The Genetic and Molecular Basis of Developmental Language Disorder: A Review
Abstract
:1. Introduction
2. The DLD Phenotype
3. The Genetics of Language Disorders
4. Monogenic Speech and Language Disorders
Copy Number Variants (CNVs)
5. Common Genetic Model
5.1. Linkage Analyses
5.2. Genome-Wide Association Studies
6. Missing Heritability
7. Phenotyping in Genetic Studies of Developmental Language Disorder
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norbury, C.F.; Gooch, D.; Wray, C.; Baird, G.; Charman, T.; Simonoff, E.; Vamvakas, G.; Pickles, A. The impact of nonverbal ability on prevalence and clinical presentation of language disorder: Evidence from a population study. J. Child Psychol. Psychiatry 2016, 57, 1247–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.V.; Snow, P.; Thompson, P.A.; Greenhalgh, T. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry 2017, 58, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Conti-Ramsden, G.; Botting, N. Emotional health in adolescents with and without a history of specific language impairment (SLI). J. Child Psychol. Psychiatry 2008, 49, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.M.; Snow, P.; Thompson, P.A.; Greenhalgh, T.; CATALISE Consortium. CATALISE: A Multinational and Multidisciplinary Delphi Consensus Study. Identifying Language Impairments in Children. PLoS ONE 2016, 11, e0158753. [Google Scholar] [CrossRef]
- Stark, R.E.; Tallal, P. Selection of Children with Specific Language Deficits. J. Speech Hear. Disord. 1981, 46, 114–122. [Google Scholar] [CrossRef]
- Tomblin, J.B.; Records, N.L.; Buckwalter, P.; Zhang, X.; Smith, E.; O’Brien, M. Prevalence of Specific Language Impairment in Kindergarten Children. J. Speech Lang. Hear. Res. 1997, 40, 1245–1260. [Google Scholar] [CrossRef] [Green Version]
- Reilly, S.; Tomblin, B.; Law, J.; McKean, C.; Mensah, F.; Morgan, A.; Goldfeld, S.; Nicholson, J.M.; Wake, M. Specific language impairment: A convenient label for whom? Int. J. Lang. Commun. Disord. 2014, 49, 416–451. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Gallinat, E.; Spaulding, T.J. Differences in the Performance of Children with Specific Language Impairment and Their Typically Developing Peers on Nonverbal Cognitive Tests: A Meta-Analysis. J. Speech Lang. Hear. Res. 2014, 57, 1363–1382. [Google Scholar] [CrossRef]
- Shriberg, L.D.; Tomblin, J.B.; McSweeny, J.L. Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. J. Speech Lang. Hear. Res. 1999, 42, 1461–1481. [Google Scholar] [CrossRef] [Green Version]
- Eadie, P.; Conway, L.; Hallenstein, B.; Mensah, F.; Mckean, C.; Reilly, S. Quality of life in children with developmental language disorder. Int. J. Lang. Commun. Disord. 2018, 53, 799–810. [Google Scholar] [CrossRef]
- Catts, H.W.; Adlof, S.; Hogan, T.P.; Weismer, S.E. Are Specific Language Impairment and Dyslexia Distinct Disorders? J. Speech Lang. Hear. Res. 2005, 48, 1378–1396. [Google Scholar] [CrossRef] [Green Version]
- Conti-Ramsden, G.; Botting, N.; Simkin, Z.; Knox, E. Follow-up of children attending infant language units: Outcomes at 11 years of age. Int. J. Lang. Commun. Disord. 2001, 36, 207–219. [Google Scholar] [CrossRef] [PubMed]
- McKean, C.; Wraith, D.; Eadie, P.; Cook, F.; Mensah, F.; Reilly, S. Subgroups in language trajectories from 4 to 11 years: The nature and predictors of stable, improving and decreasing language trajectory groups. J. Child Psychol. Psychiatry 2017, 58, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.M.; North, T.; Donlan, C. Genetic basis of specific language impairment: Evidence from a twin study. Dev. Med. Child Neurol. 1995, 37, 56–71. [Google Scholar] [CrossRef]
- Hayiou-Thomas, E.; Oliver, B.; Plomin, R. Genetic Influences on Specific Versus Nonspecific Language Impairment in 4-Year-Old Twins. J. Learn. Disabil. 2005, 38, 222–232. [Google Scholar] [CrossRef]
- Bishop, D.V.M.; Hayiou-Thomas, E. Heritability of specific language impairment depends on diagnostic criteria. Genes Brain Behav. 2007, 7, 365–372. [Google Scholar] [CrossRef]
- Bai, D.; Yip, B.H.K.; Windham, G.C.; Sourander, A.; Francis, R.; Yoffe, R.; Glasson, E.; Mahjani, B.; Suominen, A.; Leonard, H.; et al. Association of Genetic and Environmental Factors with Autism in a 5-Country Cohort. JAMA Psychiatry 2019, 76, 1035–1043. [Google Scholar] [CrossRef]
- Pingault, J.-B.; Viding, E.; Galera, C.; Greven, C.U.; Zheng, Y.; Plomin, R.; Rijsdijk, F. Genetic and Environmental Influences on the Developmental Course of Attention-Deficit/Hyperactivity Disorder Symptoms from Childhood to Adolescence. JAMA Psychiatry 2015, 72, 651. [Google Scholar] [CrossRef]
- Stromswold, K. Genetics of spoken language disorders. Hum. Biol. 1998, 70, 297–324. Available online: https://www.ncbi.nlm.nih.gov/pubmed/9549241 (accessed on 8 October 2021).
