Antibiogram of Urinary Tract Infections and Sepsis among Infants in Neonatal Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Bacterial Identification and Antibiotic Sensitivity Testing
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Uropathogens and Septic Bacteria in NICU
3.2. Simultaneous Infection/Colonisation of Identified Bacterial Isolates in Blood and Urine of NICU Patients with Positive Blood Cultures
3.3. Sensitivity Profiles of Identified Gram-Negative Bacteria from Blood and Urine of NICU Patients
3.4. Sensitivity Profiles of Identified Gram-Positive Bacteria from Blood and Urine of NICU Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune responses in neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Sass, L.; Karlowicz, M.G. Healthcare-Associated Infections in the Neonate. Princ. Pract. Pediatr. Infect. Dis. 2018, 3, 560–566. [Google Scholar] [CrossRef]
- Cortese, F.; Scicchitano, P.; Gesualdo, M.; Filaninno, A.; De Giorgi, E.; Schettini, F.; Laforgia, N.; Ciccone, M.M. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatr. Neonatol. 2016, 57, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, M.; Seed, P.C. Urinary tract infections in the infant. Clin. Perinatol. 2015, 42, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walawender, L.; Hains, D.S.; Schwaderer, A.L. Diagnosis and imaging of neonatal UTIs. Pediatr. Neonatol. 2020, 61, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, D.H.; Darmstadt, G.L.; Carlin, J.B.; Zaidi, A.K.M.; Yeboah-Antwi, K.; Saha, S.K.; Ray, P.; Narang, A.; Mazzi, E.; Kumar, P.; et al. Etiology of Bacteremia in Young Infants in Six Countries. Pediatr. Infect. Dis. J. 2015, 34, e1–e8. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.; Fairchild, K.D. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 2004, 17, 638–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Almohammady, M.N.; Eltahlawy, E.M.; Reda, N.M. Pattern of bacterial profile and antibiotic susceptibility among neonatal sepsis cases at Cairo University Children Hospital. J. Taibah Univ. Med. Sci. 2020, 15, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehab El-Din, E.M.R.; El-Sokkary, M.M.A.; Bassiouny, M.R.; Hassan, R. Epidemiology of Neonatal Sepsis and Implicated Pathogens: A Study from Egypt. BioMed Res. Int. 2015, 2015, 509484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, G.J.; Lee, A.C.C.; Baqui, A.H.; Tan, J.; Black, R.E. Risk of early-onset neonatal infection with maternal infection or colonization: A global systematic review and meta-analysis. PLoS Med. 2013, 10, e1001502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulkowstein, S.; Ben-Shimol, S.; Givon-Lavi, N.; Melamed, R.; Shany, E.; Greenberg, D. Comparison of early onset sepsis and community-acquired late onset sepsis in infants less than 3 months of age. BMC Pediatr. 2016, 16, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardi, A.; Sforza, F.; Baroni, L.; Spada, C.; Ambretti, S.; Biasucci, G.; Bolognesi, S.; Capretti, M.; Carretto, E.; Ciccia, M.; et al. Epidemiology and complications of late-onset sepsis: An Italian area-based study. PLoS ONE 2019, 14, e0225407. [Google Scholar] [CrossRef] [Green Version]
- Ghorashi, Z.; Nezami, N.; Hoseinpour-Feizi, H.; Ghorashi, S.; Tabrizi, J.S. Arthritis, osteomyelitis, septicemia and meningitis caused by Klebsiella in a low-birth-weight newborn: A case report. J. Med. Case Rep. 2011, 5, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazouras, K.; Velali, K.; Tassiou, I.; Anastasiou-Katsiardani, A.; Athanasopoulou, K.; Barbouni, A.; Jackson, C.; Folgori, L.; Zaoutis, T.; Basmaci, R.; et al. Antibiotic treatment and antimicrobial resistance in children with urinary tract infections. J. Glob. Antimicrob. Resist. 