Neonatal and Long-Term Prognosis of Monochorionic Diamniotic Pregnancies Complicated by Selective Growth Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. sIUGR Group
2.3. IUGR Group
2.4. Data at Two Years
2.5. Perinatal and Neonatal Data
2.6. Statistical Analysis
3. Results
3.1. The Population’s Evolution at Two Years: Neurodevelopment and Growth
3.2. Perinatal Characteristics of the Population (Secondary Endpoint)
3.3. Eutrophic Twin Data
4. Discussion
4.1. Study Strengths and Limitations
4.2. Literature
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennasar, M.; Eixarch, E.; Martinez, J.M.; Et Gratacós, E. Selective Intrauterine Growth Restriction in Monochorionic Diamniotic Twin Pregnancies. Semin. Fetal Neonatal Med. 2017, 22, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Beune, I.; Hecher, K.; Wynia, K.; Ganzevoort, W.; Reed, K.; Lewi, L.; Oepkes, D.; Gratacos, E.; Thilaganathan, B.; et al. Consensus Definition and Essential Reporting Parameters of Selective Fetal Growth Restriction in Twin Pregnancy: A Delphi Procedure. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2019, 53, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Et Ganzevoort, W. Consensus Definition of Fetal Growth Restriction: A Delphi Procedure. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Mari, G.; Hanif, F. Intrauterine Growth Restriction: How to Manage and When to Deliver. Clin. Obstet. Gynecol. 2007, 50, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Kovo, M.; Schreiber, L.; Ben-Haroush, A.; Wand, S.; Golan, A.; Bar, J. Placental Vascular Lesion Differences in Pregnancy-Induced Hypertension and Normotensive Fetal Growth Restriction. Am. J. Obstet. Gynecol. 2010, 202, 561.e1. [Google Scholar] [CrossRef] [PubMed]
- Chaddha, V.; Viero, S.; Huppertz, B.; Kingdom, J. Developmental Biology of the Placenta and the Origins of Placental Insufficiency. Semin. Fetal Neonatal Med. 2004, 9, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating Angiogenic Factors and the Risk of Preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Maynard, S.E.; Venkatesha, S.; Thadhani, R.; Karumanchi, S.A. Soluble Fms-like Tyrosine Kinase 1 and Endothelial Dysfunction in the Pathogenesis of Preeclampsia. Pediatr. Res. 2005, 57 Pt 2, 1R–7R. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinzler, W.L.; Vintzileos, A.M. Fetal Growth Restriction: A Modern Approach. Curr. Opin. Obstet. Gynecol. 2008, 20, 125–131. [Google Scholar] [CrossRef]
- Roberts, J.M.; Hubel, C.A. The Two Stage Model of Preeclampsia: Variations on the Theme. Placenta 2009, 30, S32–S37. [Google Scholar] [CrossRef] [Green Version]
- Denbow, M.L.; Cox, P.; Taylor, M.; Hammal, D.M.; Fisk, N.M. Placental Angioarchitecture in Monochorionic Twin Pregnancies: Relationship to Fetal Growth, Fetofetal Transfusion Syndrome, and Pregnancy Outcome. Am. J. Obstet. Gynecol. 2000, 182, 417–426. [Google Scholar] [CrossRef]
- Fick, A.L.; Feldstein, V.A.; Norton, M.E.; Wassel Fyr, C.; Caughey, A.B.; Et Machin, G.A. Unequal Placental Sharing and Birth Weight Discordance in Monochorionic Diamniotic Twins. Am. J. Obstet. Gynecol. 2006, 195, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Lewi, L.; Deprest, J.; Hecher, K. The Vascular Anastomoses in Monochorionic Twin Pregnancies and Their Clinical Consequences. Am. J. Obstet. Gynecol. 2013, 208, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Rustico, M.A.; Consonni, D.; Lanna, M.; Faiola, S.; Schena, V.; Scelsa, B.; Introvini, P.; Righini, A.; Parazzini, C.; Lista, G.; et al. Selective Intrauterine Growth Restriction in Monochorionic Twins: Changing Patterns in Umbilical Artery Doppler Flow and Outcomes. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2017, 49, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Lopriore, E.; Pasman, S.A.; Klumper, F.J.; Middeldorp, J.M.; Walther, F.J.; Oepkes, D. Placental Characteristics in Growth-Discordant Monochorionic Twins: A Matched Case-Control Study. Placenta 2012, 33, 171–174. [Google Scholar] [CrossRef]
