Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | 1st Author Date of Publication Reference | Main Results | Group of Patients |
---|---|---|---|
1 | Haiping Li, 2022 [75] | Variations of EMX2 | 40 MRKH individuals and 140 individual controls |
2 | Chunfang Chu, 2022 [76] | Variants of nine genes: TBC1D1, KMT2D, HOXD3, DLG5, GLI3, HIRA, GATA3, LIFR, and CLIP1 (n = 9) | 10 MRKH individuals |
3 | Domenico Dell’Edera, 2021 [77] | Microduplications in 22q11.21 (n = 1) | Case Report: a MRKH individual |
4 | Mikhael S, 2021 [78] | Variants of: WNT4, LAMC1, RARA, HOXA10, PAX2, and WNT9B, TBX6, SHOX, MMP14, and LRP10 | 111 MRKH individuals |
5 | Chen N, 2021 [79] | Variants of 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1) | 592 MRKH individuals (442 Chinese and 150 of mixed ethnicity) 941 individual controls |
6 | Pontecorvi P, 2021 [80] | Altered gene expression pattern in PRKX, MUC1, HOXC8, GREB1L | 36 MRKH individuals |
7 | Jacquinet A, 2020 [81] | Variants of GREB1L (n = 4 families and 5 individuals) | 9 families with CUAs and/or kidney malformations 68 individuals with CUAs |
8 | Monika Anant, 2020 [82] | 18p deletion (n = 1) | Case Report: MRKH II individual with 18p deletion syndrome |
9 | Smol T, 2020 [83] | Microdeletion in 2q12.1q14.1 (involving PAX8) and microdeletion of SHOX locus (n = 1) | Case Report: a MRKH patient with congenital hypothyroidism |
10 | Herlin M K, 2019 [71] | Variants of GREB1L (n = 4) | A three-generation family with CUAs |
11 | Backhouse B, 2019 [35] | Variants (n = 6) and a deletion (affecting TBX6) (n = 1) of 16p11.2 | 8 MRKH and MURCS individuals |
12 | Pan H X, 2019 [84] | De novo changes in BAZ2B, KLHL18, PIK3CD, SLC4A10 and TNK2 | 9 MRKH Ι individuals and their parents |
13 | Tewes A C, 2019 [37] | Variants and substitution of TBX6 (n = 4) | 125 MRKH individuals: 26 MRKH I, 27 MRKH II and 72 individuals with Müllerian ducts fusion anomalies 135 individual controls |
14 | Chunfang Chu, 2019 [38] | Deletion of the 16p11.2 (affecting TBX6) (n = 1) | 5 individuals with distal vaginal atresia |
15 | Eggermann T, 2018 [85] | Failing to identify altered imprinting marks of differentially methylated regions PLAGL1, GRB10 and MEST, H19 and KCNQ1OT1, MEG3, SNRPN, DIRAS, NESPAS and GNAS | 53 MRKH I individuals and 52 patients with a MRKH II individuals |
16 | AlSubaihin A, 2018 [57] | Tetrasomy of the pericentromeric region of chromosome 22 (n = 1) | Case Report: a MRKH individual with CES |
17 | Takahashi K, 2018 [86] | De novo variants of MYCBP2, NAV3, and PTPN3 (n = 3 families) and a variant of MYCBP2 (n = 1) | 10 MRKH individuals, including three MRKH individuals from trio-based families and 7 unaffected individuals |
18 | Demir Εksi, 2018 [36] | Variants of BM8A, CMTM7, CCR4, TRIM71, CNOT10, TP63, EMX2, and CFTR (n = 4) | 19 MRKH individuals |
19 | Ledig S, 2018 [46] | Microdeletions and microduplications in 17q12, 22q11.21, 9q33.1, 3q26.11 and 7q31.1. (n = 8) | 103 individuals with CUAs |
20 | Brucker SY 2017 [87] | Variants of OXTR (n = 18) and ESR1 (n = 1) | 93 MRKH individuals (68 type I and 25 type ΙΙ) |
21 | Williams L S, 2017 [51] | Copy number variants of WNT4, HNF1B, or LHX1 (n = 6), but no point change (n = 100) | 147 MRKH individuals and their families 80 North American MRKH individuals, 58 with other family members and 22 singletons 67 Turkish MRKH individuals, (41 with family members and 26 singletons.) |
22 | Xing Q, 2016 [88] | Missense change of DACT1 (n = 1) | 100 individuals with Müllerian duct anomalies 200 individual controls |
23 | Waschk D E J, 2016 [47] | Variant of WNT9B (n = 5) | 226 individuals with Müllerian duct anomalies, including 109 MRKH individuals 135 individual controls |
24 | Wenqing Ma, 2015 [89] | Polymorphisms in WNT9B and PBX1 Epistatic effect of AMH, PBX1, WNT7A and WNT9B | 182 unrelated Chinese MRKH individuals (155 type I and 27 type II) and 228 individual controls |
25 | Rall K, 2015 [16] | Duplication of MMP14 and LRP10 (n = 1 affected twin) | 5 MRKHS-discordant monozygotic twin pairs |
26 | Tewes A C, 2015 [30] | Variants of RBM8A (n = 13) TBX6 (n = 5) | 167 individuals with CUAs: 116 MRKH and 51 with other anomalies of the Müllerian ducts 94 individual control |
27 | Liu S, 2015 [90] | Novel nonsense variants of EMX2 (n = 1) | 517 individuals with incomplete Müllerian fusion 563 individual controls |