2020, 20, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Davidson, L.E. Antimicrobial stewardship. Mayo Clin. Proc. 2011, 86, 1113–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, W.R.; Hidayat, L.; Bolaris, M.A.; Nguyen, L.; Yamaki, J. The antibiogram: Key considerations for its development and utilization. JAC Antimicrob. Resist. 2021, 3, dlab060. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.C.M.; Fortaleza, C.M.C.B.; Ferreira, A.M.; Cavalcante, R.d.S.; Mondelli, A.L.; Bagagli, E.; da Cunha, M.d.L.R.d.S. Comparison of methods for the identification of microorganisms isolated from blood cultures. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khassawneh, M.; Khader, Y.; Abuqtaish, N. Clinical features of neonatal sepsis caused by resistant Gram-negative bacteria. Pediatr. Int. 2009, 51, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Bazaid, A.S.; Saeed, A.; Alrashidi, A.; Alrashidi, A.; Alshaghdali, K.; Hammam, S.A.; Alreshidi, T.; Alshammary, M.; Alarfaj, A.; Thallab, R.; et al. Antimicrobial Surveillance for Bacterial Uropathogens in Ha’il, Saudi Arabia: A Five-Year Multicenter Retrospective Study. Infect. Drug Resist. 2021, 14, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Lugira, Y.S.; Kimaro, F.D.; Mkhoi, M.L.; Mafwenga, S.G.; Joho, A.A.; Yahaya, J.J. Prevalence, aetiology, antimicrobial susceptibility testing, and predictors of urinary tract infection among neonates with clinical sepsis: A cross-sectional study. Egypt. Pediatr. Assoc. Gaz. 2022, 70, 2. [Google Scholar] [CrossRef]
- Bonadio, W.; Maida, G. Urinary tract infection in outpatient febrile infants younger than 30 days of age: A 10-year evaluation. Pediatr. Infect. Dis. J. 2014, 33, 342–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqasim, A.; Abu Jaffal, A.; Alyousef, A.A. Prevalence of Multidrug Resistance and Extended-Spectrum β-Lactamase Carriage of Clinical Uropathogenic Escherichia coli Isolates in Riyadh, Saudi Arabia. Int. J. Microbiol. 2018, 2018, 3026851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoberman, A.; Chao, H.P.; Keller, D.M.; Hickey, R.; Davis, H.W.; Ellis, D. Prevalence of urinary tract infection in febrile infants. J. Pediatr. 1993, 123, 17–23. [Google Scholar] [CrossRef]
- Yoon, S.H.; Shin, H.; Lee, K.H.; Kim, M.K.; Kim, D.S.; Ahn, J.G.; Shin, J.I. Predictive factors for bacteremia in febrile infants with urinary tract infection. Sci. Rep. 2020, 10, 4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megged, O. Bacteremic vs nonbacteremic urinary tract infection in children. Am. J. Emerg. Med. 2017, 35, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Tobian, A.A.R.; Gray, R.H.; Quinn, T.C. Male circumcision for the prevention of acquisition and transmission of sexually transmitted infections: The case for neonatal circumcision. Arch. Pediatr. Adolesc. Med. 2010, 164, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsburg, C.M.; McCracken, G.H., Jr. Urinary tract infections in young infants. Pediatrics 1982, 69, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Huang, F.Y.; Chiu, N.C.; Tsai, T.C.; Ho, U.Y.; Kao, H.A.; Hsu, C.H.; Hung, H.Y. Urinary tract infection in infants less than 2 months of age. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1994, 35, 294–300. [Google Scholar] [PubMed]
- Mohseny, A.B.; van Velze, V.; Steggerda, S.J.; Smits-Wintjens, V.E.H.J.; Bekker, V.; Lopriore, E. Late-onset sepsis due to urinary tract infection in very preterm neonates is not uncommon. Eur. J. Pediatr. 