- Royal College of Obstetricians and Gynaecologists. Management of Monochorionic Twin Pregnancy: Green-Top Guideline No. 51. BJOG Int. J. Obstet. Gynaecol. 2017, 124, e1–e45. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists Committee on Practice Bulletins—Obstetrics, Society for Maternal-Fetal Medicine Publications Committee. Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet. Gynecol. 2021, 137, e16–e28. [Google Scholar] [CrossRef]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Et Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef]
- Gratacós, E.; Lewi, L.; Muñoz, B.; Acosta-Rojas, R.; Hernandez-Andrade, E.; Martinez, J.M.; Carreras, E.; Deprest, J. A Classification System for Selective Intrauterine Growth Restriction in Monochorionic Pregnancies According to Umbilical Artery Doppler Flow in the Smaller Twin. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2007, 30, 28–34. [Google Scholar] [CrossRef]
- Townsend, R.; Khalil, A. Twin Pregnancy Complicated by Selective Growth Restriction. Curr. Opin. Obstet. Gynecol. 2016, 28, 485–491. [Google Scholar] [CrossRef]
- Buca, D.; Pagani, G.; Rizzo, G.; Familiari, A.; Flacco, M.E.; Manzoli, L.; Liberati, M.; Fanfani, F.; Scambia, G.; D’Antonio, F. Outcome of Monochorionic Twin Pregnancy with Selective Intrauterine Growth Restriction According to Umbilical Artery Doppler Flow Pattern of Smaller Twin: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2017, 50, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedel, C.; Oldenburg, A.; Worda, K.; Larsen, H.; Holmskov, A.; Andreasen, K.R.; Uldbjerg, N.; Ramb, J.; Bødker, B.; Skibsted, L.; et al. Short- and Long-Term Perinatal Outcome in Twin Pregnancies Affected by Weight Discordance. Acta Obstet. Gynecol. Scand. 2017, 96, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Halling, C.; Malone, F.D.; Breathnach, F.M.; Stewart, M.C.; McAuliffe, F.M.; Morrison, J.J.; Dicker, P.; Manning, F.; Corcoran, J.D.; Perinatal Ireland Research Consortium. Neuro-Developmental Outcome of a Large Cohort of Growth Discordant Twins. Eur. J. Pediatr. 2016, 175, 381–889. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.-M.; Marlow, N. Neurocognitive Outcome Following Fetal Growth Restriction. Arch. Dis. Childhood. Fetal Neonatal Ed. 2008, 93, F322–F325. [Google Scholar] [CrossRef] [PubMed]
- Mamelle, N.; Munoz, F.; Martin, J.L.; Laumon, B.; Grandjean, H. Fetal growth from the AUDIPOG study. II. Application for the diagnosis of intrauterine growth retardation. J. Gynecol. Obstet. Biol. Reprod. 1996, 25, 71–77. [Google Scholar]
- Ego, A. Definitions: Small for gestational age and intrauterine growth retardation. J. Gynecol. Obstet. Biol. Reprod. 2013, 42, 872–894. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.C.; Stampalija, T.; Baschat, A.; da Silva Costa, F.; Ferrazzi, E.; Figueras, F.; Hecher, K.; Poon, L.C.; Salomon, L.J.; Unterscheider, J. ISUOG Practice Guidelines: Diagnosis and Management of Small-for-Gestational-Age Fetus and Fetal Growth Restriction. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2020, 56, 298–312. [Google Scholar] [CrossRef]
