Association of Weight Changes by Three Days after Birth and Mortality and/or Severe Neurological Injury in Preterm Infants < 29 Weeks Gestational Age: A Multicenter Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Source of Data
2.3. Exposures and Outcomes Variables
2.4. Other Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Summary of the Main Findings
4.2. Comparison with Previous Literature
4.3. Biological Plausibility
4.4. Strength and Limitations
4.5. Implications for Clinical Practice and Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPD | bronchopulmonary dysplasia |
CI | 95% confidence interval |
CNN | Canadian Neonatal Network |
delta_W3 | weight change from birth to day three of postnatal age |
GA | gestational age |
GEE | generalized estimating equation |
IQR | interquartile range |
IVH | intraventricular hemorrhage |
NICU | neonatal intensive care unit |
PDA | patent ductus arteriosus |
SNAP-II | score for neonatal acute physiology II |
SGA | small for gestational age |
SNI | severe neurological injury |
References
- Modi, N. Management of fluid balance in the very immature neonate. Arch. Dis. Child Fetal Neonatal Ed. 2004, 89, F108–F111. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.M.; Douglas, D. Fluid and Electrolyte Management in the Premature Infant. Neonatal Netw. 2008, 27, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Rochow, N.; Raja, P.; Liu, K.; Fenton, T.; Landau-Crangle, E.; Göttler, S.; Jahn, A.; Lee, S.; Seigel, S.; Campbell, D.; et al. Physiological adjustment to postnatal growth trajectories in healthy preterm infants. Pediatr. Res. 2016, 79, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.; Dechert, R.; Sarkar, S. Assessment of Association between Rapid Fluctuations in Serum Sodium and Intraventricular Hemorrhage in Hypernatremic Preterm Infants. Am. J. Perinatol. 2014, 32, 795–802. [Google Scholar] [CrossRef]
- Oh, W.; Poindexter, B.B.; Perritt, R.; Lemons, J.A.; Bauer, C.R.; Ehrenkranz, R.A.; Stoll, B.J.; Poole, K.; Wright, L.L. Association between Fluid Intake and Weight Loss during the First Ten Days of Life and Risk of Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants. J. Pediatr. 2005, 147, 786–790. [Google Scholar] [CrossRef]
- Stephens, B.E.; Gargus, R.A.; Walden, R.V.; Mance, M.; Nye, J.; McKinley, L.; Tucker, R.; Vohr, B.R. Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J. Perinatol. 2008, 28, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Bell, E.F.; Acarregui, M.J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2014, CD000503. [Google Scholar] [CrossRef] [Green Version]
- Hartnoll, G.; Bétrémieux, P.; Modi, N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2000, 82, F24–F28. [Google Scholar] [CrossRef] [Green Version]
- Segar, J. A physiological approach to fluid and electrolyte management of the preterm infant: Review. J. Neonatal-Perinat. Med. 2020, 13, 11–19. [Google Scholar] [CrossRef]
- The Canadian Neonatal NetworkTM. Available online: http://www.canadianneonatalnetwork.org/portal/ (accessed on 8 January 2022).
- Canadian Neonatal Network. Canadian Neonatal Network Abstractor’s Manual. v 2.1.2. 2014; pp. 1–94. Available online: www.canadianneonatalnetwork.org (accessed on 8 January 2022).