2018, 177, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitetti, R.D.; Choi, S. Utility of blood cultures in febrile children with UTI. Am. J. Emerg. Med. 2002, 20, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Schrag, S.J.; El Arifeen, S.; Mullany, L.C.; Shahidul Islam, M.; Shang, N.; Qazi, S.A.; Zaidi, A.K.M.; Bhutta, Z.A.; Bose, A.; et al. Causes and incidence of community-acquired serious infections among young children in south Asia (ANISA): An observational cohort study. Lancet 2018, 392, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, A.K.; Thaver, D.; Ali, S.A.; Khan, T.A. Pathogens associated with sepsis in newborns and young infants in developing countries. Pediatr. Infect. Dis. J. 2009, 28, S10–S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seale, A.C.; Mwaniki, M.; Newton, C.R.; Berkley, J.A. Maternal and early onset neonatal bacterial sepsis: Burden and strategies for prevention in sub-Saharan Africa. Lancet Infect. Dis. 2009, 9, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.K.C.; Wong, A.H.C.; Leung, A.A.M.; Hon, K.L. Urinary Tract Infection in Children. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 2–18. [Google Scholar] [CrossRef]
- Gomez, B.; Diaz, H.; Carro, A.; Benito, J.; Mintegi, S. Performance of blood biomarkers to rule out invasive bacterial infection in febrile infants under 21 days old. Arch. Dis. Child. 2019, 104, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Bahat Ozdogan, E.; Mutlu, M.; Camlar, S.A.; Bayramoglu, G.; Kader, S.; Aslan, Y. Urinary tract infections in neonates with unexplained pathological indirect hyperbilirubinemia: Prevalence and significance. Pediatr. Neonatol. 2018, 59, 305–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didier, C.; Streicher, M.P.; Chognot, D.; Campagni, R.; Schnebelen, A.; Messer, J.; Donato, L.; Langer, B.; Meyer, N.; Astruc, D.; et al. Late-onset neonatal infections: Incidences and pathogens in the era of antenatal antibiotics. Eur. J. Pediatr. 2012, 171, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Lo, D.S.; Shieh, H.H.; Ragazzi, S.L.; Koch, V.H.; Martinez, M.B.; Gilio, A.E. Community-acquired urinary tract infection: Age and gender-dependent etiology. Braz. J. Nephrol. 2013, 35, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Bitsori, M.; Maraki, S.; Raissaki, M.; Bakantaki, A.; Galanakis, E. Community-acquired enterococcal urinary tract infections. Pediatr. Nephrol. 2005, 20, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, B.; Koirala, T.; Shah, G.; Joshi, S.; Baral, P. Bacteriological profile and antibiotic susceptibility of neonatal sepsis in neonatal intensive care unit of a tertiary hospital in Nepal. BMC Pediatr. 2018, 18, 208. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.E. High antimicrobial resistant rates among Gram-negative pathogens in intensive care units. A retrospective study at a tertiary care hospital in Southwest Saudi Arabia. Saudi Med. J. 2018, 39, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchant, E.A.; Boyce, G.K.; Sadarangani, M.; Lavoie, P.M. Neonatal sepsis due to coagulase-negative staphylococci. Clin. Dev. Immunol. 2013, 2013, 586076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, C.K.; Shaw, P.; Thapalial, A. Neonatal sepsis bacterial isolates and antibiotic susceptibility patterns at a NICU in a tertiary care hospital in western Nepal: A retrospective analysis. Kathmandu Univ. Med. J. (KUMJ) 2007, 5, 153–160. [Google Scholar]
- İpek, M.Ş.; Gunel, M.; Özbek, E. Tigecycline Use in Neonates: 5-Year Experience of a Tertiary Center. J. Pediatric Infect. Dis. 2018, 14, 103–107. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, L.; Gao, M.; Wu, J.; Wu, H.; Chen, J.; Chen, X.; Tang, W. Tigecycline treatment in an infant with extensively drug-resistant Acinetobacter baumannii bacteremia. Int. J. Infect. Dis. 2017, 61, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, A.; Thyagarajan, R.; Katragadda, R.; Leela, K.V.; Babu, R.N. Isolation of MRSA, ESBL and AmpC-β -lactamases from Neonatal Sepsis at a Tertiary Care Hospital. J. Clin. Diagn. Res. 2014, 8, DC24–DC27. [Google Scholar] [CrossRef] [PubMed]
- Dalal, P.; Gathwala, G.; Gupta, M.; Singh, J. Bacteriological profile and antimicrobial sensitivity pattern in neonatal sepsis: A study from North India. Int. J. Res. Med. Sci. 2017, 5, 1541. [Google Scholar] [CrossRef]