- Figueras, F.; Et Gratacós, E. Update on the Diagnosis and Classification of Fetal Growth Restriction and Proposal of a Stage-Based Management Protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Squire, J.; Twombly, E.; Bricker, D.; Potter, L. ASQ-3: User’s Guide. Baltimore Brookes Publishing: Ages & Stages Questionnaires®, Third Edition (ASQ-3); Paul H. Brookes Publishing Co., Inc: Baltimore, MD, USA, 2009. [Google Scholar]
- Mamelle, N.; Cochet, V.; Claris, O. Definition of Fetal Growth Restriction According to Constitutional Growth Potential. Biol. Neonate 2001, 80, 277–285. [Google Scholar] [CrossRef]
- Vayssière, C.; Sentilhes, L.; Ego, A.; Bernard, C.; Cambourieu, D.; Flamant, C.; Gascoin, G.; Gaudineau, A.; Grangé, G.; Houfflin-Debarge, V.; et al. Fetal Growth Restriction and Intra-Uterine Growth Restriction: Guidelines for Clinical Practice from the French College of Gynaecologists and Obstetricians. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 193, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Gremillet, L.; Netter, A.; Tosello, B.; D’Ercole, C.; Bretelle, F.; Chau, C. Selective Intrauterine Growth Restriction of Monochorionic Diamniotic Twin Pregnancies: What Is the Neonatal Prognosis? J. Gynecol. Obstet. Hum. Reprod. 2022, 51, 102304. [Google Scholar] [CrossRef]
- Pierrat, V.; Marchand-Martin, L.; Arnaud, C.; Kaminski, M.; Resche-Rigon, M.; Lebeaux, C.; Bodeau-Livinec, F.; Morgan, A.S.; Goffinet, F.; Marret, S.; et al. Neurodevelopmental Outcome at 2 Years for Preterm Children Born at 22 to 34 Weeks’ Gestation in France in 2011: EPIPAGE-2 Cohort Study. BMJ 2017, 16, j3448. [Google Scholar] [CrossRef] [Green Version]
- Council on Children with Disabilities; Section on Developmental Behavioral Pediatrics; Bright Futures Steering Committee; Et Medical Home Initiatives for Children with Special Needs Project Advisory Committee. Identifying Infants and Young Children with Developmental Disorders in the Medical Home: An Algorithm for Developmental Surveillance and Screening. Pediatrics 2006, 118, 405–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamant, C.; Branger, B.; Nguyen The Tich, S.; de la Rochebrochard, E.; Savagner, C.; Berlie, I.; Rozé, J.C. Parent-Completed Developmental Screening in Premature Children: A Valid Tool for Follow-up Programs. PLoS ONE 2011, 6, e20004. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.K.; Xie, H.; Sathyapalan Rema, A.S.; Rajadurai, V.S.; Lim, S.B.; Meaney, M.; Daniel, L.M. Evaluation of the Ages and Stages Questionnaire (ASQ 3) as a Developmental Screener at 9, 18, and 24 Months. Early Hum. Dev. 2020, 147, 105081. [Google Scholar] [CrossRef]
- Tosello, B.; Garbi, A.; Blanc, J.; Lorthe, E.; Foix-L’Hélias, L.; D’Ercole, C.; Winer, N.; Subtil, D.; Goffinet, F.; Kayem, G.; et al. The Impact of Chorionicity on Pregnancy Outcome and Neurodevelopment at 2 Years Old among Twins Born Preterm: The EPIPAGE-2 Cohort Study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 281–291. [Google Scholar] [CrossRef]
- Groene, S.G.; Tollenaar, L.S.A.; Oepkes, D.; Lopriore, E.; van Klink, J.M.M. The Impact of Selective Fetal Growth Restriction or Birth Weight Discordance on Long-Term Neurodevelopment in Monochorionic Twins: A Systematic Literature Review. J. Clin. Med. 2019, 8, 944. [Google Scholar] [CrossRef] [Green Version]
- Adegbite, A.L.; Castille, S.; Ward, S.; Bajoria, R. Neuromorbidity in Preterm Twins in Relation to Chorionicity and Discordant Birth Weight. Am. J. Obstet. Gynecol. 2004, 190, 156–163. [Google Scholar] [CrossRef]
