Copeptin Release in Arterial Hypotension and Its Association with Severity of Disease in Critically Ill Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Sample Size
2.2. Study Design
2.3. Variables
2.4. Statistical Endpoint Assessment
3. Results
3.1. Patients
3.2. Primary Endpoint: Change of Copeptin over 61 h and Association with Arterial Hypotension
3.3. Secondary Endpoints
3.3.1. Change of Blood Copeptin Levels between Consecutive Time Points up to 7 Days
3.3.2. Association of Blood Copeptin Levels with Clinical Covariates in Linear Mixed-Effect Model
4. Discussion
4.1. Low Copeptin as Surrogate for AVP Deficiency
4.2. Course of Copeptin in Normotensive and Hypotensive Patients
4.3. Copeptin as Surrogate Marker for Severity of Disease
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, R.G.; Hartigan, S.M.; Kashiouris, M.G.; Sessler, C.N.; Bearman, G.M. Early goal-directed resuscitation of patients with septic shock: Current evidence and future directions. Crit. Care 2015, 19, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernovsky, G.; Kuijpers, M.; van Rossem, M.C.; Marino, B.S.; Ravishankar, C.; Dominguez, T.; Godinez, R.I.; Dodds, K.M.; Ittenbach, R.F.; Nicolson, S.C.; et al. Postoperative course in the cardiac intensive care unit following the first stage of Norwood reconstruction. Cardiol. Young 2007, 17, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef] [PubMed]
- Maitland, K.; Kiguli, S.; Opoka, R.O.; Engoru, C.; Olupot-Olupot, P.; Akech, S.O.; Nyeko, R.; Mtove, G.; Reyburn, H.; Lang, T.; et al. Mortality after Fluid Bolus in African Children with Severe Infection. N. Engl. J. Med. 2011, 364, 2483–2495. [Google Scholar] [CrossRef] [Green Version]
- Maniaci, V.; Dauber, A.; Weiss, S.; Nylen, E.; Becker, K.L.; Bachur, R. Procalcitonin in Young Febrile Infants for the Detection of Serious Bacterial Infections. Pediatrics 2008, 122, 701–710. [Google Scholar] [CrossRef]
- Podrid, P.J.; Fuchs, T.; Candinas, R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation 1990, 82, I103–I113. [Google Scholar]
- Dünser, M.W.; Mayr, A.J.; Ulmer, H.; Knotzer, H.; Sumann, G.; Pajk, W.; Friesenecker, B.; Hasibeder, W.R. Arginine Vasopressin in Advanced Vasodilatory Shock: A Prospective, Randomized, Controlled Study. Circulation 2003, 107, 2313–2319. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.Y.; Barrington, K.J.; Pearson, R.J.; Bigam, D.L.; Finer, N.N.; van Aerde, J.E. Systemic, pulmonary and mesenteric perfusion and oxygenation effects of dopamine and epinephrine. Am. J. Respir. Crit. Care Med. 1997, 155, 32–37. [Google Scholar] [CrossRef]
- Killinger, J.S.; Hsu, D.T.; Schleien, C.L.; Mosca, R.S.; Hardart, G.E. Children undergoing heart transplant are at increased risk for postoperative vasodilatory shock*. Pediatr. Crit. Care Med. 2009, 10, 335–340. [Google Scholar] [CrossRef]
- Alten, J.A.; Borasino, S.; Toms, R.; Law, M.A.; Moellinger, A.; Dabal, R.J. Early initiation of arginine vasopressin infusion in neonates after complex cardiac surgery*. Pediatr. Crit. Care Med. 2012, 13, 300–304. [Google Scholar] [CrossRef]
- Lechner, E.; Hofer, A.; Mair, R.; Moosbauer, W.; Sames-Dolzer, E.; Tulzer, G. Arginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. Eur. J. Pediatr. 2007, 166, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Mastropietro, C.W.; Davalos, M.C.; Seshadri, S.; Walters, H.L.I.; Delius, R.E. Clinical response to arginine vasopressin therapy after paediatric cardiac surgery. Cardiol. Young 2013, 23, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Thibonnier, M. Signal transduction of V1-vascular vasopressin receptors. Regul. Pept. 1992, 38, 1–11. [Google Scholar] [CrossRef]