- Karthikeyan, G.; Premkumar, K. Neonatal sepsis: Staphylococcus aureus as the predominant pathogen. Indian J. Pediatr. 2001, 68, 715–717. [Google Scholar] [CrossRef] [PubMed]
Neonates with Sepsis | Identified Bacteria in the Blood | Identified Bacteria in the Urine |
---|---|---|
Case 1 | Acinetobacter baumannii | Klebsiella pneumoniae |
Case 2 | Acinetobacter baumannii | Klebsiella pneumoniae |
Case 3 | Acinetobacter baumannii | Streptococcus agalactiae |
Case 4 | Escherichia coli * | Escherichia coli * |
Case 5 | Klebsiella pneumoniae | Escherichia coli |
Case 6 | Klebsiella pneumonia * | Klebsiella pneumoniae * |
Case 7 | Pseudomonas aeruginosa | Klebsiella pneumoniae |
Case 8 | Staphylococcus aureus | Klebsiella pneumoniae |
Case 9 | Streptococcus pneumoniae | Klebsiella pneumoniae |
- | Number of Isolates | Amikacin | Ampicillin | Cefepime | Cefoxitin | Ciprofloxacin | Gentamicin | Imipenem | Nitrofurantoin | Meropenem | Piperacillin | Tigecycline | Trimethoprim/Sulfamethoxazole |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urine isolates | |||||||||||||
Escherichia coli | 21 | 4 (19) | 0 | 3 (14) | 0 | 7 (33) | 7 (33) | 4 (19) | 5 (24) | 3 (14) | 9 (43) | 6 (29) | 13 (62) |
Klebsiella pneumoniae | 17 | 7 (41) | 1 (6) | 0 | 0 | 2 (12) | 7 (41) | 0 | 2 (12) | 0 | 3 (18) | 2 (12) | 3 (18) |
Klebsiella pneumoniae ESBL * | 7 | 4 (57) | 5 (71) | 6 (86) | 1 (14) | 3 (43) | 5 (71) | 0 | 1 (14) | 0 | 1 (14) | 0 | 1 (14) |
Pseudomonas aeruginosa | 3 | 2 (67) | 2 (67) | 0 | 1 (33) | 1 (33) | 2 (67) | 0 | 2 (67) | 0 | 0 | 2 (67) | 3 (100) |
Blood isolates | |||||||||||||
Klebsiella pneumoniae ESBL * | 2 | 1 (50) | 1 (50) | 2 (100) | 1 (50) | 0 | 1 (50) | 0 | 0 | 0 | 0 | 0 | 0 |
Pseudomonas aeruginosa ESBL * | 1 | 0 | 1 (100) | 1 (100) | 1 (100) | 1 (100) | 1 (100) | 1 (100) | 0 | 1 (100) | 0 | 0 | 1 (100) |
Acinetobacter baumannii | 3 | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 3 (100) | 0 | 3 (100) |
- | Number of Isolates | Cephalothin | Clindamycin | Levofloxacin | Linezolid | Moxifloxacin | Nitrofurantoin | Penicillin | Tigecycline | Trimethoprim/Sulfamethoxazole | Vancomycin |
---|---|---|---|---|---|---|---|---|---|---|---|
Urine isolates | |||||||||||
Enterococcus faecalis | 4 | 0 | 1 (25) | 0 | 0 | 0 | 1 (25) | 0 | 0 | 1 (25) | 1 (25) |
Streptococcus agalactiae | 2 | 0 | 1 (50) | 0 | 0 | 0 | 1 (50) | 1 (50) | 0 | 1 (50) | 0 |
Blood isolates | |||||||||||
Staphylococcus aureus | 1 | 1 (100) | 0 | 0 | 0 | 0 | 0 | 1 (100) | 0 | 1 (100) | 0 |
Streptococcus pneumoniae | 1 | 1 (100) | 0 | 1 (100) | 1 (100) | 1 (100) | 1 (100) | 1 (100) | 0 | 1 (100) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaid, A.S.; Aldarhami, A.; Gattan, H.; Barnawi, H.; Qanash, H.; Alsaif, G.; Alharbi, B.; Alrashidi, A.; Eldrehmy, E.H. Antibiogram of Urinary Tract Infections and Sepsis among Infants in Neonatal Intensive Care Unit. Children 2022, 9, 629. https://doi.org/10.3390/children9050629
Bazaid AS, Aldarhami A, Gattan H, Barnawi H, Qanash H, Alsaif G, Alharbi B, Alrashidi A, Eldrehmy EH. Antibiogram of Urinary Tract Infections and Sepsis among Infants in Neonatal Intensive Care Unit. Children. 2022; 9(5):629. https://doi.org/10.3390/children9050629
Chicago/Turabian StyleBazaid, Abdulrahman S., Abdu Aldarhami, Hattan Gattan, Heba Barnawi, Husam Qanash, Ghaida Alsaif, Bandar Alharbi, Abdulaziz Alrashidi, and Essam Hassan Eldrehmy. 2022. "Antibiogram of Urinary Tract Infections and Sepsis among Infants in Neonatal Intensive Care Unit" Children 9, no. 5: 629. https://doi.org/10.3390/children9050629
APA StyleBazaid, A. S., Aldarhami, A., Gattan, H., Barnawi, H., Qanash, H., Alsaif, G., Alharbi, B., Alrashidi, A., & Eldrehmy, E. H. (2022). Antibiogram of Urinary Tract Infections and Sepsis among Infants in Neonatal Intensive Care Unit. Children, 9(5), 629. https://doi.org/10.3390/children9050629