- Seidlitz, W.; Chan, P.; Yeh, S.; Musrap, N.; Lee, S.K. Internal Audit of the Canadian Neonatal Network Data Collection System. Am. J. Perinatol. 2017, 34, 1241–1249. [Google Scholar] [CrossRef]
- Sauve, R. Routine screening cranial ultrasound examinations for the prediction of long term neurodevelopmental outcomes in preterm infants. Paediatr. Child Health 2001, 6, 39–43. [Google Scholar]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Platt, R.W.; Wen, S.W.; Joseph, K.S.; Allen, A.; Abrahamowicz, M.; Blondel, B.; Breart, G.; for the Fetal/Infant Health Study Group of the Canadian Perinatal Surveillance System. A New and Improved Population-Based Canadian Reference for Birth Weight for Gestational Age. Pediatrics 2001, 108, e35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, D.K.; Corcoran, J.D.; Escobar, G.J.; Lee, S.K. SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. J. Pediatr. 2001, 138, 92–100. [Google Scholar] [CrossRef]
- Verma, R.P.; Shibli, S.; Fang, H.; Komaroff, E. Clinical determinants and utility of early postnatal maximum weight loss in fluid management of extremely low birth weight infants. Early Hum. Dev. 2009, 85, 59–64. [Google Scholar] [CrossRef]
- Barnette, A.R.; Myers, B.J.; Berg, C.S.; Inder, T.E. Sodium intake and intraventricular hemorrhage in the preterm infant. Ann. Neurol. 2010, 67, 817–823. [Google Scholar] [CrossRef]
- Lim, W.-H.; Lien, R.; Chiang, M.-C.; Fu, R.-H.; Lin, J.-J.; Chu, S.-M.; Hsu, J.-F.; Yang, P.-H. Hypernatremia and grade III/IV intraventricular hemorrhage among extremely low birth weight infants. J. Perinatol. 2010, 31, 193–198. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, B.S.; Do, H.-J.; Oh, S.-H.; Choi, Y.-S.; Chung, S.-H.; Kim, E.A.-R.; Kim, K.-S. Early Sodium and Fluid Intake and Severe Intraventricular Hemorrhage in Extremely Low Birth Weight Infants. J. Korean Med. Sci. 2015, 30, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Shibly, S.; Fang, H.; Pollack, S. Do early postnatal body weight changes contribute to neonatal morbidities in the extremely low birth weight infants. J. Neonatal-Perinat. Med. 2015, 8, 113–118. [Google Scholar] [CrossRef]
- Aksoy, H.T.; Güzoğlu, N.; Eras, Z.; Gökçe, I.K.; Canpolat, F.E.; Uraş, N.; Oğuz, S.S. The association of early postnatal weight loss with outcome in extremely low birth weight infants. Pediatr. Neonatol. 2019, 60, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Wadhawan, R.; Oh, W.; Perritt, R.; Laptook, A.R.; Poole, K.; Wright, L.L.; Fanaroff, A.A.; Duara, S.; Stoll, B.J.; Goldberg, R. Association between early postnatal weight loss and death or BPD in small and appropriate for gestational age extremely low-birth-weight infants. J. Perinatol. 2007, 27, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NICHD Neonatal Research Network. Available online: https://neonatal.rti.org/ (accessed on 8 January 2022).