- Zingg, H.H. Vasopressin and oxytocin receptors. Baillieres Clin. Endocrinol. Metab. 1996, 10, 75–96. [Google Scholar] [CrossRef]
- Matok, I.; Rubinshtein, M.; Levy, A.; Vardi, A.; Leibovitch, L.; Mishali, D.; Barzilay, Z.; Paret, G. Terlipressin for Children with Extremely Low Cardiac Output After Open Heart Surgery. Ann. Pharmacother. 2009, 43, 423–429. [Google Scholar] [CrossRef]
- Rios, D.R.; Kaiser, J.R. Vasopressin versus Dopamine for Treatment of Hypotension in Extremely Low Birth Weight Infants: A Randomized, Blinded Pilot Study. J. Pediatrics 2015, 166, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Morrison, W.E.; Simone, S.; Conway, D.; Tumulty, J.; Johnson, C.; Cardarelli, M. Levels of vasopressin in children undergoing cardiopulmonary bypass. Cardiol. Young 2008, 18, 135–140. [Google Scholar] [CrossRef]
- Mastropietro, C.; Mahan, M.; Valentine, K.; Clark, J.; Hines, P.; Walters, H., III; Delius, R.; Sarnaik, A.; Rossi, N. Copeptin as a marker of relative arginine vasopressin deficiency after pediatric cardiac surgery. Intensive Care Med. 2012, 38, 2047–2054. [Google Scholar] [CrossRef]
- Mastropietro, C.W.; Rossi, N.F.; Clark, J.A.; Chen, H.; Walters, H.I.; Delius, R.; Lieh-Lai, M.; Sarnaik, A.P. Relative deficiency of arginine vasopressin in children after cardiopulmonary bypass *. Crit. Care Med. 2010, 38, 2052–2058. [Google Scholar] [CrossRef]
- Baumann, G.; Dingman, J.F. Distribution, blood transport, and degradation of antidiuretic hormone in man. J. Clin. Investig. 1976, 57, 1109–1116. [Google Scholar] [CrossRef]
- Robertson, G.L.; Mahr, E.A.; Athar, S.; Sinha, T. Development and Clinical Application of a New Method for the Radioimmunoassay of Arginine Vasopressin in Human Plasma. J. Clin. Investig. 1973, 52, 2340–2352. [Google Scholar] [CrossRef] [PubMed]
- Preibisz, J.J.; Sealey, J.E.; Laragh, J.H.; Cody, R.J.; Weksler, B.B. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertension 1983, 5, I129–I138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the Measurement of Copeptin, a Stable Peptide Derived from the Precursor of Vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Chan, Y.; Lai, O.; Puthucheary, J. Vasopressin and copeptin levels in children with sepsis and septic shock. Intensive Care Med. 2013, 39, 747–753. [Google Scholar] [CrossRef]
- Mohamed, G.B.; Saed, M.A.; Abdelhakeem, A.A.; Salah, K.; Saed, A.M. Predictive value of copeptin as a severity marker of community-acquired pneumonia. Electron. Physician 2017, 9, 4880–4885. [Google Scholar] [CrossRef] [Green Version]
- Du, J.-M.; Sang, G.; Jiang, C.-M.; He, X.-J.; Han, Y. Relationship between plasma copeptin levels and complications of community-acquired pneumonia in preschool children. Peptides 2013, 45, 61–65. [Google Scholar] [CrossRef]
- Gaheen, R.; El Amrousy, D.; Hodeib, H.; Elnemr, S. Plasma copeptin levels in children with pulmonary arterial hypertension associated with congenital heart disease. Eur. J. Pediatr. 2021, 180, 2889–2895. [Google Scholar] [CrossRef]
- Kelen, D.; Andorka, C.; Szabó, M.; Alafuzoff, A.; Kaila, K.; Summanen, M. Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS ONE 2017, 12, e0184593. [Google Scholar] [CrossRef] [Green Version]
