The Psychometric Properties of the Trunk Impairment Scale in Children with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Measurements
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Study Participants
3.2. Unidimensionality
3.3. Fit Statistics
3.4. Item Difficulty
3.5. Suitability of the Rating Scale
3.6. Separation Reliability
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paneth, P.N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2007, 109, 8–14. [Google Scholar]
- Rose, J.; Wolff, D.R.; Jones, V.K.; Bloch, D.A.; Oehlert, J.W.; Gamble, J.G. Postural balance in children with cerebral palsy. Dev. Med. Child Neurol. 2002, 44, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Redstone, F.; West, J.F. The importance of postural control for feeding. Pediatr. Nurs. 2004, 30, 97–100. [Google Scholar] [PubMed]
- Love, S.R.; Johnston, L.M. Exercise interventions improve postural control in children with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2015, 57, 504–520. [Google Scholar]
- Verheyden, G.; Vereeck, L.; Tuijen, S.; Troch, M.; Herregodts, I.; Lafosse, C.; Nieuwboer, A.; De Weerdt, W. Trunk performance after stroke and the relationship with balance, gait and functional ability. Clin. Rehabil. 2006, 20, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, E.B.; Hadders-Algra, M. Postural dysfunction in children with cerebral palsy: Some implications for therapeutic guidance. Neural Plast. 2005, 12, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Graaf-Peters, V.B.; Blauw-Hospers, C.H.; Dirks, T.; Bakker, H.; Bos, A.F.; Hadders-Algra, M. Development of postural control in typically developing children and children with cerebral palsy: Possibilities for intervention? Neurosci. Biobehav. Rev. 2007, 31, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Heyrman, L.; Desloovere, K.; Molenaers, G.; Verheyden, G.; Klingels, K.; Monbaliu, E.; Feys, H. Clinical characteristics of impaired trunk control in children with spastic cerebral palsy. Res. Dev. Disabil. 2013, 34, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Saether, R.; Helbostad, J.L.; Adde, L.; Jørgensen, L.; Vik, T. Reliability and validity of the trunk impairment scale in children and adolescents with cerebral palsy. Res. Dev. Disabil. 2013, 34, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Fife, S.E.; Roxborough, L.A.; Armstrong, R.W.; Harris, S.R.; Gregson, J.L.; Field, D. Development of a clinical measure of postural control for assessment of adaptive seating in children with neuromotor disabilities. Phys. Ther. 1991, 71, 981–993. [Google Scholar] [CrossRef]
- Bartlett, D.; Purdie, B. Testing of the spinal alignment and range of motion measure: A discriminative measure of posture and flexibility for children with cerebral palsy. Dev. Med. Child Neurol. 2005, 47, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.B.; Saavedra, S.; Sofranac, M.; Jarvis, S.E.; Woollacott, M.H. Refinement, reliability, and validity of the segmental assessment of trunk control. Pediatr. Phys. Ther. 2010, 22, 246–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saether, R.; Helbostad, J.L.; Riphagen, I.I.; Torstein, V.T. Clinical tools to assess balance in children and adults with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2013, 55, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.K.; Balaji, G.K.; Agrahara, S. Effects of task-oriented activities based on neurodevelopmental therapy principles on trunk control, balance, and gross motor function in children with spastic diplegic cerebral palsy: A single-blinded randomized clinical trial. J. Pediatr. Neurosci. 2019, 14, 120–126. [Google Scholar]