- Dale, P.S.; Simonoff, E.; Bishop, D.; Eley, T.; Oliver, B.R.; Price, T.; Purcell, S.; Stevenson, J.; Plomin, R. Genetic influence on language delay in two-year-old children. Nat. Neurosci. 1998, 1, 324–328. [Google Scholar] [CrossRef]
- Spinath, F.M.; Price, T.S.; Dale, P.S.; Plomin, R. The Genetic and Environmental Origins of Language Disability and Ability. Child Dev. 2004, 75, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.S.L.; Fisher, S.E.; Hurst, J.A.; Vargha-Khadem, F.; Monaco, A.P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001, 413, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.T.; Fisher, S.E.; Scheffer, I.; Hildebrand, M. FOXP2-Related Speech and Language Disorders. In GeneReviews(®); Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Mirzaa, G.M., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- MacDermot, K.D.; Bonora, E.; Sykes, N.; Coupe, A.-M.; Lai, C.S.; Vernes, S.; Vargha-Khadem, F.; McKenzie, F.; Smith, R.L.; Monaco, A.; et al. Identification of FOXP2 Truncation as a Novel Cause of Developmental Speech and Language Deficits. Am. J. Hum. Genet. 2005, 76, 1074–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eising, E.; Carrion-Castillo, A.; Vino, A.; Strand, E.A.; Jakielski, K.J.; Scerri, T.S.; Hildebrand, M.S.; Webster, R.; Ma, A.; Mazoyer, B.; et al. A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol. Psychiatry 2019, 24, 1065–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbury, D.F.; Monaco, A.P. The application of molecular genetics to the study of developmental language disorder. In Understanding Developmental Language Disorders: From Theory to Practice; Norbury, C.F., Tomblin, J.B., Bishop, D.V.M., Eds.; Taylor & Francis: Hove, UK; New York, NY, USA, 2008; pp. 79–92. [Google Scholar]
- Bacon, C.; Rappold, G.A. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human Genet. 2012, 131, 1687–1698. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, F.F.; Daoud, H.; Rochefort, D.; Piton, A.; Gauthier, J.; Langlois, M.; Foomani, G.; Dobrzeniecka, S.; Krebs, M.-O.; Joober, R.; et al. De Novo Mutations in FOXP1 in Cases with Intellectual Disability, Autism, and Language Impairment. Am. J. Hum. Genet. 2010, 87, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Horn, D.; Kapeller, J.; Rivera-Brugués, N.; Moog, U.; Lorenz-Depiereux, B.; Eck, S.; Hempel, M.; Wagenstaller, J.; Gawthrope, A.; Monaco, A.; et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum. Mutat. 2010, 31, E1851–E1860. [Google Scholar] [CrossRef]
- Lozano, R.; Vino, A.; Lozano, C.; Fisher, S.; Deriziotis, P. A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. Eur. J. Hum. Genet. 2015, 23, 1702–1707. [Google Scholar] [CrossRef] [Green Version]
- O’Roak, B.; Deriziotis, P.; Lee, C.; Vives, L.; Schwartz, J.J.; Girirajan, S.; Karakoc, E.; MacKenzie, A.P.; Ng, S.B.; Baker, C.; et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 2011, 43, 585–589. [Google Scholar] [CrossRef]
- Sollis, E.; Graham, S.A.; Vino, A.; Froehlich, H.; Vreeburg, M.; Dimitropoulou, D.; Gilissen, C.; Pfundt, R.; Rappold, G.A.; Brunner, H.G.; et al. Identification and functional characterization ofde novo FOXP1variants provides novel insights into the etiology of neurodevelopmental disorder. Hum. Mol. Genet. 2015, 25, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.S.; Reader, R.H.; Hoischen, A.; Veltman, J.A.; Simpson, N.H.; Francks, C.; Newbury, D.F.; Fisher, S.E. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci. Rep. 2017, 7, 46105. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.W.; Holden, K.R.; Dwivedi, A.; Dupont, B.R.; Lyons, M.J. Deletion of 16q24.1 Supports a Role for the ATP2C2 Gene in Specific Language Impairment. J. Child Neurol. 2015, 30, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Peter, B.; Matsushita, M.; Oda, K.; Raskind, W. De novo microdeletion ofBCL11Ais associated with severe speech sound disorder. Am. J. Med. Genet. Part A 2014, 164, 2091–2096. [Google Scholar] [CrossRef]
- Andres, E.M.; Earnest, K.K.; Zhong, C.; Rice, M.L.; Raza, M.H. Family-Based Whole-Exome Analysis of Specific Language Impairment (SLI) Identifies Rare Variants in BUD13, a Component of the Retention and Splicing (RES) Complex. Brain Sci. 2021, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Soblet, J.; Dimov, I.; Von Kalckreuth, C.G.; Cano-Chervel, J.; Baijot, S.; Pelc, K.; Sottiaux, M.; Vilain, C.; Smits, G.; Deconinck, N. BCL11Aframeshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. Am. J. Med. Genet. Part A 2017, 176, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, M.S.; Jackson, V.E.; Scerri, T.S.; Van Reyk, O.; Coleman, M.; Braden, R.O.; Turner, S.; Rigbye, K.A.; Boys, A.; Barton, S.; et al. Severe childhood speech disorder. Neurology 2020, 94, e2148–e2167. [Google Scholar] [CrossRef]