- Schlapbach, L.J.; Frey, S.; Bigler, S.; Manh-Nhi, C.; Aebi, C.; Nelle, M.; Nuoffer, J.M. Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia. BMC Pediatr. 2011, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- L’Abate, P.; Wiegert, S.; Struck, J.; Wellmann, S.; Cannizzaro, V. Determinants of plasma copeptin: A systematic investigation in a pediatric mechanical ventilation model. Respir. Physiol. Neurobiol. 2013, 185, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Wang, N.; Shen, Z.-P.; Zhao, Z.-Y. Plasma copeptin concentration and outcome after pediatric traumatic brain injury. Peptides 2013, 42, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Wernovsky, G.; Wypij, D.; Jonas, R.A.; Mayer, J.E.; Hanley, F.L.; Hickey, P.R.; Walsh, A.Z.; Chang, A.C.; Castañeda, A.R.; Newburger, J.W.; et al. Postoperative Course and Hemodynamic Profile After the Arterial Switch Operation in Neonates and Infants: A Comparison of Low-Flow Cardiopulmonary Bypass and Circulatory Arrest. Circulation 1995, 92, 2226–2235. [Google Scholar] [CrossRef] [PubMed]
- Belletti, A.; Lerose, C.C.; Zangrillo, A.; Landoni, G. Vasoactive-Inotropic Score: Evolution, Clinical Utility, and Pitfalls. J. Cardiothorac. Vasc. Anesth. 2021, 35, 3067–3077. [Google Scholar] [CrossRef] [PubMed]
- Kissoon, N.; Orr, R.A.; Carcillo, J.A. Updated American College of Critical Care Medicine--pediatric advanced life support guidelines for management of pediatric and neonatal septic shock: Relevance to the emergency care clinician. Pediatr. Emerg. Care 2010, 26, 867–869. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Benzing, J.; Wellmann, S.; Achini, F.; Letzner, J.; Burkhardt, T.; Beinder, E.; Morgenthaler, N.G.; Haagen, U.; Bucher, H.U.; Bührer, C.; et al. Plasma Copeptin in Preterm Infants: A Highly Sensitive Marker of Fetal and Neonatal Stress. J. Clin. Endocrinol. Metab. 2011, 96, E982–E985. [Google Scholar] [CrossRef] [Green Version]
- Jochberger, S.; Dörler, J.; Luckner, G.; Mayr, V.D.; Wenzel, V.; Ulmer, H.; Morgenthaler, N.G.; Hasibeder, W.R.; Dünser, M.W. The vasopressin and copeptin response to infection, severe sepsis, and septic shock *. Crit. Care Med. 2009, 37, 476–482. [Google Scholar] [CrossRef]
- Jochberger, S.; Velik-Salchner, C.; Mayr, V.; Luckner, G.; Wenzel, V.; Falkensammer, G.; Ulmer, H.; Morgenthaler, N.; Hasibeder, W.; Dünser, M. The vasopressin and copeptin response in patients with vasodilatory shock after cardiac surgery: A prospective, controlled study. Intensive Care Med. 2009, 35, 489–497. [Google Scholar] [CrossRef]
- Stöcklin, B.; Fouzas, S.; Schillinger, P.; Cayir, S.; Skendaj, R.; Ramser, M.; Weber, P.; Wellmann, S. Copeptin as a Serum Biomarker of Febrile Seizures. PLoS ONE 2015, 10, e0124663. [Google Scholar] [CrossRef] [Green Version]
- Tuli, G.; Tessaris, D.; Einaudi, S.; Matarazzo, P.; de Sanctis, L. Copeptin role in polyuria-polydipsia syndrome differential diagnosis and reference range in paediatric age. Clin. Endocrinol. 2018, 88, 873–879. [Google Scholar] [CrossRef]
- Urwyler, S.A.; Schuetz, P.; Sailer, C.; Christ-Crain, M. Copeptin as a stress marker prior and after a written examination—The CoEXAM study. Stress 2015, 18, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Fenske, W.K.; Schnyder, I.; Koch, G.; Walti, C.; Pfister, M.; Kopp, P.; Fassnacht, M.; Strauss, K.; Christ-Crain, M. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers. J. Clin. Endocrinol. Metab. 2018, 103, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuzzo, B.; Padala, S.A.; Lappin, S.L. Physiology, Vasopressin; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Boone, M.; Deen, P.M.T. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflügers Arch. Eur. J. Physiol. 2008, 456, 1005. [Google Scholar] [CrossRef] [Green Version]