28 | Murry, 2015 [91] | No pathogenic CNCs (n = 20) | 20 individuals with CUA |
29 | McGowan R, 2015 [27] | Microdeletion and microduplication 1q21.1, 7p14.3, 16p11.2, 17q12, and 22q11.21-q11.23 and possibly implicating several genes (LHX1, BBS9, HNF1β, and TBX6) (n = 9) | 35 individuals with Müllerian disorders |
30 | Chen M J, 2015 [92] | Deletions at 15q11.2 (80%), 19q13.31 (40%), 1p36.21 (40%) and 1q44 (40%) (n = 5),1q21.1 (n = 2) Damaging variants of HNRNPCL1, OR2T2, OR4M2, ZNF816 and PDE11A | 7 MRKH I individuals |
31 | Nodale C, 2014 [93] | Upregulation of MUC1 (n = 8) and significant upregulation of HOXC8 (n = 3) Downregulation of HOXB2 (n = 7) and HOXB5 (n = 7) and Notch ligands JAG1 (n = 6) and DLL1 (n = 5) | 8 out of 16 MRKHS individuals underwent reconstruction of neovagina with an autologous vaginal tissue and 5 individual controls |
32 | Wang M, 2014 [94] | Variants of WNT9B (n = 1) | 42 Chinese MRKH individuals and 42 individual controls |
33 | Deqiong Ma, 2014 [95] | Deletion at 2q13q14.2 (including PAX8) (n = 1) | Case Report: 1 individual with Müllerian agenesis and hypothyroidism |
34 | Sandbacka M, 2013 [34] | Variations including 16p11.2 and 17q12 deletions (8/50) or variations in TBX6 or LHX1 in MA patients (30/112) | 112 MRKH I individuals |
35 | Ekici AB, 2013 [96] | Variations HOXA10 and HOXA13 | 20 MRKH individuals, 7 non-MRKH individuals with genital tract anomalies and 53 individual control |
36 | Ledig S, 2012 [44] | No changes in HNF1B Variants of LHX1 (n = 1/62) | 62 MRKH individuals (23 MRKH I and 39 MRKH II) |
37 | Chang X, 2012 [97] | No perturbation that indicates significance of WNT4 | 189 Chinese individuals with CUAs (10 MRKH, 5 Müllerian aplasia and 174 incomplete Müllerian fusion) |
38 | Ravel C, 2012 [98] | No significant changes were observed between the MRKH individuals and control group for LAMC1 and DLGH1 gene polymorphisms. | 12 MRKH individuals |
39 | Mingdi Xia, 2012 [52] | No significant variants (n = 0/96) but a rare polymorphism of LHX1 (n = 1/77) | For variants of LHX: 96 individuals with CUAs and 105 individual controls |
40 | Wang P, 2012 [99] | Variant of PAX2 (n = 1) | 192 Chinese individuals with CUAs (15 with uterine aplasia and 177 with incomplete Müllerian fusion) and 192 ethnic-matched individual controls |
41 | Hinkes B, 2012 [45] | Microdeletion in 17q12 (involving HNF1β and LHX1) (n = 1) | Case Report: 1 MRKH individual with right kidney aplasia |
42 | Rall K, 2011 [23] | 293 genes with altered expression and 194 genes differentially methylated | 8 MRKH individuals and 8 individual controls |
43 | Morcel K, 2011 [55] | Deletion in 4q34-qter, 8p23.1, 10p14 and 22q11.2 (n = 4) | 57 MRKH individuals |
44 | Philibert P, 2011 [66] | Variants of WNT4 (n = 1) | 4 individuals with Müllerian duct abnormalities and hyperandrogenism |
45 | Nik-Zainal S, 2011 [33] | Microdeletion at 16p11.2 (n = 4), microdeletion at 17q12 (n = 4), 22q11.2 (n = 1) | 38 MRKH I individuals and 25 MRKH II individuals |
46 | Sandbacka M, 2011 [100] | No association between hypomethylation of the H19 imprinted control region but aberrant methylation (n = 3/16) | 83 individuals with CUAs |
47 | Jinlong Ma, 2011 [101] | Polymorphisms in PBX1 (n = 2) | 192 Chinese individuals with CUAs |
48 | Ledig S, 2011 [25] | Microdeletions and -duplications in 1q21.1, 17q12, and 22q11.21 involving LHX1 and HNF1B gene (n = 48) | 56 MRKH individuals |
49 | Gervasini C, 2010 [102] | Partial duplication of SHOX (n = 5) | 30 MRKH individuals 53 individual controls |
50 | Acién P, 2010 [103] | No microdeletions in 17q12 and 22q11.21 (n = 1) | Case Report: 1 MRKH individual with pulmonary hypoplasia |
51 | Liatsikos S A, 2010 [58] | No causative variants of HOX A10 and HOX A11 | 30 individuals with MDAs 100 individual controls |
52 | Richard A Oram, 2010 [104] | Variants or deletion of HNF1B (n = 9/50 individuals with both CUAs and renal abnormalities) | 50 individuals with both CUAs and renal abnormalities 58 individuals with isolated CUAs |
53 | Bernardini L, 2009 [43] | Deletion in 17q12 (involving TCF2 and LHX1 genes) (n = 2) | 22 MRKH individuals |
54 | Ravel C, 2009 [105] | Variants of WNT4, WNT5A, WNT7A, and WNT9B | 11 MRKH individuals |
55 | Hofstetter G, 2008 [106] | No major deletions or duplications in 22q11.1 12q24.1. and 3q27 (n = 1) | Case report: 1 MURCS individual |