- Saether, R.; Jørgensen, L. Intra-and inter-observer reliability of the trunk impairment scale for children with cerebral palsy. Res. Dev. Disabil. 2011, 32, 727–739. [Google Scholar] [CrossRef]
- Cappelleri, J.C.; Jason, L.J.; Hays, R.D. Overview of classical test theory and item response theory for the quantitative assessment of items in developing patient-reported outcomes measures. Clin. Ther. 2014, 36, 648–662. [Google Scholar] [CrossRef] [Green Version]
- da Rocha, N.S.; Chachamovich, E.; de Almeida Fleck, M.P.; Tennant, A. An introduction to Rasch analysis for psychiatric practice and research. J. Psychiatr. Res. 2013, 47, 141–148. [Google Scholar] [CrossRef]
- Amaral, M.F.; Sampaio, R.F.; Coster, W.J.; Souza, M.P.; Mancini, M.C. Functioning of young patients with cerebral palsy: Rasch analysis of the pediatric evaluation of disability inventory computer adaptive test daily activity and mobility. Health Qual. Life Outcomes 2020, 18, 369. [Google Scholar] [CrossRef]
- Park, E.Y. Rasch analysis of the disability acceptance scale for individuals with cerebral palsy. Front. Neurol. 2019, 18, 1260. [Google Scholar] [CrossRef] [Green Version]
- Elvrum, A.K.; Zethraeus, B.M.; Vik, T.; Krumlinde-Sundholm, L. Development and validation of the both hands assessment for children with bilateral cerebral palsy. Phys. Occup. Ther. Pediatr. 2018, 38, 113–126. [Google Scholar] [CrossRef]
- Wright, B.; Panchapakesan, N. A procedure for smple-free item analysis. Educ. Psychol. Meas. 1969, 29, 23–48. [Google Scholar] [CrossRef]
- Azizan, N.H.; Mahmud, Z.; Rambli, A. Rasch rating scale item estimates using maximum likehood approach: Effects of sample size on the accuracy and bias of the estimates. Int. J. Adv. Sci. Technol. 2020, 29, 2526–2531. [Google Scholar]
- Verheyden, G.; Mertin, J.; Preger, R.; Kiekens, C.; De Weerdt, W. The trunk impairment scale: A new tool to measure motor impairment of the trunk after stroke. Clin. Rehabil. 2004, 18, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; You, Y. Reliability and responsiveness of the Korean version of the trunk impairment scale for stroke patients. J. Korean Phys. Ther. 2015, 27, 175–182. [Google Scholar] [CrossRef]
- Linacre, J.M. Optimizing rating scale category effectiveness. J. Appl. Meas. 2002, 3, 85–106. [Google Scholar]
- Linacre, J.M. Winsteps Rasch Measurement Computer Program User’s Guide; Winsteps.com: Beaverton, OR, USA, 2015. [Google Scholar]
- Lunz, M.E.; Wright, B.D.; Linacre, M. Measuring the impact of judge severity on examination scores. Appl. Meas. Educ. 2009, 3, 331–345. [Google Scholar] [CrossRef]
- Smith, A.B.; Rush, R.; Fallowfield, L.J.; Velikova, G.; Sharpe, M. Rasch fit statistics and sample size considerations for polytomous data. BMC Med. Res. Methodol. 2008, 29, 33. [Google Scholar] [CrossRef] [Green Version]
- Girolami, G.L.; Shiratori, T.; Aruin, A.S. Anticipatory postural adjustments in children with hemiplegia and diplegia. J. Electromyogr. Kinesiol. 2011, 21, 988–997. [Google Scholar] [CrossRef]
- Hong, S.; Kim, B.S.K.; Wolfe, M.M. A psychometric revision of the European American Values Scale for Asian Americans using the rasch model. Meas. Eval. Couns. Dev. 2005, 37, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Linacre, J.M. Rasch analysis of rank-ordered data. J. Appl. Meas. 2006, 7, 129–139. [Google Scholar]
- Linacre, J.M. Transitional categories and usefully disordered thresholds. Online Educ. Res. J. 2010, 1, 1–10. [Google Scholar]
Classification | Frequency | Mean Age (years) | Age Range | Unilateral (n) | Bilateral (n) | Sex | |
---|---|---|---|---|---|---|---|
Boy (n) | Girl (n) | ||||||
GMFCS level I | 10 | 8.0 | 6–11 | 3 | 8 | 3 | 8 |