- Snijders-Blok, L.; The DDD Study; Rousseau, J.; Twist, J.; Ehresmann, S.; Takaku, M.; Venselaar, H.; Rodan, L.H.; Nowak, C.B.; Douglas, J.; et al. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat. Commun. 2018, 9, 4619. [Google Scholar] [CrossRef] [Green Version]
- Worthey, E.A.; Raca, G.; Laffin, J.J.; Wilk, B.M.; Harris, J.M.; Jakielski, K.J.; Dimmock, D.P.; A Strand, E.; Shriberg, L.D. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J. Neurodev. Disord. 2013, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Thevenon, J.; Callier, P.; Andrieux, J.; Delobel, B.; David, A.; Sukno, S.; Minot, D.; Mosca Anne, L.; Marle, N.; Sanlaville, D.; et al. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur. J. Hum. Genet. 2013, 21, 82–88. [Google Scholar] [CrossRef]
- Srivastava, S.; Cohen, J.S.; Vernon, H.; Barañano, K.; McClellan, R.; Jamal, L.; Naidu, S.; Fatemi, A. Clinical whole exome sequencing in child neurology practice. Ann. Neurol. 2014, 76, 473–483. [Google Scholar] [CrossRef]
- Le Fevre, A.K.; Taylor, S.; Malek, N.H.; Horn, D.; Carr, C.W.; Abdul-Rahman, O.A.; O’Donnell, S.; Burgess, T.; Shaw, M.; Gecz, J.; et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am. J. Med. Genet. Part A 2013, 161, 3166–3175. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.S.; Riess, A.; Moog, U.; A Briggs, T.; Chandler, K.E.; Rauch, A.; Stampfer, M.; Steindl, K.; Gläser, D.; Joset, P.; et al. FOXP2variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J. Med. Genet. 2016, 54, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Moralli, D.; Nudel, R.; Chan, M.T.M.; Green, C.M.; Volpi, E.V.; Benítez-Burraco, A.; Newbury, D.F.; García-Bellido, P. Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2. Mol. Cytogenet. 2015, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.J.; Hildebrand, M.; Block, S.; Damiano, J.; Fahey, M.; Reilly, S.; Bahlo, M.; Scheffer, I.E.; Morgan, A. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria. Am. J. Med. Genet. Part A 2013, 161, 2321–2326. [Google Scholar] [CrossRef]
- Tomblin, J.B.; O’Brien, M.; Shriberg, L.D.; Williams, C.; Murray, J.; Patil, S.; Bjork, J.; Anderson, S.; Ballard, K. Language Features in a Mother and Daughter of a Chromosome 7;13 Translocation InvolvingFOXP2. J. Speech Lang. Hear. Res. 2009, 52, 1157–1174. [Google Scholar] [CrossRef] [Green Version]
- Carvill, G.L.; Regan, B.; Yendle, S.C.; O’Roak, B.; Lozovaya, N.; Bruneau, N.; Burnashev, N.; Khan, A.; Cook, J.; Geraghty, E.; et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat. Genet. 2013, 45, 1073–1076. [Google Scholar] [CrossRef] [Green Version]
- Endele, S.; Rosenberger, G.; Geider, K.; Popp, B.; Tamer, C.; Stefanova, I.; Milh, M.; Kortüm, F.; Fritsch, A.; Pientka, F.K.; et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 2010, 42, 1021–1026. [Google Scholar] [CrossRef]
- Turner, S.J.; Mayes, A.K.; Verhoeven, A.; Mandelstam, S.A.; Morgan, A.T.; Scheffer, I.E. GRIN2A: An aptly named gene for speech dysfunction. Neurology 2015, 84, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Morgan, A.T.; Van Haaften, L.; Van Hulst, K.; Edley, C.; Mei, C.; Tan, T.Y.; Amor, D.; Fisher, S.; Koolen, D.A. Early speech development in Koolen de Vries syndrome limited by oral praxis and hypotonia. Eur. J. Hum. Genet. 2017, 26, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, P.; Nudel, R.; Hoischen, A.; Fernández, M.A.; Simpson, N.H.; Gilissen, C.; Reader, R.H.; Jara, L.; Echeverry, M.M.; Francks, C.; et al. Exome Sequencing in an Admixed Isolated Population Indicates NFXL1 Variants Confer a Risk for Specific Language Impairment. PLoS Genet. 2015, 11, e1004925, Correction in PLoS Genet. 2015, 11, e1005336. [Google Scholar] [CrossRef] [Green Version]
- Kornilov, S.A.; Rakhlin, N.; Koposov, R.; Lee, M.; Yrigollen, C.; Caglayan, A.O.; Magnuson, J.S.; Mane, S.; Chang, J.T.; Grigorenko, E.L. Genome-Wide Association and Exome Sequencing Study of Language Disorder in an Isolated Population. Pediatrics 2016, 137, e20152469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, A.; Braden, R.; Wong, M.M.K.; Colin, E.; Amor, D.; Liégeois, F.; Srivastava, S.; Vogel, A.; Bizaoui, V.; Ranguin, K.; et al. Speech and language deficits are central to SETBP1 haploinsufficiency disorder. Eur. J. Hum. Genet. 2021, 29, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Wiszniewski, W.; Hunter, J.V.; Hanchard, N.A.; Willer, J.R.; Shaw, C.; Tian, Q.; Illner, A.; Wang, X.; Cheung, S.W.; Patel, A.; et al. TM4SF20 Ancestral Deletion and Susceptibility to a Pediatric Disorder of Early Language Delay and Cerebral White Matter Hyperintensities. Am. J. Hum. Genet. 2013, 93, 197–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceroni, F.; Simpson, N.H.; Francks, C.; Baird, G.; Conti-Ramsden, G.; Clark, A.; Bolton, P.F.; Hennessy, E.R.; Donnelly, P.; Bentley, D.R.; et al. Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. Eur. J. Hum. Genet. 2014, 22, 1165–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estruch, S.B.; Graham, S.; Derizioti, P.; Fisher, S. The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci. Rep. 2016, 6, 20911. [Google Scholar] [CrossRef] [Green Version]