- Poindexter, B.B.; Ehrenkranz, R.A.; Stoll, B.J.; Wright, L.L.; Poole, W.K.; Oh, W.; Bauer, C.R.; Papile, L.-A.; Tyson, J.E.; Carlo, W.A.; et al. Parenteral Glutamine Supplementation Does Not Reduce the Risk of Mortality or Late-Onset Sepsis in Extremely Low Birth Weight Infants. Pediatrics 2004, 113, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, J.M.; Kleinman, L.I.; Ahmed, G.; Markarian, K. Phases of fluid and electrolyte homeostasis in the extremely low birth weight infant. Pediatrics 1995, 96, 484–489. [Google Scholar]
- Lorenz, J. Fluid & electrolyte management in newborn intensive care unit. In Workbook in Practical Neonatology; Polin, R., Yoder, M., Eds.; Elsevier: Philadelphia, PA, USA, 2014. [Google Scholar]
- Iacobelli, S.; Guignard, J.P. Physiology of the urinary diluting mechanism. In Fetal and Neonatal Physiology; Polin, R., Abman, S., Rowitch, D., Benitz, W., Eds.; Elsevier: Philadelphia, PA, USA, 2016. [Google Scholar]
- Barnett, H.L.; Vesterdal, J.; McNamara, H.; Lauson, H.D. Renal water excretion in premature infants 12. J. Clin. Investig. 1952, 31, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Vieux, R.; Hascoet, J.-M.; Merdariu, D.; Fresson, J.; Guillemin, F. Glomerular Filtration Rate Reference Values in Very Preterm Infants. Pediatrics 2010, 125, e1186–e1192. [Google Scholar] [CrossRef]
- O’Brien, F.; Walker, I.A. Fluid homeostasis in the neonate. Pediatr. Anesth. 2013, 24, 49–59. [Google Scholar] [CrossRef]
- Hammarlund, K.; Sedin, G. Transepidermal loss in newborn infants III Relation to gestational age. Acta Paediatr. 1979, 68, 795–801. [Google Scholar] [CrossRef]
- Hammarlund, K.; Sedin, G.; Strömberg, B. Transepidermal water loss in newborn infants. VII. Relation to post-natal age in very pre-term and full-term appropriate for gestational age infants. Acta Paediatr. Scand. 1982, 71, 369–374. [Google Scholar] [CrossRef]
- Ågren, G.; Sjörs, G.S.J. Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr. 1998, 87, 1185–1190. [Google Scholar] [CrossRef]
- Gawlowski, Z.; Aladangady, N.; Coen, P.G. Hypernatraemia in preterm infants born at less than 27 weeks gestation. J. Paediatr. Child Health 2006, 42, 771–774. [Google Scholar] [CrossRef]
Variables * | <−20 | [−20 to −15) | [−15 to −10) | [−10 to −5) | [−5 to 0) | [0 to 5) | [5 to 10) | [10 to 5) | ≥15 | p-Value ** |
---|---|---|---|---|---|---|---|---|---|---|
Infants (N) ** | 183 | 669 | 1902 | 2891 | 1930 | 1246 | 237 | 117 | 100 | |
ANS (any) | 91.7 (165/180) | 89.4 (589/659) | 90.7 (1702/1877) | 90.5 (2580/2852) | 89.1 (1690/1897) | 86.1 (1050/1220) | 82.5 (193/234) | 79.5 (89/112) | 88 (88/100) | <0.001 ‡ |
Sex (male) | 54.6 (100/183) | 49.5 (331/669) | 51.1 (971/1901) | 55.8 (1611/2889) | 54.2 (1043/1926) | 55 (683/1243) | 53.2 (125/235) | 53.9 (63/117) | 52 (52/100) | 0.04 |
Outborn | 17.5 (32/183) | 15.1 (101/669) | 15 (285/1902) | 13.2 (382/2891) | 14.3 (275/1930) | 15.7 (196/1246) | 21.1 (50/237) | 19.7 (23/117) | 19 (19/100) | 0.01 |