- Bolk, J.; Farooqi, A.; Hafström, M.; Åden, U.; Serenius, F. Developmental Coordination Disorder and Its Association with Developmental Comorbidities at 6.5 Years in Apparently Healthy Children Born Extremely Preterm. JAMA Pediatr. 2018, 172, 765–774. [Google Scholar] [CrossRef]
- Grissmer, D.; Grimm, K.J.; Aiyer, S.M.; Murrah, W.M.; Steele, J.S. Fine Motor Skills and Early Comprehension of the World: Two New School Readiness Indicators. Dev. Psychol. 2010, 46, 1008–1017. [Google Scholar] [CrossRef]
- Diamond, A. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Boghossian, N.S.; Saha, S.; Bell, E.F.; Brumbaugh, J.E.; Shankaran, S.; Carlo, W.A.; Das, A.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Birth Weight Discordance in Very Low Birth Weight Twins: Mortality, Morbidity, and Neurodevelopment. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2019, 39, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, C.J.; Isaacs, E.B.; Cole, T.J.; Rogers, M.H.; Lanigan, J.; Singhal, A.; Birbara, T.; Gringras, P.; Denton, J.; Lucas, A. The Effect of Intrauterine Growth on Verbal IQ Scores in Childhood: A Study of Monozygotic Twins. Pediatrics 2010, 126, e1095–e1101. [Google Scholar] [CrossRef] [PubMed]
- Sierakowski, A.; Eapen, V.; Črnčec, R.; Smoleniec, J. Developmental and behavioral outcomes of uncomplicated monochorionic diamniotic twins born in the third trimester. Neuropsychiatr. Dis. Treat. 2017, 13, 1373–1384. [Google Scholar] [CrossRef] [Green Version]
- Swamy, R.S.; McConachie, H.; Ng, J.; Rankin, J.; Korada, M.; Sturgiss, S.; Embleton, N.D. Cognitive Outcome in Childhood of Birth Weight Discordant Monochorionic Twins: The Long-Term Effects of Fetal Growth Restriction. Arch. Dis. Childhood Fetal Neonatal Ed. 2018, 103, F512–F516. [Google Scholar] [CrossRef] [PubMed]
- Monset-Couchard, M.; de Bethmann, O.; Relier, J.P. Long Term Outcome of Small versus Appropriate Size for Gestational Age Co-Twins/Triplets. Arch. Dis. Childhood Fetal Neonatal Ed. 2004, 89, F310–F314. [Google Scholar] [CrossRef]
- Sizonenko, S.; Borradori-Tolsa, C.; Et Hüppi, P.S. Intrauterine growth restriction: Impact on brain development and function. Rev. Med. Suisse 2008, 4, 509–510, 512–514. [Google Scholar]
- Leitner, Y.; Fattal-Valevski, A.; Geva, R.; Eshel, R.; Toledano-Alhadef, H.; Rotstein, M.; Bassan, H. Neurodevelopmental Outcome of Children with Intrauterine Growth Retardation: A Longitudinal, 10-Year Prospective Study. J. Child Neurol. 2007, 22, 580–587. [Google Scholar] [CrossRef]
- Murray, E.; Fernandes, M.; Fazel, M.; Kennedy, S.H.; Villar, J.; Stein, A. Differential Effect of Intrauterine Growth Restriction on Childhood Neurodevelopment: A Systematic Review. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 1062–1072. [Google Scholar] [CrossRef]
- Charkaluk, M.L.; Rousseau, J.; Benhammou, V.; Datin-Dorrière, V.; Flamant, C.; Gire, C.; Kern, S.; Pierrat, V.; Kaminski, M.; Marret, S. Association of Language Skills with Other Developmental Domains in Extremely, Very, and Moderately Preterm Children: EPIPAGE 2 Cohort Study. J. Pediatr. 2019, 208, 114–120.e5. [Google Scholar] [CrossRef] [PubMed]
- LAMOPRESCO; Charollais, A.; Marret, S.; Stumpf, M.H.; Lemarchand, M.; Delaporte, B.; Philip, E.; Guillois, B.; Datin-Dorriere, V.; Debillon, T.; et al. Understand the neurodevelopment of language: A necessity to prevent learning disabilities in children. Arch. Pediatr. Organe Off. Soc. Fr. Pediatr. 2013, 20, 994–999. [Google Scholar]
- Gire, C. Neurodevelopmental Disabilities in Neonates. 2021. Available online: https://www.mdpi.com/journal/children/special_issues/Neurodevelopmental_Disabilities_Neonates (accessed on 20 January 2022).