56 | Mencarelli M A, 2008 [48] | Deletions in 7q31, 14q21.1, Xq25 and duplications in 12p11.22, 12q21.31, 13q31.1, 17q12, Xp22.31, Xq28 | 84 individuals with mental problems and congenital anomalies (including CUAs) |
57 | Philibert P, 2008 [65] | Variants of WNT4 gene | 28 individuals with CUAs 100 individual controls |
58 | Drummond JB, 2008 [107] | No variants of the GSK-3beta phosphorylation sites on exon 3 of beta-catenin gene (n = 12) | 12 MRKH patients |
59 | Lalwani S, 2008 [108] | No HOXA10 gene variants | 26 individuals with CUAs 30 individual controls |
60 | Sundaram U T, 2007 [54] | Deletion in 22q11.2 (n = 2) | 2 individuals with absent uterus and unilateral renal agenesis |
61 | Cheroki C, 2007 [26] | Submicroscopic genomic imbalances in 1q21.1, 17q12, 22q11.21, and Xq21.31 | 14 MRKH II individuals |
62 | Biason-Lauber A, 2007 [64] | Variants of WNT4 (n = 1) | Case report: 1 MRKH individual |
63 | Burel A, 2006 [109] | No variants of HOXA7-HOXA13 region (n = 6) | 6 MRKH individuals |
64 | Cheroki C, 2006 [56] | Deletion in 22q11 (excluding WNT-4, RARgamma, RXR-alpha) (n = 1) | 25 MRKH individuals |
65 | Oppelt P, 2005 [110] | AMH promoter sequence variations cannot the cause of aberrant AMH expression leading to Müllerian duct formation disorders | 30 MRKH individuals 48 individual controls |
66 | Clément-Ziza Mi, 2005 [111] | No significant variations of WNT4 (n = 19) | 19 MRKH individuals |
67 | Zenteno J C, 2004 [112] | Nο significant difference in Polymorphisms AMH and AMHR genes between MRKH individuals and controls | 15 individuals with Mullerian agenesis 25 individual controls |
68 | Biason-Lauber A, 2004 [63] | Variants of the WNT4 (n = 1) | Case Report: 1 MRKH individual |
69 | Plevraki E, 2004 [113] | Positive TSPY gene (n = 2) | 6 MRKH individuals |
70 | Klipstein S, 2003 [114] | GALT enzyme do not affect PMD formation | 32 individuals with CUAs 138 individual controls |
71 | Aydos S, 2003 [115] | Deletion of Xq (n = 1) | Case Report: 1 MRKH individual with gonadal dysgenesis |
72 | Timmreck LS, 2003 [116] | Variants of CFTR (n = 2) | 25 individuals with CUAs |
73 | Bingham C, 2002 [49] | Changes in HNF-1beta gene (n = 2 families) | 9 families with renal abnormalities and a personal or family history of female genital tract malformations, but no history of diabetes |
74 | Resendes D L, 2001 [117] | No changes or rare polymorphism in AMH and the AMHR genes (n = 22) | 22 individuals with CUAs 96 individual controls |
75 | Lindner T H, 1999 [50] | Deletion in HNF-1beta gene | 1 Norwegian family, N5, with a syndrome of mild diabetes, progressive non-diabetic renal disease and severe genital malformations |
76 | Cramer D W, 1996 [118] | Carriers for the N314D variants of GALT (n = 6/13 individuals with Müllerian agenesis and 16/113 individual controls) | 13 individuals with vaginal agenesis and their mothers 113 individual controls |
References
- Herlin, M.K.; Petersen, M.B.; Brännström, M. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: A comprehensive update. Orphanet J. Rare Dis. 2020, 15, 214. [Google Scholar] [CrossRef]
- Herlin, M.; Bjørn, A.-M.B.; Rasmussen, M.; Trolle, B.; Petersen, M.B. Prevalence and patient characteristics of Mayer–Rokitansky–Küster–Hauser syndrome: A nationwide registry-based study. Hum. Reprod. 2016, 31, 2384–2390. [Google Scholar] [CrossRef] [PubMed]
- Blontzos, N.; Iavazzo, C.; Vorgias, G.; Kalinoglou, N. Leiomyoma development in Mayer-Rokitansky-Küster-Hauser syndrome: A case report and a narrative review of the literature. Obstet. Gynecol. Sci. 2019, 62, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Aittomäki, K.; Eroila, H.; Kajanoja, P. A population-based study of the incidence of müllerian aplasia in Finland. Fertil. Steril. 2001, 76, 624–625. [Google Scholar] [CrossRef]
- Tsitoura, A.; Michala, L. The Sexuality of Adolescents and Young Women with MRKH Syndrome: A Qualitative Study. J. Sex. Med. 2021, 18, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Creighton, S.; Crouch, N.; Deans, R.; Cutner, A.; Michala, L.; Barnett, M.; Williams, C.; Liao, L.-M. Nonsurgical dilation for vaginal agenesis is promising, but better research is needed. Fertil. Steril. 2012, 97, e32. [Google Scholar] [CrossRef]
- Kobayashi, A.; Behringer, R.R. Developmental genetics of the female reproductive tract in mammals. Nat. Rev. Genet. 2003, 4, 969–980. [Google Scholar] [CrossRef]