CS | 56.8 (104/183) | 49.9 (333/667) | 53.2 (1008/1896) | 56.6 (1635/2889) | 61.4 (1184/1927) | 60.4 (752/1246) | 74.3 (176/237) | 71.8 (84/117) | 67 (67/100) | <0.001 ‡ |
GA (weeks) | 26 (24, 27) | 26 (25, 27) | 27 (25, 28) | 27 (25, 28) | 27 (25, 28) | 26 (25, 27) | 26 (25, 27) | 26 (25, 27) | 26 (25, 27) | <0.001 ‡ |
BW (g) | 960 (760, 1156) | 940 (760, 1130) | 976 (795, 1140) | 940 (771, 1130) | 890 (740, 1060) | 820 (670, 1000) | 740 (593, 930) | 730 (600, 940) | 725 (584.5, 850) | <0.001 ‡ |
SGA | 3.3 (6/183) | 3.7 (25/669) | 3.1 (59/1901) | 6.1 (176/2890) | 9.6 (184/1927) | 14.6 (182/1245) | 27.5 (65/236) | 30.8 (36/117) | 37 (37/100) | <0.001 ‡ |
SNAP-II score > 20 | 32.8 (60/183) | 27.1 (181/668) | 23 (436/1899) | 23.7 (685/2890) | 27.5 (530/1926) | 35 (436/1246) | 49.6 (117/236) | 53 (62/117) | 47 (47/100) | <0.001 ‡ |
CC | 4.9 (9/183) | 7.8 (52/669) | 5.2 (99/1902) | 5 (144/2890) | 5.7 (110/1929) | 6.7 (83/1246) | 13.9 (33/237) | 10.3 (12/117) | 15 (15/100) | <0.001 ‡ |
Variables * | Weight at Day3 Available | Weight at Day3 Missing | p-Value |
---|---|---|---|
Infants (N) ** | 9275 | 2833 | |
Antenatal corticosteroids (any vs. none), % (n/N) | 89.2 (8146/9131) | 89.4 (2426/2714) | 0.8 |
Gestational age (weeks), median (IQR) | 26 (25, 28) | 26 (25, 28) | 0.6 |
Weight at birth (g), median (IQR) | 910 (740, 1100) | 909 (738, 1100) | 0.6 |
Sex (male), % (n/N) | 53.8 (4979/9263) | 55.2 (1562/2829) | 0.2 |
Small for gestational age, % (n/N) | 8.3 (770/9268) | 8.7 (245/2829) | 0.6 |
SNAP-II score > 20, % (n/N) | 27.6 (2554/9265) | 29.5 (814/2763) | 0.05 |
Outborn status, % (n/N) | 14.7 (1363/9275) | 21.4 (604/2826) | <0.001 |
Chest compression, % (n/N) | 6 (557/9273) | 6.6 (185/2209) | 0.3 |
Weight Change at Day 3 (% of Weight at Birth) | p-Value ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Outcomes * | <−20 | [−20 to −15) | [−15 to −10) | [−10 to −5) | [−5 to 0) | [0 to 5) | [5 to 10) | [10 to 15) | ≥15 | |
Infants (N) | 183 | 669 | 1902 | 2891 | 1930 | 1246 | 237 | 117 | 100 | |
Mortality/SNI | 25.7 (47/183) | 18.2 (122/669) | 13.1 (250/1902) | 13 (376/2891) | 15.1 (292/1930) | 23.1 (288/1246) | 29.1 (69/237) | 29.1 (34/117) | 35 (35/100) | <0.0001 |
Mortality | 17.5 (32/183) | 10.5 (70/669) | 7.4 (140/1902) | 8.1 (233/2891) | 9.5 (183/1930) | 15.3 (191/1246) | 19 (45/237) | 18 (21/117) | 25 (25/100) | <0.0001 |
SNI | 16.3 (29/178) | 11.1 (73/656) | 8.7 (161/1856) | 7.4 (207/2816) | 8.8 (166/1879) | 13.8 (166/1207) | 16.4 (38/232) | 20.9 (24/115) | 22.2 (22/99) | <0.0001 |
BPD | 60.7 (94/155) | 52.1 (313/601) | 47.5 (838/1764) | 48.4 (1299/2683) | 49.3 (871/1767) | 56.7 (606/1069) | 64.1 (127/198) | 60.8 (59/97) | 67.5 (52/77) | <0.0001 |
PDA | 63.3 (114/180) | 64.1 (427/666) | 53.5 (1014/1896) | 55 (1584/2878) | 54.6 (1046/1917) | 61.5 (763/1241) | 67.5 (158/234) | 70.1 (82/117) | 62.6 (62/99) | <0.0001 |
Model with Adjustment * | |||
---|---|---|---|
Outcomes | Delta_W ‡ β (95%CI **) × 10−3 | Delta_W × delta_W ‡ α (95%CI **) × 10−3 | Minimum point (C) ‡ |