- Den Hoed, J.; de Boer, E.; Voisin, N.; Dingemans, A.J.; Guex, N.; Wiel, L.; Nellaker, C.; Amudhavalli, S.M.; Banka, S.; Bena, F.S.; et al. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am. J. Hum. Genet. 2021, 108, 346–356. [Google Scholar] [CrossRef]
- Clarke, L.; Fairley, S.; Zheng-Bradley, X.; Streeter, I.; Perry, E.; Lowy, E.; Tassé, A.-M.; Flicek, P. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2017, 45, D854–D859. [Google Scholar] [CrossRef] [Green Version]
- Fedorenko, E.; Morgan, A.; Murray, E.; Cardinaux, A.; Mei, C.; Tager-Flusberg, H.; Fisher, S.; Kanwisher, N. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. Eur. J. Hum. Genet. 2015, 24, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Newbury, D.F.; Mari, F.; Akha, E.S.; MacDermot, K.D.; Canitano, R.; Monaco, A.; Taylor, J.C.; Renieri, A.; Fisher, S.; Knight, S.J.L. Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. Eur. J. Hum. Genet. 2012, 21, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Raca, G.; Baas, B.S.; Kirmani, S.; Laffin, J.J.; A Jackson, C.; A Strand, E.; Jakielski, K.J.; Shriberg, L.D. Childhood Apraxia of Speech (CAS) in two patients with 16p11.2 microdeletion syndrome. Eur. J. Hum. Genet. 2013, 21, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Feuk, L.; Kalervo, A.; Lipsanen-Nyman, M.; Skaug, J.; Nakabayashi, K.; Finucane, B.; Hartung, D.; Innes, M.; Kerem, B.; Nowaczyk, M.J.; et al. Absence of a Paternally Inherited FOXP2 Gene in Developmental Verbal Dyspraxia. Am. J. Hum. Genet. 2006, 79, 965–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennon, P.; Cooper, M.; Peiffer, D.; Gunderson, K.; Patel, A.; Peters, S.; Cheung, S.; Bacino, C. Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: Clinical report and review. Am. J. Med. Genet. Part A 2007, 143A, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Zeesman, S.; Nowaczyk, M.J.; Teshima, I.; Roberts, W.; Cardy, J.O.; Brian, J.; Senman, L.; Feuk, L.; Osborne, L.R.; Scherer, S.W. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. Am. J. Med. Genet. Part A 2006, 140, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Ercan-Sencicek, A.G.; Wright, N.R.D.; Sanders, S.J.; Oakman, N.; Valdes, L.; Bakkaloglu, B.; Doyle, N.; Yrigollen, C.M.; Morgan, T.M.; Grigorenko, E.L. A balanced t(10;15) translocation in a male patient with developmental language disorder. Eur. J. Med. Genet. 2012, 55, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, J.S.; Estivill, X.; Antonarakis, S. Copy number variants and genetic traits: Closer to the resolution of phenotypic to genotypic variability. Nat. Rev. Genet. 2007, 8, 639–646. [Google Scholar] [CrossRef]
- Sanders, S.J.; He, X.; Willsey, A.J.; Ercan-Sencicek, A.G.; Samocha, K.E.; Cicek, A.E.; Murtha, M.T.; Bal, V.H.; Bishop, S.L.; Dong, S.; et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015, 87, 1215–1233. [Google Scholar] [CrossRef] [Green Version]
- Coe, B.P.; Witherspoon, K.; A Rosenfeld, J.; Van Bon, B.W.M.; Silfhout, A.T.V.-V.; Bosco, P.; Friend, K.L.; Baker, C.; Buono, S.; Vissers, L.; et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 2014, 46, 1063–1071. [Google Scholar] [CrossRef]
- Lionel, A.C.; Crosbie, J.; Barbosa, N.; Goodale, T.; Thiruvahindrapuram, B.; Rickaby, J.; Gazzellone, M.; Carson, A.R.; Howe, J.L.; Wang, Z.; et al. Rare Copy Number Variation Discovery and Cross-Disorder Comparisons Identify Risk Genes for ADHD. Sci. Transl. Med. 2011, 3, 95ra75. [Google Scholar] [CrossRef] [Green Version]
- Simpson, N.H.; The SLI Consortium; Ceroni, F.; Reader, R.H.; Covill, L.E.; Knight, J.C.; Hennessy, E.R.; Bolton, P.F.; Conti-Ramsden, G.; O’Hare, A.; et al. Genome-wide analysis identifies a role for common copy number variants in specific language impairment. Eur. J. Hum. Genet. 2015, 23, 1370–1377. [Google Scholar] [CrossRef]
- Kalnak, N.; Stamouli, S.; Peyrard-Janvid, M.; Rabkina, I.; Becker, M.; Klingberg, T.; Kere, J.; Forssberg, H.; Tammimies, K. Enrichment of rare copy number variation in children with developmental language disorder. Clin. Genet. 2018, 94, 313–320. [Google Scholar] [CrossRef]