- Cunha, G.R.; Robboy, S.J.; Kurita, T.; Isaacson, D.; Shen, J.; Cao, M.; Baskin, L.S. Development of the human female reproductive tract. Differentiation 2018, 103, 46–65. [Google Scholar] [CrossRef] [Green Version]
- Wottgen, M.; Brucker, S.; Renner, S.; Strissel, P.; Strick, R.; Kellermann, A.; Wallwiener, D.; Beckmann, M.; Oppelt, P. Higher incidence of linked malformations in siblings of Mayer-Rokitansky-Kuster-Hauser-syndrome patients. Hum. Reprod. 2008, 23, 1226–1231. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Gentilin, B.; Fedele, L.; Gervasini, C.; Miozzo, M. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Clin. Genet. 2017, 91, 233–246. [Google Scholar] [CrossRef]
- Herlin, M.; Højland, A.T.; Petersen, M.B. Familial occurrence of Mayer-Rokitansky-Küster-Hauser syndrome: A case report and review of the literature. Am. J. Med. Genet. Part A 2014, 164, 2276–2286. [Google Scholar] [CrossRef]
- Jacquinet, A.; Millar, D.; Lehman, A. Etiologies of uterine malformations. Am. J. Med. Genet. Part A 2016, 170, 2141–2172. [Google Scholar] [CrossRef]
- Shokeir, M.H. Aplasia of the Müllerian system: Evidence for probable sex-limited autosomal dominant inheritance. Birth Defects Orig. Artic. Ser. 1978, 14, 147–165. [Google Scholar]
- De Cássia, M.; Pavanello, R.; Eigier, A.; Otto, P.A.; Optiz, J.M.; Reynolds, J.F. Relationship between Mayer-Rokitansky-Küster (MRK) anomaly and hereditary renal adysplasia (HRA). Am. J. Med. Genet. 1988, 29, 845–849. [Google Scholar] [CrossRef]
- Lischke, J.H.; Curtis, C.H.; Lamb, E.J. Discordance of vaginal agenesis in monozygotic twins. Obstet. Gynecol. 1973, 41, 920–924. [Google Scholar]
- Rall, K.; Eisenbeis, S.; Barresi, G.; Rückner, D.; Walter, M.; Poths, S.; Wallwiener, D.; Riess, O.; Bonin, M.; Brucker, S. Mayer-Rokitansky-Küster-Hauser syndrome discordance in monozygotic twins: Matrix metalloproteinase 14, low-density lipoprotein receptor–related protein 10, extracellular matrix, and neoangiogenesis genes identified as candidate genes in a tissue-specific mosaicism. Fertil. Steril. 2015, 103, 494–502.e3. [Google Scholar] [CrossRef]
- Heidenreich, W.; Pfeiffer, A.; Kumbnani, H.K.; Scholz, W.; Zeuner, W. Disordant monozygotic twins with Mayer Rokitansky Kütser syndrome (author’s transl). Geburtshilfe Und Frauenheilkd. 1977, 37, 221–223. [Google Scholar]
- Steinkampf, M.P.; Dharia, S.P.; Dickerson, R.D. Monozygotic twins discordant for vaginal agenesis and bilateral tibial longitudinal deficiency. Fertil. Steril. 2003, 80, 643–645. [Google Scholar] [CrossRef]
- Regenstein, A.C.; Berkeley, A.S. Discordance of müllerian agenesis in monozygotic twins. A case report. J. Reprod. Med. 1991, 36, 396–397. [Google Scholar]
- Duru, U.A.; Laufer, M.R. Discordance in Mayer-von Rokitansky-Küster-Hauser Syndrome Noted in Monozygotic Twins. J. Pediatr. Adolesc. Gynecol. 2009, 22, e73–e75. [Google Scholar] [CrossRef]
- Milsom, S.R.; Ogilvie, C.M.; Jefferies, C.; Cree, L. Discordant Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome in identical twins—A case report and implications for reproduction in MRKH women. Gynecol. Endocrinol. 2015, 31, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Maniglio, P.; Ricciardi, E.; Laganà, A.S.; Triolo, O.; Caserta, D. Epigenetic modifications of primordial reproductive tract: A common etiologic pathway for Mayer-Rokitansky-Kuster-Hauser Syndrome and endometriosis? Med. Hypotheses 2016, 90, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Rall, K.; Barresi, G.; Walter, M.; Poths, S.; Haebig, K.; Schaeferhoff, K.; Schoenfisch, B.; Riess, O.; Wallwiener, D.; Bonin, M.; et al. A combination of transcriptome and methylation analyses reveals embryologically-relevant candidate genes in MRKH patients. Orphanet J. Rare Dis. 2011, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Ledig, S.; Schippert, C.; Strick, R.; Beckmann, M.W.; Oppelt, P.G.; Wieacker, P. Recurrent aberrations identified by array-CGH in patients with Mayer-Rokitansky-Küster-Hauser syndrome. Fertil. Steril. 2011, 95, 1589–1594. [Google Scholar] [CrossRef]
- Cheroki, C.; Krepischi, A.; Szuhai, K.; Brenner, V.; Kim, C.; Otto, P.A.; Rosenberg, C. Genomic imbalances associated with mullerian aplasia. J. Med. Genet. 2007, 45, 228–232. [Google Scholar] [CrossRef]
