 | 10 |
12 | IAT | Male | 7 | 125 | 22 | 14.08 | 3 | 6 | 8 |
13 | IAT | Male | 6 | 110 | 19 | 15.70 | 3 | 8 | 10 |
14 | IAT | Male | 5 | 100 | 15 | 15.00 | 4 | 7 | 10 |
15 | IAT | Female | 5 | 106 | 17 | 15.12 | 4 | 7 | 10 |
16 | IAT | Female | 14 | 135 | 37 | 20.30 | 2 | 8 | 11 |
17 | IAT | Male | 15 | 152 | 45 | 19.47 | 2 | 10 | 12 |
18 | IAT | Male | 14 | 138 | 34 | 17.85 | 3 | 7 | 10 |
19 | IAT | Male | 7 | 120 | 20 | 13.89 | 5 | 6 | 9 |
20 | IAT | Male | 7 | 120 | 35 | 24.30 | 3 | 7 | 9 |
21 | IAT | Male | 10 | 140 | 41 | 20.92 | 2 | 8 | 10 |
22 | IAT | Male | 8 | 130 | 23 | 13.61 | 2 | 8 | 10 |
23 | IAT | Male | 9 | 140 | 43 | 21.94 | 2 | 10 | 11 |
24 | IAT | Male | 4 | 112 | 24 | 19.13 | 2 | 9 | 10 |
Mean | 11/3 | 8.29 | 123.64 | 28.00 | 17.67 | 2.86 | 7.71 | 10.00 | |
SD | 3.67 | 16.08 | 10.68 | 3.39 | 0.95 | 1.27 | 0.96 | ||
p-value | 0.14 | 0.54 | 0.25 | 0.09 | 0.06 | 0.20 | 0.87 | 0.93 |
CAT Group | IAT Group | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Follow-Up Test | p-Value | Pre-Test | Post-Test | Follow-Up Test | p-Value | Between Groups | Time × Group | |
PBS | 30.90 ± 11.23 | 31.80 ± 11.10 | 32.00 ±11.03 | 0.75 | 27.79 ± 11.32 | 34.57 ±14.15 | 37.00 ± 13.82 | 0.00 ** | 0.76 | 0.00 ** |
sSP | 134.10 ± 15.21 | 139.20 ± 19.04 | 143.70 ± 17.93 | 0.15 | 131.79 ± 17.50 | 138.43 ± 18.35 | 143.70 ± 17.93 | 0.03 * | 0.87 | 0.76 |
FIM | 16.80 ± 6.46 | 17.40 ± 6.31 | 17.80 ± 6.46 | 0.01 ** | 16.57 ± 1.91 | 18.71 ± 2.33 | 19.29 ± 2.40 | 0.00 ** | 0.64 | 0.00 ** |
CARS | 36.30 ± 6.43 | 34.20 ± 6.13 | 33.40 ± 6.31 | 0.00 ** | 37.18 ± 6.24 | 33.43 ± 5.89 | 32.82 ± 5.85 | 0.00 ** | 0.95 | 0.15 |
CAT Group | IAT Group | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Follow-Up Test | p-Value | Pre-Test | Post-Test | Follow-Up Test | p-Value | Between Groups | Time × GROUP | |
COPM | ||||||||||
Performance | 3.63 ± 0.95 | 3.87 ± 0.87 | 4.06 ± 1.00 | 0.11 | 3.30 ± 0.89 | 4.33 ± 1.30 | 4.33 ± 1.30 | 0.00 ** | 0.76 | 0.05 * |
Satisfaction | 3.76 ± 1.37 | 4.18 ± 1.30 | 4.20 ± 1.42 | 0.07 | 3.39 ± 1.17 | 4.47 ± 1.22 | 4.47 ± 1.22 | 0.00 ** | 0.90 | 0.02 * |
sFES | 10.90 ± 2.51 | 10.90 ± 2.51 | 10.90 ± 2.51 | 1.00 | 11.21 ± 3.70 | 9.14 ± 3.39 | 9.00 ± 3.14 | 0.00 ** | 0.38 | 0.00 ** |
PedsQL | 50.70 ± 13.56 | 46.80 ± 16.26 | 45.30 ± 16.11 | 0.50 | 49.29 ± 15.31 | 38.07 ± 14.75 | 36.29 ± 16.55 | 0.00 ** | 0.29 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, M.; Park, C.; You, J.H. Effects of Integrative Autism Therapy on Multiple Physical, Sensory, Cognitive, and Social Integration Domains in Children and Adolescents with Autism Spectrum Disorder: A 4-Week Follow-Up Study. Children 2022, 9, 1971. https://doi.org/10.3390/children9121971
Kim Y, Kim M, Park C, You JH. Effects of Integrative Autism Therapy on Multiple Physical, Sensory, Cognitive, and Social Integration Domains in Children and Adolescents with Autism Spectrum Disorder: A 4-Week Follow-Up Study. Children. 2022; 9(12):1971. https://doi.org/10.3390/children9121971
Chicago/Turabian StyleKim, Yunhwan, Mikyoung Kim, Chanhee Park, and Joshua (Sung) H. You. 2022. "Effects of Integrative Autism Therapy on Multiple Physical, Sensory, Cognitive, and Social Integration Domains in Children and Adolescents with Autism Spectrum Disorder: A 4-Week Follow-Up Study" Children 9, no. 12: 1971. https://doi.org/10.3390/children9121971
APA StyleKim, Y., Kim, M., Park, C., & You, J. H. (2022). Effects of Integrative Autism Therapy on Multiple Physical, Sensory, Cognitive, and Social Integration Domains in Children and Adolescents with Autism Spectrum Disorder: A 4-Week Follow-Up Study. Children, 9(12), 1971. https://doi.org/10.3390/children9121971