- SLI Consortium. A Genomewide Scan Identifies Two Novel Loci Involved in Specific Language Impairment**Members of the consortium are listed in the Appendix. Am. J. Hum. Genet. 2002, 70, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Newbury, D.F.; Winchester, L.; Addis, L.; Paracchini, S.; Buckingham, L.-L.; Clark, A.; Cohen, W.; Cowie, H.; Dworzynski, K.; Everitt, A.; et al. CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment. Am. J. Hum. Genet. 2009, 85, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, A.; Rice, M.L.; Talcott, J.B.; Diaz, R.; Smith, S.; Raza, M.H.; Snowling, M.J.; Hulme, C.; Stein, J.; Hayiou-Thomas, M.E.; et al. A rare missense variant in the ATP2C2 gene is associated with language impairment and related measures. Hum. Mol. Genet. 2021, 30, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Evans, D.; Hansell, N.; Medland, S.; Montgomery, G.; Martin, N.; Wright, M.; Bates, T.C. A genome-wide association study for reading and language abilities in two population cohorts. Genes Brain Behav. 2013, 12, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Eicher, J.D.; Powers, N.R.; Miller, L.L.; Akshoomoff, N.; Amaral, D.G.; Bloss, C.S.; Libiger, O.; Schork, N.J.; Darst, B.F.; Casey, B.J.; et al. Genome-wide association study of shared components of reading disability and language impairment. Genes Brain Behav. 2013, 12, 792–801. [Google Scholar] [CrossRef] [Green Version]
- Nudel, R.; Simpson, N.H.; Baird, G.; O’Hare, A.; Conti-Ramsden, G.; Bolton, P.F.; Hennessy, E.R.; SLI Consortium; Ring, S.M.; Davey Smith, G.D.; et al. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes Brain Behav. 2014, 13, 418–429. [Google Scholar] [CrossRef] [Green Version]
- St Pourcain, B.S.; Cents, R.A.; Whitehouse, A.J.; Haworth, C.M.; Davis, O.S.; O’Reilly, P.F.; Roulstone, S.; Wren, Y.; Ang, Q.W.; Velders, F.P.; et al. Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nat. Commun. 2014, 5, 4831. [Google Scholar] [CrossRef] [Green Version]
- Gialluisi, A.; Newbury, D.F.; Wilcutt, E.G.; Olson, R.K.; DeFries, J.C.; Brandler, W.M.; Pennington, B.F.; Smith, S.D.; Scerri, T.S.; Simpson, N.; et al. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav. 2014, 13, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Harlaar, N.; Meaburn, E.L.; Hayiou-Thomas, M.E.; Davis, O.; Docherty, S.; Hanscombe, K.B.; Haworth, C.; Price, T.; Trzaskowski, M.; Dale, P.S.; et al. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds. J. Speech Lang. Hear. Res. 2014, 57, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Eising, E.; Mirza-Schreiber, N.; de Zeeuw, E.L.; Wang, C.A.; Truong, D.T.; Allegrini, A.G.; Shapland, C.Y.; Zhu, G.; Wigg, K.G.; Fisher, S.E.; et al. Genome-wide association analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. bioRxiv 2021. [Google Scholar] [CrossRef]
- Doust, C.; Fontanillas, P.; Eising, E.; Gordon, S.D.; Wang, Z.; Alagöz, G.; Molz, B.; 23 and Me Research Team; Quantitative Trait Working Group of the GenLang Consortium; Luciano, M.; et al. Discovery of 42 Genome-Wide Significant Loci Associated with Dyslexia. medRxiv 2021. [Google Scholar] [CrossRef]
- Bartlett, C.W.; Flax, J.F.; Logue, M.W.; Vieland, V.J.; Bassett, A.S.; Tallal, P.; Brzustowicz, L.M. A Major Susceptibility Locus for Specific Language Impairment Is Located on 13q21. Am. J. Hum. Genet. 2002, 71, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, P.D.; Mueller, K.L.; Gamazon, E.R.; Cox, N.J.; Tomblin, J.B. A genome-wide sib-pair scan for quantitative language traits reveals linkage to chromosomes 10 and 13. Genes Brain Behav. 2015, 14, 387–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andres, E.M.; Hafeez, H.; Yousaf, A.; Riazuddin, S.; Rice, M.L.; Basra, M.A.R.; Raza, M.H. A genome-wide analysis in consanguineous families reveals new chromosomal loci in specific language impairment (SLI). Eur. J. Hum. Genet. 2019, 27, 1274–1285. [Google Scholar] [CrossRef]
- Reader, R.H.; Covill, L.; Nudel, R.; Newbury, D.F. Genome-Wide Studies of Specific Language Impairment. Curr. Behav. Neurosci. Rep. 2014, 1, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbury, D.F.; Gibson, J.L.; Conti-Ramsden, G.; Pickles, A.; Durkin, K.; Toseeb, U. Using Polygenic Profiles to Predict Variation in Language and Psychosocial Outcomes in Early and Middle Childhood. J. Speech Lang. Hear. Res. 2019, 62, 3381–3396. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, C.A.; Medland, S.E.; Derringer, J.; Yang, J.; Esko, T.; Martin, N.W.; Westra, H.-J.; Shakhbazov, K.; Abdellaoui, A.; Agrawal, A.; et al. GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment. Science 2013, 340, 1467–1471. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Karlsson Linnér, R.R.; et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- Gialluisi, A.; Andlauer, T.F.M.; Mirza-Schreiber, N.; Moll, K.; Becker, J.; Hoffmann, P.; Ludwig, K.U.; Czamara, D.; Pourcain, B.S.; Brandler, W.; et al. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl. Psychiatry 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, J.; Nizon, M.; Pichon, O.; Andrieux, J.; Audebert-Bellanger, S.; Baron, S.; Beneteau, C.; Bilan, F.; Boute, O.; Busa, T.; et al. Sex chromosome aneuploidies and copy-number variants: A further explanation for neurodevelopmental prognosis variability? Eur. J. Hum. Genet. 2017, 25, 930–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mountford, H.S.; Bishop, D.V.M.; Thompson, P.A.; Simpson, N.H.; Newbury, D.F. Copy number variation burden does not predict severity of neurodevelopmental phenotype in children with a sex chromosome trisomy. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.S.; Pecile, V.; Cleva, L.; Speltra, E.; Selice, R.; Di Mambro, A.; Foresta, C.; Ferlin, A. The Klinefelter syndrome is associated with high recurrence of copy number variations on the X chromosome with a potential role in the clinical phenotype. Andrology 2016, 4, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veltman, J.; Brunner, H.G. Understanding variable expressivity in microdeletion syndromes. Nat. Genet. 2010, 42, 192–193. [Google Scholar] [CrossRef]
- Mascheretti, S.; Bureau, A.; Trezzi, V.; Giorda, R.; Marino, C. An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Human Genet. 2015, 134, 749–760. [Google Scholar] [CrossRef]
- Powers, N.R.; Eicher, J.D.; Miller, L.L.; Kong, Y.; Smith, S.D.; Pennington, B.F.; Willcutt, E.G.; Olson, R.K.; Ring, S.M.; Gruen, J.R. The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. J. Med. Genet. 2016, 53, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Mascheretti, S.; Bureau, A.; Battaglia, M.; Simone, D.; Quadrelli, E.; Croteau, J.; Cellino, M.R.; Giorda, R.; Beri, S.; Maziade, M.; et al. An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes Brain Behav. 2013, 12, 47–55. [Google Scholar] [CrossRef]
- Nicolia, V.; Cavallaro, R.A.; López-González, I.; Maccarrone, M.; Scarpa, S.; Ferrer, I.; Fuso, A. DNA Methylation Profiles of Selected Pro-Inflammatory Cytokines in Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2017, 76, 27–31. [Google Scholar] [CrossRef]
- Park, G.; Tan, J.; Garcia, G.; Kang, Y.; Salvesen, G.; Zhang, Z. Regulation of Histone Acetylation by Autophagy in Parkinson Disease. J. Biol. Chem. 2016, 291, 3531–3540. [Google Scholar] [CrossRef] [Green Version]
- Kraft, S.J.; DeThorne, L.S. The Brave New World of Epigenetics: Embracing Complexity in the Study of Speech and Language Disorders. Curr. Dev. Disord. Rep. 2014, 1, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.L. Toward epigenetic and gene regulation models of specific language impairment: Looking for links among growth, genes, and impairments. J. Neurodev. Disord. 2012, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.D. Approach to epigenetic analysis in language disorders. J. Neurodev. Disord. 2011, 3, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Marioni, R.E.; McRae, A.F.; Bressler, J.; Colicino, E.; Hannon, E.; Li, S.; Prada, D.; A Smith, J.; Trevisi, L.; Tsai, P.-C.; et al. Meta-analysis of epigenome-wide association studies of cognitive abilities. Mol. Psychiatry 2018, 23, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küpers, L.K.; Monnereau, C.; Sharp, G.C.; Yousefi, P.; Salas, L.A.; Ghantous, A.; Page, C.M.; Reese, S.E.; Wilcox, A.J.; Czamara, D.; et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat. Commun. 2019, 10, 1893. [Google Scholar] [CrossRef] [Green Version]
- Falcaro, M.; Pickles, A.; Newbury, D.F.; Addis, L.; Banfield, E.; Fisher, S.; Monaco, A.; Simkin, Z.; Conti-Ramsden, G.; The SLI Consortium. Genetic and phenotypic effects of phonological short-term memory and grammatical morphology in specific language impairment. Genes Brain Behav. 2008, 7, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva, P.; Newbury, D.F.; Jara, L.; De Barbieri, Z.; Mirza, G.; Palomino, H.M.; Fernández, M.A.; Cazier, J.-B.; Monaco, A.P.; Palomino, H. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population. Eur. J. Hum. Genet. 2011, 19, 687–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devanna, P.; Chen, X.S.; Ho, J.; Gajewski, D.; Smith, S.D.; Gialluisi, A.; Francks, C.; Fisher, S.E.; Newbury, D.F.; Vernes, S.C. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol. Psychiatry 2017, 23, 1375–1384. [Google Scholar] [CrossRef] [Green Version]
Gene | Type | Phenotype | Authors |
---|---|---|---|