- McGowan, R.; Tydeman, G.; Shapiro, D.; Craig, T.; Morrison, N.; Logan, S.; Balen, A.H.; Ahmed, S.F.; Deeny, M.; Tolmie, J.; et al. DNA copy number variations are important in the complex genetic architecture of müllerian disorders. Fertil. Steril. 2015, 103, 1021–1030.e1. [Google Scholar] [CrossRef]
- Ledig, S.; Wieacker, P. Clinical and genetic aspects of Mayer–Rokitansky–Küster–Hauser syndrome. Med. Genet. 2018, 30, 3–11. [Google Scholar] [CrossRef]
- Parma, D.H.; Bennett, P.E.; Boswell, R.E. Mago Nashi and Tsunagi/Y14, respectively, regulate Drosophila germline stem cell differentiation and oocyte specification. Dev. Biol. 2007, 308, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Tewes, A.-C.; Rall, K.K.; Römer, T.; Hucke, J.; Kapczuk, K.; Brucker, S.; Wieacker, P.; Ledig, S. Variations in RBM8A and TBX6 are associated with disorders of the müllerian ducts. Fertil. Steril. 2015, 103, 1313–1318. [Google Scholar] [CrossRef]
- Nacke, S.; Schäfer, R.; Habré de Angelis, M.; Mundlos, S. Mouse mutant “rib-vertebrae” (rv): A defect in somite polarity. Dev. Dyn. 2000, 219, 192–200. [Google Scholar] [CrossRef]
- White, P.H.; Farkas, D.R.; McFadden, E.E.; Chapman, D.L. Defective somite patterning in mouse embryos with reduced levels of Tbx6. Development 2003, 130, 1681–1690. [Google Scholar] [CrossRef] [Green Version]
- Nik-Zainal, S.; Strick, R.; Storer, M.; Huang, N.; Rad, R.; Willatt, L.; Fitzgerald, T.; Martin, V.; Sandford, R.; Carter, N.P.; et al. High incidence of recurrent copy number variants in patients with isolated and syndromic Mullerian aplasia. J. Med. Genet. 2011, 48, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Sandbacka, M.; Laivuori, H.; Freitas, É.; Halttunen, M.; Jokimaa, V.; Morin-Papunen, L.; Rosenberg, C.; Aittomäki, K. TBX6, LHX1 and copy number variations in the complex genetics of Müllerian aplasia. Orphanet J. Rare Dis. 2013, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Backhouse, B.; Hanna, C.; Robevska, G.; Bergen, J.V.D.; Pelosi, E.; Simons, C.; Koopman, P.; Juniarto, A.Z.; Grover, S.; Faradz, S.; et al. Identification of Candidate Genes for Mayer-Rokitansky-Küster-Hauser Syndrome Using Genomic Approaches. Sex. Dev. 2019, 13, 26–34. [Google Scholar] [CrossRef]
- Eksi, D.D.; Shen, Y.; Erman, M.; Chorich, L.P.; Sullivan, M.E.; Bilekdemir, M.; Yılmaz, E.; Luleci, G.; Kim, H.-G.; Alper, O.M.; et al. Copy number variation and regions of homozygosity analysis in patients with MÜLLERIAN aplasia. Mol. Cytogenet. 2018, 11, 13. [Google Scholar] [CrossRef]
- Tewes, A.-C.; Hucke, J.; Römer, T.; Kapczuk, K.; Schippert, C.; Hillemanns, P.; Wieacker, P.; Ledig, S. Sequence Variants in TBX6 Are Associated with Disorders of the Müllerian Ducts: An Update. Sex. Dev. 2019, 13, 35–40. [Google Scholar] [CrossRef]
- Chu, C.; Li, L.; Lu, D.; Duan, A.-H.; Luo, L.-J.; Li, S.; Yin, C. Whole-Exome Sequencing Identified a TBX6 Loss of Function Mutation in a Patient with Distal Vaginal Atresia. J. Pediatr. Adolesc. Gynecol. 2019, 32, 550–554. [Google Scholar] [CrossRef]
- Bozzi, F.; Bertuzzi, S.; Strina, D.; Giannetto, C.; Vezzoni, P.; Villa, A. The Exon–Intron Structure of HumanLHX1 Gene. Biochem. Biophys. Res. Commun. 1996, 229, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, A.; Shawlot, W.; Kania, A.; Behringer, R.R. Requirement of Lim1 for female reproductive tract development. Development 2004, 131, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Shawlot, W.; Behringer, R.R. Requirement for LIml in head-organizer function. Nature 1995, 374, 425–430. [Google Scholar] [CrossRef]
- Tsang, T.E.; Khoo, P.L.; Jamieson, R.V.; Zhou, S.X.; Ang, S.L.; Behringer, R.; Tam, P.P. The allocation and differentiation of mouse primordial germ cells. Int. J. Dev. Biol. 2001, 45, 549–555. [Google Scholar]
- Bernardini, L.; Gimelli, S.; Gervasini, C.; Carella, M.; Baban, A.; Frontino, G.; Barbano, G.; Divizia, M.T.; Fedele, L.; Novelli, A.; et al. Recurrent microdeletion at 17q12 as a cause of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: Two case reports. Orphanet J. Rare Dis. 2009, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Ledig, S.; Brucker, S.; Barresi, G.; Schomburg, J.; Rall, K.; Wieacker, P. Frame shift mutation of LHX1 is associated with Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. Hum. Reprod. 2012, 27, 2872–2875. [Google Scholar] [CrossRef] [Green Version]