- Valsky, D.V.; Eixarch, E.; Martinez, J.M.; Crispi, F.; Gratacós, E. Selective Intrauterine Growth Restriction in Monochorionic Twins: Pathophysiology, Diagnostic Approach and Management Dilemmas. Semin. Fetal Neonatal Med. 2010, 15, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Spittle, A.; Orton, J.; Anderson, P.J.; Boyd, R.; Doyle, L.W. Early Developmental Intervention Programmes Provided Post Hospital Discharge to Prevent Motor and Cognitive Impairment in Preterm Infants. Cochrane Database Syst. Rev. 2015, 11, CD005495. [Google Scholar] [CrossRef] [PubMed]
sIUGR | IUGR | p-Value | |
---|---|---|---|
Number of patients, n | 67 | 184 | |
Mother’s age, years, mean ± SD | 29.7 ± 5.4 | 30.0 ± 6.2 | 0.67 |
Gravidity, n, median (min–max) | 2 (1–10) | 2 (1–11) | 0.90 |
Parity, n, median (min–max) | 0 (0–5) | 0 (0–10) | 0.81 |
BMI, kg/m2, mean ± SD | 24.5 ± 5.4 | 26 ± 6.1 | 0.08 |
Gestational age at diagnostic, Weeks of amenorrhea, median (min–max) | 25 (12–37) | 26 (18–36) | 0.08 |
Growth discrepancy at diagnosis, %, mean ± SD | 22.4 ± 7 | - | |
Growth percentile at diagnosis, %, mean ± SD | - | 4.3 ± 5.1 | |
Gender, n (%) | 0.28 | ||
Male | 39 (58.2%) | 93 (50.5%) | |
Female | 28 (41.8%) | 91 (49.5%) | |
Antenatal corticosteroid, n (%) | 0.38 | ||
Not carried out | 23 (34.3%) | 69 (37.5%) | |
Incomplete | 1 (1.5%) | 9 (4.9%) | |
Complete | 43 (64.2%) | 106 (57.6%) | |
Delivery, n (%) | 0.41 | ||
Vaginal | 21 (31.3%) | 48 (26.1%) | |
Cesarean | 46 (68.7%) | 136 (73.9%) | |
Birth indications, n (%) | <0.001 | ||
Spontaneous birth or scheduled cesarean | 28 (41.8%) | 30 (16.3%) | |
Cardiac fetal anomaly | 18 (26.9%) | 65 (35.3%) | |
Doppler anomalies | 9 (13.4%) | 5 (2.7%) | |
Growth arrest | 9 (13.4%) | 65 (35.3%) | |
Pre-eclampsia | 2 (3.0%) | 19 (10.3%) | |
Other | 1 (1.5%) | 0 (0.0%) | |
Gestational age at birth, Weeks of amenorrhea, median (min–max) | 34 (25–38) | 33 (26–42) | 0.98 |
Last umbilical diastole before birth, n (%) | 0.001 | ||
Positive | 35 (52.2%) | 135 (73.4%) | |
Null intermittent | 12 (17.9%) | 29 (15.8%) | |
Null permanent | 20 (29.9%) | 20 (10.9%) | |
Birth weight, grams, mean ± SD | 1545 ± 567 | 1475 ± 670 | 0.45 |
Growth discrepancy at birth, %, mean ± SD | 22.6 ± 12.0 | - | - |
Growth percentile at birth, %, mean ± SD | 2.2 ± 2.4 | 1.7 ± 2.2 | 0.16 |
Number of newborns | 35 | 130 | |
Percentile of height at birth, %, mean ± SD | 10.9 ± 10 | 7.4 ± 15.3 | 0.24 |
Percentile of HC at birth, %, mean ± SD | 14.7 ± 19.1 | 8.8 ± 13.5 | 0.33 |
Global | 26–31 Weeks GA | 32–34 Weeks GA | ≥35 Weeks GA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
sIUGR, n = 37 | IUGR, n = 75 | * p-Value | sIUGR, n = 11 | IUGR, n = 29 | * p-Value | sIUGR, n = 14 | IUGR, n = 15 | * p-Value | sIUGR, n = 12 | IUGR, n = 31 | * p-Value | |
ASQ | ||||||||||||
Median, [IQR] | 250 [230–260] | 250 [235–265] | 0.84 | 235 [225–247.5] | 245 [230–255] | 0.31 | 240 [230–260] | 250 [220–260] | 0.52 | 257,5 [250–265] | 250 [235–270] | 0.39 |
ASQ ≤ 220, n (%) | 9 (24.3) | 13 (17.3) | 0.92 | 2 (18.2) | 7 (24.1) | 0.56 | 3 (21.4) | 4 (26.7) | 0.75 | 1 (8) | 2 (6.5) | 0.69 |