- Soldozy, S.; Yağmurlu, K.; Norat, P.; Elsarrag, M.; Costello, J.; Farzad, F.; Sokolowski, J.D.; Sharifi, K.A.; Elarjani, T.; Burks, J.; et al. Biomarkers Predictive of Long-Term Outcome After Ischemic Stroke: A Meta-Analysis. World Neurosurg. 2021; in press. [Google Scholar] [CrossRef]
- Bian, L.; Lin, J.; Liu, Y.; Lu, J.; Zhao, X. Copeptin and insulin-like growth factor-1 predict long-term outcomes after aneurysmal subarachnoid hemorrhage: A large prospective cohort study. Clin. Neurol. Neurosurg. 2021, 209, 106863. [Google Scholar] [CrossRef] [PubMed]
- Balling, L.; Gustafsson, F. Chapter Two—Copeptin in Heart Failure. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 29–64. [Google Scholar]
- Curbelo, J.; Luquero Bueno, S.; Galván-Román, J.M.; Ortega-Gómez, M.; Rajas, O.; Fernández-Jiménez, G.; Vega-Piris, L.; Rodríguez-Salvanes, F.; Arnalich, B.; Díaz, A.; et al. Inflammation biomarkers in blood as mortality predictors in community-acquired pneumonia admitted patients: Importance of comparison with neutrophil count percentage or neutrophil-lymphocyte ratio. PLoS ONE 2017, 12, e0173947. [Google Scholar] [CrossRef] [PubMed]
- Indirli, R.; Bandera, A.; Valenti, L.; Ceriotti, F.; Di Modugno, A.; Tettamanti, M.; Gualtierotti, R.; Peyvandi, F.; Montano, N.; Blasi, F.; et al. Prognostic value of copeptin and mid-regional proadrenomedullin in COVID-19-hospitalized patients. Eur. J. Clin. Investig. 2022, 52, e13753. [Google Scholar] [CrossRef]
- Moreno, J.-P.; Grandclement, E.; Monnet, E.; Clerc, B.; Agin, A.; Cervoni, J.-P.; Richou, C.; Vanlemmens, C.; Dritsas, S.; Dumoulin, G.; et al. Plasma copeptin, a possible prognostic marker in cirrhosis. Liver Int. 2013, 33, 843–851. [Google Scholar] [CrossRef]
- Masajtis-Zagajewska, A.; Kurnatowska, I.; Wajdlich, M.; Nowicki, M. Utility of copeptin and standard inflammatory markers in the diagnostics of upper and lower urinary tract infections. BMC Urol. 2015, 15, 67. [Google Scholar] [CrossRef]
- Sun, H.; Sun, T.; Ma, B.; Yang, B.-W.; Zhang, Y.; Huang, D.-H.; Shi, J.-P. Prediction of all-cause mortality with copeptin in cardio-cerebrovascular patients: A meta-analysis of prospective studies. Peptides 2015, 69, 9–18. [Google Scholar] [CrossRef]
- Rey, C.; Garcia-Cendon, C.; Martinez-Camblor, P.; Lopez-Herce, J.; Concha-Torre, A.; Medina, A.; Vivanco-Allende, A.; Mayordomo-Colunga, J. High levels of atrial natriuretic peptide and copeptin and mortality risk. An. Pediatr. 2016, 85, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Burckhardt, M.-A.; Wellmann, M.; Fouzas, S.; Lapaire, O.; Burkhardt, T.; Benzing, J.; Bührer, C.; Szinnai, G.; Wellmann, S. Sexual Disparity of Copeptin in Healthy Newborn Infants. J. Clin. Endocrinol. Metab. 2014, 99, E1750–E1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, K.G.; Tajsic, M.; Latsuzbaia, A.; Bastian, S.; Andric, T.; Kassem, M.; Jäger, B.; Huber, K. Gender-based differences of copeptin alone or combined with troponin for early rule-out of non-ST-elevation myocardial infarction. Am. J. Emerg. Med. 2021, 45, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Irschik, S.; Veljkovic, J.; Golej, J.; Schlager, G.; Brandt, J.B.; Krall, C.; Hermon, M. Pediatric Simplified Acute Physiology Score II: Establishment of a New, Repeatable Pediatric Mortality Risk Assessment Score. Front. Pediatrics 2021, 9, 757822. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Giroir, B.; Randolph, A.; Members of the International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, B.; Giroir, B.; Randolph, A. Reply: Values for Systolic Blood Pressure. Pediatr. Crit. Care Med. 2005, 6, 500–501. [Google Scholar] [CrossRef]