- Hinkes, B.; Hilgers, K.F.; Bolz, H.J.; Goppelt-Struebe, M.; Amann, K.; Nagl, S.; Bergmann, C.; Rascher, W.; Eckardt, K.-U.; Jacobi, J. A complex microdeletion 17q12 phenotype in a patient with recurrent de novo membranous nephropathy. BMC Nephrol. 2012, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Ledig, S.; Tewes, A.; Hucke, J.; Römer, T.; Kapczuk, K.; Schippert, C.; Hillemanns, P.; Wieacker, P. Array-comparative genomic hybridization analysis in patients with Müllerian fusion anomalies. Clin. Genet. 2018, 93, 640–646. [Google Scholar] [CrossRef]
- Waschk, D.; Tewes, A.-C.; Römer, T.; Hucke, J.; Kapczuk, K.; Schippert, C.; Hillemanns, P.; Wieacker, P.; Ledig, S. Mutations in WNT9B are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Clin. Genet. 2016, 89, 590–596. [Google Scholar] [CrossRef]
- Mencarelli, M.A.; Katzaki, E.; Papa, F.T.; Sampieri, K.; Caselli, R.; Uliana, V.; Pollazzon, M.; Canitano, R.; Mostardini, R.; Grosso, S.; et al. Private inherited microdeletion/microduplications: Implications in clinical practice. Eur. J. Med. Genet. 2008, 51, 409–416. [Google Scholar] [CrossRef]
- Bingham, C.; Ellard, S.; Cole, T.R.; Jones, K.E.; Allen, L.I.; Goodship, J.A.; Goodship, T.H.; Bakalinova-Pugh, D.; Russell, G.I.; Woolf, A.; et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1β mutations. Kidney Int. 2002, 61, 1243–1251. [Google Scholar] [CrossRef] [Green Version]
- Lindner, T.H.; Njølstad, P.R.; Horikawa, Y.; Bostad, L.; Bell, G.I.; Søvik, O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum. Mol. Genet. 1999, 8, 2001–2008. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.S.; Eksi, D.D.; Shen, Y.; Lossie, A.C.; Chorich, L.P.; Sullivan, M.E.; Phillips, J.A.; Erman, M.; Kim, H.-G.; Alper, O.M.; et al. Genetic analysis of Mayer-Rokitansky-Kuster-Hauser syndrome in a large cohort of families. Fertil. Steril. 2017, 108, 145–151.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, M.; Zhao, H.; Qin, Y.; Mu, Y.; Wang, J.; Bian, Y.; Ma, J.; Chen, Z.-J. LHX1 mutation screening in 96 patients with müllerian duct abnormalities. Fertil. Steril. 2012, 97, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Coffinier, C.; Barra, J.; Babinet, C.; Yaniv, M. Expression of the vHNF1/HNF1β homeoprotein gene during mouse organogenesis. Mech. Dev. 1999, 89, 211–213. [Google Scholar] [CrossRef]
- Sundaram, U.T.; McDonald-McGinn, D.M.; Huff, D.; Emanuel, B.S.; Zackai, E.H.; Driscoll, D.A.; Bodurtha, J. Primary amenorrhea and absent uterus in the 22q11.2 deletion syndrome. Am. J. Med. Genet. Part A 2007, 143, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Morcel, K.; Watrin, T.; Pasquier, L.; Rochard, L.; Le Caignec, C.; Dubourg, C.; Loget, P.; Paniel, B.-J.; Odent, S.; David, V.; et al. Utero-vaginal aplasia (Mayer-Rokitansky-Küster-Hauser syndrome) associated with deletions in known DiGeorge or DiGeorge-like loci. Orphanet J. Rare Dis. 2011, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Cheroki, C.; Krepischi-Santos, A.C.; Rosenberg, C.; Jehee, F.S.; Mingroni-Netto, R.C.; Filho, I.P.; Filho, S.Z.; Kim, C.A.; Bagnoli, V.R.; Mendonca, B.B.; et al. Report of a del22q11 in a patient with Mayer-Rokitansky-Küster-Hauser (MRKH) anomaly and exclusion ofWNT-4,RAR-gamma, andRXR-alpha as major genes determining MRKH anomaly in a study of 25 affected women. Am. J. Med. Genet. Part A 2006, 140, 1339–1342. [Google Scholar] [CrossRef]
- AlSubaihin, A.; Vandermeulen, J.; Harris, K.; Duck, J.; McCready, E. Müllerian Agenesis in Cat Eye Syndrome and 22q11 Chromosome Abnormalities: A Case Report and Literature Review. J. Pediatr. Adolesc. Gynecol. 2018, 31, 158–161. [Google Scholar] [CrossRef]
- Liatsikos, S.A.; Grimbizis, G.F.; Georgiou, I.; Papadopoulos, N.; Lazaros, L.; Bontis, J.N.; Tarlatzis, B.C. HOX A10 and HOX A11 mutation scan in congenital malformations of the female genital tract. Reprod. Biomed. Online 2010, 21, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Mericskay, M.; Kitajewski, J.; Sassoon, D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development 2004, 131, 2061–2072. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, N.; Yoshida, M.; Kuratani, S.; Matsuo, I.; Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 1997, 124, 1653–1664. [Google Scholar] [CrossRef]