Mortality/SNI | 15.8 (2.9, 28.7) | 0.6 (0.2, 0.99) | −13.16 (−13.18, −13.15) |
Mortality | 14.8 (3.6, 26) | 0.5 (0.1, 0.9) | −14.8 (−14.82, −14.78) |
SNI | 16.5 (3.8, 29.2) | 0.7 (0.3, 1.1) | −11.78 (−11.80, −11.77) |
BPD | 7.8 (−0.8, 16.4) | 0.4 (−0.01, 0.8) | NA † |
PDA | 1.8 (−6, 9.5) | 0.4 (−0.03, 0.8) | NA † |
Outcomes | Weight Change at Day 3 from Birth (% of Weight at Birth) | p-Value * | ||
---|---|---|---|---|
<−15 | [−15, −9) | ≥−9 | ||
Infants (N) | 852 | 2481 | 5942 | |
Mortality/SNI, %(n/N) | 19.8 (169/852) a | 12.7 (316/2481) | 17.3 (1028/5942) b | <0.0001 |
Mortality, %(n/N) | 12.0 (102/852) a | 7.4 (183/2481) | 11.0 (655/5942) b | <0.0001 |
<−13 | [−13, −9) | ≥−9 | ||
SNI, %(n/N) | 11.5 (162/1409) d | 7.3 (135/1845) | 10.2 (589/5784) c | <0.0001 |
Outcomes | Weight Change at day 3 (% of Weight at Birth) | ||
---|---|---|---|
<−15 | [−15 to −9) | ≥−9 | |
Mortality/SNI * | 1.5 (1.3, 1.8) | 1 (ref) | 1.4 (1.3, 1.6) |
Mortality * | 1.7 (1.4, 2.1) | 1 (ref) | 1.6 (1.3, 1.9) |
Mortality/SNI ** | 1.4 (1.1, 1.7) | 1 (ref) | 1.2 (1.03, 1.5) |
Mortality ** | 1.4 (1.1, 1.7) | 1 (ref) | 1.3 (1.02, 1.7) |
<−13 | [−13 to −9) | ≥−9 | |
SNI * | 1.6 (1.3, 1.9) | 1 (ref) | 1.5 (1.2, 1.7) |
SNI ** | 1.4 (1.2, 1.8) | 1 (ref) | 1.3 (1.06, 1.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zozaya, C.; Aziz, K.; Singhal, N.; Ye, X.Y.; Drolet, C.; Emberley, J.; Lee, K.-S.; Shah, V.S.; on behalf of the Canadian Neonatal Network (CNN) Investigators. Association of Weight Changes by Three Days after Birth and Mortality and/or Severe Neurological Injury in Preterm Infants < 29 Weeks Gestational Age: A Multicenter Cohort Study. Children 2022, 9, 276. https://doi.org/10.3390/children9020276
Zozaya C, Aziz K, Singhal N, Ye XY, Drolet C, Emberley J, Lee K-S, Shah VS, on behalf of the Canadian Neonatal Network (CNN) Investigators. Association of Weight Changes by Three Days after Birth and Mortality and/or Severe Neurological Injury in Preterm Infants < 29 Weeks Gestational Age: A Multicenter Cohort Study. Children. 2022; 9(2):276. https://doi.org/10.3390/children9020276
Chicago/Turabian StyleZozaya, Carlos, Khalid Aziz, Nalini Singhal, Xiang Y. Ye, Christine Drolet, Julie Emberley, Kyong-Soon Lee, Vibhuti S. Shah, and on behalf of the Canadian Neonatal Network (CNN) Investigators. 2022. "Association of Weight Changes by Three Days after Birth and Mortality and/or Severe Neurological Injury in Preterm Infants < 29 Weeks Gestational Age: A Multicenter Cohort Study" Children 9, no. 2: 276. https://doi.org/10.3390/children9020276
APA StyleZozaya, C., Aziz, K., Singhal, N., Ye, X. Y., Drolet, C., Emberley, J., Lee, K.-S., Shah, V. S., & on behalf of the Canadian Neonatal Network (CNN) Investigators. (2022). Association of Weight Changes by Three Days after Birth and Mortality and/or Severe Neurological Injury in Preterm Infants < 29 Weeks Gestational Age: A Multicenter Cohort Study. Children, 9(2), 276. https://doi.org/10.3390/children9020276