ATP2C2 | del | DLD | Smith et al. (2015) [35] |
BCL11A | del | CAS | Peter et al. (2014) [36] |
BUD13 | SLI | Andres et al. (2022) [37], Soblet et al. (2018) [38] | |
CDK13 | CAS | Hildebrand et al. (2020) [39] | |
CHD3 | DLD/CAS, Snijders Blok-Campeau syndrome | Eising et al. (2018) [26], Snijders Blok et al. (2018) [40] | |
CNTNAP2 | DLD | Worthey et al. (2013) [41] | |
DDX3X | CAS | Hildebrand et al. (2020) [39] | |
EBF3 | CAS | Hildebrand et al. (2020) [39] | |
ERC1 | CAS | Chen et al. (2017) [34], Thevenon et al. (2013) [42] | |
FOXP1 | CAS | Hamdan et al. (2010) [29], Horn et al. (2010) [30], Sollis et al. (2015) [33], Srivastava et al. (2014) [43], Le Fevre et al. (2013) [44] | |
FOXP2 | Includes del | CAS | Lai et al. (2001) [23], MacDermot et al. (2005) [25], Reuter et al. (2017) [45], Moralli et al. (2015) [46], Turner et al. (2013) [47], Tomblin et al. (2009) [48] |
GNAO1 | CAS | Hildebrand et al. (2020) [39] | |
GNB1 | CAS | Hildebrand et al. (2020) [39] | |
GRIN2A | DLD and epilepsy, with or without intellectual disability | Chen et al. (2017) [34], Carvill et al. (2013) [49], Endele et al. (2010) [50], Turner et al. (2015) [51] | |
KAT6A | CAS | Eising et al. (2018) [26] | |
KANSL1 | del | CAS | Morgan et al. (2017) [52] |
MEIS2 | CAS | Hildebrand et al. (2020) [39] | |
NFXL1 | DLD | Villanueva et al. (2015) [53] | |
POGZ | CAS | Hildebrand et al. (2020) [39] | |
SETBP1 | CAS | Eising et al. (2018) [26], Hildebrand et al. (2020) [39], Kornilov et al. (2016) [54], Morgan et al. (2021) [55] | |
SETD1A | CAS | Eising et al. (2018) [26] | |
SRPX2 | DLD with rolandic seizures | Chen et al. (2017) [14] | |
TM4SF20 | del | DLD | Wiszniewski et al. (2013) [56] |
TNRC6B | CAS | Eising et al. (2018) [26] | |
UPF2 | CAS | Hildebrand et al. (2020) [39] | |
WDR5 | CAS | Hildebrand et al. (2020) [39] | |
ZFHX4 | CAS | Hildebrand et al. (2020) [39] | |
ZNF142 | CAS | Hildebrand et al. (2020) [39] | |
ZNF277 | del | SLI | Ceroni et al. (2014) [57] |
Study | Sample No. | Cohort Type | Chr. Assoc. |
---|---|---|---|
Luciano et al. (2013) [77] | ~6500 | Population | 21 |
Eicher et al. (2013) [78] | ~170 | Selected reading and language impaired | 3, 4, 13 |
Nudel et al. (2014) [79] | ~250 | Selected (parent of origin) | 5, 14 |
St Pourcain et al. (2014) [80] | ~10,000 | Population | 3 |
Gialluisi et al. (2014) [81] | ~1800 | Selected reading and language impaired | 7, 21 |
Harlaar et al. (2014) [82] | ~2000 | Population | 2, 10 |
Kornilov et al. (2016) [54] | ~400 | Isolated population | 9, 21 |
Eising et al. (2021) [83] | 33,959 | Selected and population Meta-analysis using 19 cohorts | 1 |
Doust et al. (2021) [84] | 51,800 dyslexia cases, 1,087,070 controls | Selected and population Meta-analysis using binary case/control self-reported measure of dyslexia | 1, 2, 3, 6, 7, 11, 17, X |
Authors | Study | Diagnostic Term | Inclusion Criteria | Exclusion Criteria |
---|---|---|---|---|
Bishop et al. (1995) [15] | Twin study | SLI | Language: DSR-III-R criteria: SS ≤ 80 on language measure; significant impairment on ≥1 of 4 language measures Cognition: Discrepancy of ≥20 points between non-verbal IQ and language measure | Mental retardation; ASD; SNHL; structural abnormality of articulators; serious visual impairment; medical syndrome; EAL status |
Bartlett et al. (2002) [85] | Linkage study | SLI | Language: Spoken Language Quotient (SLQ) SS ≤ 85 Cognition: Performance IQ ≥ 80 + Performance IQ ≥ SLQ | Hearing impairment; motor impairments or oral structural deviations affecting speech or non-speech movement of the articulators; diagnosis of ASD, schizophrenia, psychoses, or neurological disorder |
Falcaro et al. (2008) [109] | Linkage | SLI | Language: Language SS ≤ 1SD at 1 time point during longitudinal study + Attending language units in United Kingdom Cognition: Performance IQ ≥ 80 | Sensorineural hearing loss; EAL status; Medical condition likely to affect language; ASD diagnosis |
Newbury et al. (2009) [75] | Linkage study | SLI | Language: * CELF-R expressive or receptive SS ≥ 1.5SD below normative mean Cognition: * Performance IQ ≥ 80 | * MZ twinning, chronic illness requiring multiple hospital visits or admissions, deafness, an ICD-10/DSM-IV diagnosis of childhood autism, EAL, care provision by local authorities, and known neurological disorders |
Villanueva et al. (2011) [110] | GWAS | SLI | Language: Phonology, expressive and receptive morphosyntax SS > 2 SD below population mean on Test para Evaluar Procesos de Simplificacio’n Fonolo´ gica (TEPROSIF) or Toronto Spanish Grammar Exploratory test Cognition: Performance IQ > 80th percentile | HI; oral motor or structural; ASD, emotional difficulties, or neurological disorder |