- Morcel, K.; Dallapiccola, B.; Pasquier, L.; Watrin, T.; Bernardini, L.; Guerrier, D. Clinical utility gene card for: Mayer–Rokitansky–Küster–Hauser syndrome. Eur. J. Hum. Genet. 2012, 20, 1–3. [Google Scholar] [CrossRef]
- Vainio, S.; Heikkilä, M.; Kispert, A.; Chin, N.; McMahon, A.P. Female development in mammals is regulated by Wnt-4 signalling. Nature 1999, 397, 405–409. [Google Scholar] [CrossRef]
- Biason-Lauber, A.; Konrad, D.; Navratil, F.; Schoenle, E.J. A WNT4 Mutation Associated with Müllerian-Duct Regression and Virilization in a 46,XX Woman. N. Engl. J. Med. 2004, 351, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Biason-Lauber, A.; De Filippo, G.; Konrad, D.; Scarano, G.; Nazzaro, A.; Schoenle, E. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: A Case Report. Hum. Reprod. 2007, 22, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Philibert, P.; Biason-Lauber, A.; Rouzier, R.; Pienkowski, C.; Paris, F.; Konrad, D.; Schoenle, E.; Sultan, C. Identification and Functional Analysis of a New WNT4 Gene Mutation among 28 Adolescent Girls with Primary Amenorrhea and Muüllerian Duct Abnormalities: A French Collaborative Study. J. Clin. Endocrinol. Metab. 2008, 93, 895–900. [Google Scholar] [CrossRef]
- Philibert, P.; Biason-Lauber, A.; Gueorguieva, I.; Stuckens, C.; Pienkowski, C.; Lebon-Labich, B.; Paris, F.; Sultan, C. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Küster-Hauser syndrome). Fertil. Steril. 2011, 95, 2683–2686. [Google Scholar] [CrossRef]
- Masse, J.; Watrin, T.; Laurent, A.; Deschamps, S.; Guerrier, D.; Pellerin, I. The developing female genital tract: From genetics to epigenetics. Int. J. Dev. Biol. 2009, 53, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Patterson, L.T.; Potter, S.S. Atlas of Hox gene expression in the developing kidney. Dev. Dyn. 2004, 229, 771–779. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kwan, K.-M.; Carroll, T.J.; McMahon, A.P.; Mendelsohn, C.L.; Behringer, R.R. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 2005, 132, 2809–2823. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.; Skjong, C.; Shawlot, W. Lim1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 2005, 288, 571–581. [Google Scholar] [CrossRef]
- Herlin, M.K.; Le-Quy, V.; Højland, A.T.; Ernst, A.; Okkels, H.; Petersen, A.C.; Petersen, M.B.; Pedersen, I.S. Whole-exome sequencing identifies a GREB1L variant in a three-generation family with Müllerian and renal agenesis: A novel candidate gene in Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome. A case report. Hum. Reprod. 2019, 34, 1838–1846. [Google Scholar] [CrossRef]
- De Tomasi, L.; David, P.; Humbert, C.; Silbermann, F.; Arrondel, C.; Tores, F.; Fouquet, S.; Desgrange, A.; Niel, O.; Bole-Feysot, C.; et al. Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice. Am. J. Hum. Genet. 2017, 101, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Sanna-Cherchi, S.; Khan, K.; Westland, R.; Krithivasan, P.; Fievet, L.; Rasouly, H.M.; Ionita-Laza, I.; Capone, V.P.; Fasel, D.A.; Kiryluk, K.; et al. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. Am. J. Hum. Genet. 2017, 101, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Pask, A. The Reproductive System. In Non-Coding RNA and the Reproductive System; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2016; pp. 1–12. [Google Scholar] [CrossRef]
- Li, H.; Liao, S.; Luo, G.; Li, H.; Wang, S.; Li, Z.; Luo, X. An Association between EMX2 Variations and Mayer-Rokitansky-Küster-Hauser Syndrome: A Case-Control Study of Chinese Women. J. Healthc. Eng. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Chu, C.; Li, L.; Li, S.; Zhou, Q.; Zheng, P.; Zhang, Y.-D.; Duan, A.-H.; Lu, D.; Wu, Y.-M. Variants in genes related to development of the urinary system are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Hum. Genom. 2022, 16, 10. [Google Scholar] [CrossRef]
- Dell’Edera, D.; Allegretti, A.; Ventura, M.; Mercuri, L.; Mitidieri, A.; Cuscianna, G.; Epifania, A.A.; Morizio, E.; Alfonsi, M.; Guanciali-Franchi, P. Mayer-Rokitansky-Küster-Hauser syndrome with 22q11.21 microduplication: A case report. J. Med. Case Rep. 2021, 15, 208. [Google Scholar] [CrossRef]