Patient Characteristics | Value |
---|---|
Age (years) | 0.5 [0.1, 2.9] |
Newborn (0–1 month) | 35 (21.3) |
Preterm (<37 weeks gestational age) | 3 (1.8) |
Infant (1–12 month) | 75 (45.7) |
Preschool (1–5 years) | 30 (18.3) |
Child (5–12 years) | 17 (10.4) |
Adolescent (12–18 years) | 7 (4.3) |
Weight (kg) | 6.1 [4.0, 13.3] |
Female gender | 68 (41.5) |
Main diagnosis | |
Cardiac birth defects | 99 (60.4) |
Visceral birth defects/Visceral emergencies | 16 (9.8) |
Respiratory failure | 10 (6.1) |
Shock | 7 (4.3) |
Trauma | 1 (0.6) |
Other * | 31 (18.9) |
Length of ICU stay (days) | 4.0 [1.0, 10.5] |
Respiratory support (any) | 136 (82.9) |
Length of respiratory support, total (h) | 25.7 [3.3, 114.1] |
Invasive mechanical ventilation | 133 (81.1) |
Length of invasive mechanical ventilation (h) | 20.5 [2.8, 98.4] |
Vasoactive-inotrope medication (at any time) | 103 (61.7) |
Surgery | 139 (84.7) |
Cardiopulmonary bypass (CPB) | 80 (48.8) |
CPB duration (min) | 140.5 [97.8, 212.5] |
CPB duration (≤60 min) | 2 (2.5) |
CPB duration (60–120 min) | 26 (32.5) |
CPB duration (120–180 min) | 23 (28.8) |
CPB duration (≥180 min) | 29 (36.3) |
Aortic cross clamp time (min) (n = 76) | 83.0 [58.0, 111.2] |
Aortic cross clamp time (≤60 min) | 22 (29.0) |
Aortic cross clamp time (60–120 min) | 39 (51.3) |
Aortic cross clamp time (≥120 min) | 15 (19.7) |
Death within 28 days | 1 (0.6) |
Variable | p-Value | Adjusted p-Value |
---|---|---|
Vasoactive-inotropic Score (VIS) #, log-transformed (linear) | <0.001 | <0.001 |
Surgery (no surgery, cardiac surgery with CPB, other surgery) | <0.001 | <0.001 |
Study time point (categorical) | <0.001 | 0.002 |
Main diagnosis | <0.001 | - |
Age (0–1 m, 1–12 m, 1–5 y, 5–12 y, ≥12 y) | <0.001 | 0.001 |
Systolic blood pressure (linear) | 0.003 | - |
Steroid dose (linear) | 0.007 | - |
Total fluid (0/≥/<100 mL/kg/day) | 0.011 | - |
Duration of invasive mechanical ventilation (linear) | 0.014 | |
Length of stay (>/≤ 4 days) | 0.021 | - |
PIM II, log-transformed (linear) | 0.034 | - |
Normo-versus hypotension | 0.14 | - |
Gender | 0.63 | - |
Duration of CPB surgery (≤60 min/60–120/120–180/≥180 min) * | 0.18 | - |
Aortic cross clamp time (linear) * | 0.52 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumann, P.; Gotta, V.; Atkinson, A.; Deisenberg, M.; Hersberger, M.; Roggia, A.; Schmid, K.; Cannizzaro, V. Copeptin Release in Arterial Hypotension and Its Association with Severity of Disease in Critically Ill Children. Children 2022, 9, 794. https://doi.org/10.3390/children9060794
Baumann P, Gotta V, Atkinson A, Deisenberg M, Hersberger M, Roggia A, Schmid K, Cannizzaro V. Copeptin Release in Arterial Hypotension and Its Association with Severity of Disease in Critically Ill Children. Children. 2022; 9(6):794. https://doi.org/10.3390/children9060794
Chicago/Turabian StyleBaumann, Philipp, Verena Gotta, Andrew Atkinson, Markus Deisenberg, Martin Hersberger, Adam Roggia, Kevin Schmid, and Vincenzo Cannizzaro. 2022. "Copeptin Release in Arterial Hypotension and Its Association with Severity of Disease in Critically Ill Children" Children 9, no. 6: 794. https://doi.org/10.3390/children9060794
APA StyleBaumann, P., Gotta, V., Atkinson, A., Deisenberg, M., Hersberger, M., Roggia, A., Schmid, K., & Cannizzaro, V. (2022). Copeptin Release in Arterial Hypotension and Its Association with Severity of Disease in Critically Ill Children. Children, 9(6), 794. https://doi.org/10.3390/children9060794