GMFCS level II | 14 | 8.4 | 6–12 | 5 | 9 | 7 | 7 |
GMFCS level III | 12 | 8.9 | 6–12 | 3 | 9 | 7 | 5 |
GMFCS level IV | 12 | 9.0 | 6–12 | 0 | 12 | 4 | 8 |
GMFCS level V | 11 | 9.2 | 7–11 | 0 | 11 | 5 | 6 |
Item | Description |
---|---|
Static sitting balance | |
1 | Keep sitting balance |
2 | Keep sitting balance with legs crossed |
3 | Keep sitting balance while crossing legs |
Dynamic sitting balance | |
1 | Touch seat with elbow, most affected side |
2 | Touch seat with elbow, most affected side (repeat item 1, trunk movement) |
3 | Touch seat with elbow, most affected side (repeat item 1, compensation strategies) |
4 | Touch seat with elbow, less affected side |
5 | Touch seat with elbow, less affected side (repeat item 4, trunk movement) |
6 | Touch seat with elbow, less affected side (repeat item 4, compensation strategies) |
7 | Lift pelvis from seat, most affected side |
8 | Lift pelvis from seat, most affected side (repeat item 7, compensation strategies) |
9 | Lift pelvis from seat, less affected side |
10 | Lift pelvis from seat, less affected side (repeat item 9, compensation strategies) |
Coordination | |
1 | Rotate shoulder girdle 6 times |
2 | Rotate shoulder girdle 6 times within 6 s |
3 | Rotate pelvis girdle 6 times |
4 | Rotate pelvis girdle 6 times within 6 s |
Item | Logit | SE | Infit | Outfit | ||
---|---|---|---|---|---|---|
MnSq | Z-Value | MnSq | Z-Value | |||
SSB1 | −8.11 | 0.45 | 0.69 | −1.12 | 0.44 | −1.46 |
SSB2 * | −5.46 | 0.40 | 2.09 | 3.65 | 1.82 | 1.81 |
SSB3 * | −9.23 | 0.42 | 2.14 | 3.63 | 3.38 | 3.62 |
DSB1 | −1.19 | 0.39 | 0.87 | −0.49 | 0.92 | −0.14 |
DSB2 | 1.20 | 0.39 | 0.95 | −0.17 | 0.86 | −0.17 |
DSB3 | 4.26 | 0.47 | 0.74 | −0.98 | 0.48 | −0.54 |
DSB4 * | −0.59 | 0.39 | 0.51 | −2.49 | 0.38 | −2.29 |
DSB5 * | 1.05 | 0.39 | 0.54 | −2.39 | 0.40 | −1.61 |
DSB6 | 3.10 | 0.42 | 0.74 | −1.20 | 0.46 | −0.64 |
DSB7 | 2.12 | 0.40 | 0.78 | −1.01 | 0.55 | −0.65 |
DSB8 | 5.00 | 0.53 | 0.50 | −1.93 | 0.21 | −0.86 |
DSB9 | 0.60 | 0.39 | 0.68 | −1.56 | 0.54 | −1.27 |
DSB10 | 3.84 | 0.45 | 0.90 | −0.31 | 0.57 | −0.41 |
COO1 | −3.95 | 0.38 | 1.02 | 0.16 | 0.85 | −0.37 |
COO2 | 3.10 | 0.42 | 0.88 | −0.49 | 0.59 | −0.38 |
COO3 * | 0.01 | 0.39 | 1.76 | 2.86 | 1.78 | 1.87 |
COO4 | 4.26 | 0.47 | 0.62 | −1.54 | 0.34 | −0.88 |
Subscale | Category Level | Observed Count | Observed Average | Infit | Outfit | Step Calibration |
---|---|---|---|---|---|---|
MnSq | MnSq | |||||
Static sitting balance | 0 | 59 | −5.79 | 1.08 | 3.12 | None |
1 | 5 | −3.04 | 1.48 | 0.97 | −4.62 | |
2 | 103 | 2.92 | 1.28 | 0.96 | −4.80 | |
3 | 13 | 9.78 | 0.58 | 0.15 | 9.42 | |
Dynamic sitting balance | 0 | 370 | −2.86 | 0.99 | 0.89 | None |
1 | 230 | 2.51 | 0.99 | 0.61 | 1.02 | |
Coordination | 0 | 149 | −6.66 | 1.20 | 1.32 | None |
1 | 61 | 0.48 | 0.96 | 0.39 | −3.27 | |
2 | 30 | 5.82 | 0.86 | 0.75 | 3.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Choi, Y.-E. The Psychometric Properties of the Trunk Impairment Scale in Children with Cerebral Palsy. Children 2022, 9, 435. https://doi.org/10.3390/children9030435
Jung H, Choi Y-E. The Psychometric Properties of the Trunk Impairment Scale in Children with Cerebral Palsy. Children. 2022; 9(3):435. https://doi.org/10.3390/children9030435
Chicago/Turabian StyleJung, Hyerim, and Young-Eun Choi. 2022. "The Psychometric Properties of the Trunk Impairment Scale in Children with Cerebral Palsy" Children 9, no. 3: 435. https://doi.org/10.3390/children9030435
APA StyleJung, H., & Choi, Y.-E. (2022). The Psychometric Properties of the Trunk Impairment Scale in Children with Cerebral Palsy. Children, 9(3), 435. https://doi.org/10.3390/children9030435