ASQ < threshold, n (%) | 12 (32.4) | 18 (24) | 0.82 | 7 (63.6) | 9 (31) | 0.43 | 4 (28.6) | 4 (26.7) | 0.37 | 1 (8) | 5 (16.1) | 0.49 |
Number of altered domains, n (%) | ||||||||||||
0 | 28 (75.7) | 58 (77.3) | 0.45 | 4 (36.4) | 20 (69) | 0.33 | 12 (85.7) | 12 (80) | 0.55 | 12 (100) | 26 (83.9) | 0.33 |
1 | 8 (21.6) | 12 (16) | 6 (54.5) | 5 (17.2) | 2 (14.3) | 3 (20) | 0 | 4 (12.9) | ||||
2 | 1 (2.7) | 4 (5.3) | 1 (9.1) | 3 (10.3) | 0 | 0 | 0 | 1 (3.2) | ||||
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
4 or 5 | 0 | 1 (1.3) | 0 | 1 (3.4) | 0 | 0 | 0 | 0 | ||||
At least one altered domain, n (%) | 9 (24.3) | 17 (22.7) | 0.76 | 7 (63.6) | 9 (31) | 0.098 | 2 (14.3) | 3 (20) | 0.79 | 0 | 5 (16.1) | 0.57 |
By domain, n (%) | ||||||||||||
Communication | 5 (13.5) | 7 (9.3) | 0.39 | 3 (27.3) | 4 (13.8) | 0.31 | 2 (14.3) | 1 (6.7) | 0.28 | 0 | 2 (6.5) | 0.68 |
Gross motor skills | 1 (2.7) | 4 (5.3) | 0.67 | 1 (9.1) | 3 (10.3) | 0.98 | 0 | 0 | 0.45 | 0 | 1 (3.2) | 0.44 |
Fine motor skills | 3 (8.1) | 8 (10.7) | 0.02 | 3 (27.3) | 5 (17.2) | 0.16 | 0 | 1 (6.7) | 0.069 | 0 | 2 (6.5) | 0.38 |
Problem solving | 0 | 2 (2.7) | 0.65 | 0 | 1 (3.4) | 0.64 | 0 | 1 (6.7) | 0.50 | 0 | 0 | 0 |
Social and individual aptitudes | 1 (2.7) | 3 (4) | 0.89 | 1 (9.1) | 2 (6.9) | 0.68 | 0 | 0 | 0.41 | 0 | 1 (3.2) | 0.84 |
ASQ | Eutrophic (N = 36) | sIUGR (N = 37) | p-Value |
---|---|---|---|
Median | 255 | 250 | 0.37 |
IQR small | 243.75 | 230 | |
IQR large | 271.25 | 260 | |
ASQ ≤ 220 | 3 (8.3) | 9 (24.3) | 0.48 |
ASQ < threshold, n (%) | 5 (13.9) | 12 (32.4) | 0.26 |
Number of altered domains, n (%) | |||
0 | 33 (91.7) | 28(75.7) | 0.11 |
1 | 2 (5.6) | 8 (21.6) | |
2 | 0 | 1 (2.7) | |
3 | 1 (2.8) | 0 | |
4 or 5 | 0 | 0 | |
At least one altered domain, n (%) | 3 (8.3) | 9 (24.3) | 0.07 |
By domain, n (%) | |||
Communication | 0 | 5 (13.5) | 0.05 |
Gross motor skills | 1 (2.8) | 1 (2.7) | 0.13 |
Fine motor skills | 2 (5.6) | 3 (8.1) | 0.18 |
Problem solving | 1 (2,8) | 0 | 0.23 |
Social and individual aptitudes | 1 (2.8) | 1 (2.7) | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercier, J.; Gremillet, L.; Netter, A.; Chau, C.; Gire, C.; Tosello, B. Neonatal and Long-Term Prognosis of Monochorionic Diamniotic Pregnancies Complicated by Selective Growth Restriction. Children 2022, 9, 708. https://doi.org/10.3390/children9050708
Mercier J, Gremillet L, Netter A, Chau C, Gire C, Tosello B. Neonatal and Long-Term Prognosis of Monochorionic Diamniotic Pregnancies Complicated by Selective Growth Restriction. Children. 2022; 9(5):708. https://doi.org/10.3390/children9050708
Chicago/Turabian StyleMercier, Jessica, Letizia Gremillet, Antoine Netter, Cécile Chau, Catherine Gire, and Barthélémy Tosello. 2022. "Neonatal and Long-Term Prognosis of Monochorionic Diamniotic Pregnancies Complicated by Selective Growth Restriction" Children 9, no. 5: 708. https://doi.org/10.3390/children9050708
APA StyleMercier, J., Gremillet, L., Netter, A., Chau, C., Gire, C., & Tosello, B. (2022). Neonatal and Long-Term Prognosis of Monochorionic Diamniotic Pregnancies Complicated by Selective Growth Restriction. Children, 9(5), 708. https://doi.org/10.3390/children9050708