Luciano et al. (2013) [77] | GWAS (Population) | Quantitative language across population | Language: Population study, low language determined based on non-word repetition tasks Cognition: - | - |
Eicher et al. (2013) [78] | GWAS | Language Impairment (+/− RD) | Language: z-score ≤ −1 on ≥2 of 3 language tasks (phoneme deletion, verbal comprehension, non-word repetition) Cognition: IQ ≥ 76 | - |
Gialluisi et al. (2014) [81] | GWAS | Language Impairment (+/− RD) | Language: 3 cohorts with varied inclusion criteria: 1: SLIC * CELF-R expressive or receptive SS ≥ 1.5SD below normative mean; 2: UK Reading Disability: diagnosis RD; 3: Colorado Learning Disabilities Research Centre: 2 datasets, one recruited on basis of diagnosis of RD, one on diagnosis of ADHD. Language SS≥3SD sample mean Cognition: 1: * Performance IQ ≥ 80; 2: Reading IQ discrepancy and/or IQ > 90; 3: FSIQ ≥ 70 | 1: * MZ twinning, chronic illness requiring multiple hospital visits or admissions, deafness, an ICD-10/DSM-IV diagnosis of childhood autism, EAL, care provision by local authorities, and known neurological disorders; 2: −3: If ≥3 SS were ≥3SD from mean |
Harlaar et al. (2014) [82] | GWAS (Population) | Quantitative language across population | Language: Population study, low language determined using receptive language measures included in the cognitive test battery Cognition: - | - |
St Pourcain et al. (2014) [80] | GWAS | Quantitative language across population | Language: Population study, low language determined using MCDI Cognition: - | - |
Nudel et al. (2014) [79] | GWAS | SLI | Language: * CELF-R expressive or receptive SS ≥ 1.5SD below normative mean Cognition: * Performance IQ ≥ 80 | * MZ twinning, chronic illness requiring multiple hospital visits or admissions, deafness, an ICD-10/DSM-IV diagnosis of childhood autism, EAL, care provision by local authorities, and known neurological disorders |
Evans et al. (2015) [86] | Linkage study | Poor language | Language: Recruited from a longitudinal language study. Overall language score calculated based on 3 composite language scores across general language, vocabulary and sentence use Cognition: Performance IQ > 70 | - |
Kornilov et al. (2016) [54] | GWAS Isolated population ~400 | DLD | Language: Impairment (z-score < −1) on ≥2 quantitative phenotypes obtained via analysis of semi-structured speech samples Cognition: - | Children attending specialist education settings |
Devanna et al. (2018) [111] | Sequencing study | SLI | Language: * CELF-R expressive or receptive SS ≥ 1.5SD below normative mean Cognition: * Performance IQ ≥ 80 | * MZ twinning, chronic illness requiring multiple hospital visits or admissions, deafness, an ICD-10/DSM-IV diagnosis of childhood autism, EAL, care provision by local authorities, and known neurological disorders |
Chen et al. (2017) [34] | Sequencing study (SLIC Cohort) | Severe SLI | Language: * CELF-R expressive or receptive SS ≥ 1.5SD below normative mean Cognition: * Performance IQ ≥ 80 | * MZ twinning, chronic illness requiring multiple hospital visits or admissions, deafness, an ICD-10/DSM-IV diagnosis of childhood autism, EAL, care provision by local authorities, and known neurological disorders |
Andres et al. (2019) [87] | Linkage study and homozygositymapping | SLI | Language: Peabody Picture Vocabulary Test (PPVT) fourth edition (PPVT-4) standard score of ≤80 Teacher report of SLI Cognition: - | Known developmental disabilities, HI, known neurological disorders |
Andres et al. (2022) [37] | Sequencing study | SLI | Language: ≥1.0SD below mean on age-appropriate language test battery Cognition: Nonverbal-IQ > 85 on Columbia Mental Maturity Scale (age 3.6 to 6.11) or >85 on Wechsler Intelligence Test for Children or >85 Wechsler Intelligence Test for Adults | Known developmental disabilities, HI, known neurological disorders |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mountford, H.S.; Braden, R.; Newbury, D.F.; Morgan, A.T. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. Children 2022, 9, 586. https://doi.org/10.3390/children9050586
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. Children. 2022; 9(5):586. https://doi.org/10.3390/children9050586
Chicago/Turabian StyleMountford, Hayley S., Ruth Braden, Dianne F. Newbury, and Angela T. Morgan. 2022. "The Genetic and Molecular Basis of Developmental Language Disorder: A Review" Children 9, no. 5: 586. https://doi.org/10.3390/children9050586
APA StyleMountford, H. S., Braden, R., Newbury, D. F., & Morgan, A. T. (2022). The Genetic and Molecular Basis of Developmental Language Disorder: A Review. Children, 9(5), 586. https://doi.org/10.3390/children9050586