- Mikhael, S.; Dugar, S.; Morton, M.; Chorich, L.P.; Tam, K.B.; Lossie, A.C.; Kim, H.-G.; Knight, J.; Taylor, H.S.; Mukherjee, S.; et al. Genetics of agenesis/hypoplasia of the uterus and vagina: Narrowing down the number of candidate genes for Mayer–Rokitansky–Küster–Hauser Syndrome. Qual. Life Res. 2021, 140, 667–680. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, S.; Jolly, A.; Wang, L.; Pan, H.; Yuan, J.; Chen, S.; Koch, A.; Ma, C.; Tian, W.; et al. Perturbations of genes essential for Müllerian duct and Wölffian duct development in Mayer-Rokitansky-Küster-Hauser syndrome. Am. J. Hum. Genet. 2021, 108, 337–345. [Google Scholar] [CrossRef]
- Pontecorvi, P.; Bernardini, L.; Capalbo, A.; Ceccarelli, S.; Megiorni, F.; Vescarelli, E.; Bottillo, I.; Preziosi, N.; Fabbretti, M.; Perniola, G.; et al. Protein–protein interaction network analysis applied to DNA copy number profiling suggests new perspectives on the aetiology of Mayer–Rokitansky–Küster–Hauser syndrome. Sci. Rep. 2021, 11, 448. [Google Scholar] [CrossRef]
- Jacquinet, A.; Boujemla, B.; Fasquelle, C.; Thiry, J.; Josse, C.; Lumaka, A.; Brischoux-Boucher, E.; Dubourg, C.; David, V.; Pasquier, L.; et al. GREB1L variants in familial and sporadic hereditary urogenital adysplasia and Mayer-Rokitansky-Kuster-Hauser syndrome. Clin. Genet. 2020, 98, 126–137. [Google Scholar] [CrossRef]
- Anant, M.; Raj, N.; Yadav, N.; Prasad, A.; Kumar, S.; Saxena, A.K. Two Distinctively Rare Syndromes in a Case of Primary Amenorrhea: 18p Deletion and Mayer–Rokitansky–Kuster–Hauser Syndromes. J. Pediatr. Genet. 2020, 9, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Smol, T.; Ribero-Karrouz, W.; Edery, P.; Gorduza, D.B.; Catteau-Jonard, S.; Manouvrier-Hanu, S.; Ghoumid, J. Mayer-Rokitansky-Künster-Hauser syndrome due to 2q12.1q14.1 deletion: PAX8 the causing gene? Eur. J. Med. Genet. 2020, 63, 103812. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.-X.; Luo, G.-N.; Wan, S.-Q.; Qin, C.-L.; Tang, J.; Zhang, M.; Du, M.; Xu, K.-K.; Shi, J.-Q. Detection of de novo genetic variants in Mayer–Rokitansky–Küster–Hauser syndrome by whole genome sequencing. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 4, 100089. [Google Scholar] [CrossRef] [PubMed]
- Eggermann, T.; Ledig, S.; Begemann, M.; Elbracht, M.; Kurth, I.; Wieacker, P. Search for altered imprinting marks in Mayer–Rokitansky–Küster–Hauser patients. Mol. Genet. Genom. Med. 2018, 6, 1225–1228. [Google Scholar] [CrossRef]
- Takahashi, K.; Hayano, T.; Sugimoto, R.; Kashiwagi, H.; Shinoda, M.; Nishijima, Y.; Suzuki, T.; Suzuki, S.; Ohnuki, Y.; Kondo, A.; et al. Exome and copy number variation analyses of Mayer–Rokitansky–Küster–Hauser syndrome. Hum. Genome Var. 2018, 5, 27. [Google Scholar] [CrossRef]
- Brucker, S.Y.; Frank, L.; Eisenbeis, S.; Henes, M.; Wallwiener, D.; Riess, O.; van Eijck, B.; Schöller, D.; Bonin, M.; Rall, K.K. Sequence variants in ESR1 and OXTR are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Acta Obstet. Gynecol. Scand. 2017, 96, 1338–1346. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Xu, Z.; Zhu, Y.; Wang, X.; Wang, J.; Chen, D.; Xu, Y.; He, X.; Xiang, H.; Wang, B.; et al. Genetic analysis of DACT1 in 100 Chinese Han women with Müllerian duct anomalies. Reprod. Biomed. Online 2016, 32, 420–426. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Wang, M.; Li, H.; Su, T.; Wang, S. Associations of Polymorphisms in WNT9B and PBX1 with Mayer-Rokitansky-Küster-Hauser Syndrome in Chinese Han. PLoS ONE 2015, 10, e0130202. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Gao, X.; Qin, Y.; Liu, W.; Huang, T.; Ma, J.; Simpson, J.L.; Chen, Z.-J. Nonsense mutation of EMX2 is potential causative for uterus didelphysis: First molecular explanation for isolated incomplete müllerian fusion. Fertil. Steril. 2015, 103, 769–774.e2. [Google Scholar] [CrossRef]
- Murry, J.B.; Santos, X.M.; Wang, X.; Wan, Y.-W.; Veyver, I.B.V.D.; Dietrich, J.E. A genome-wide screen for copy number alterations in an adolescent pilot cohort with müllerian anomalies. Fertil. Steril. 2015, 103, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-J.; Wei, S.-Y.; Yang, W.-S.; Wu, T.-T.; Li, H.-Y.; Ho, H.-N.; Yang, Y.-S.; Chen, P.-L. Concurrent exome-targeted next-generation sequencing and single nucleotide polymorphism array to identify the causative genetic aberrations of isolated Mayer-Rokitansky-Kuster-Hauser syndrome. Hum. Reprod. 2015, 30, 1732–1742. [Google Scholar] [CrossRef] [Green Version]
- Nodale, C.; Ceccarelli, S.; Giuliano, M.; Cammarota, M.; D’Amici, S.; Vescarelli, E.; Maffucci, D.; Bellati, F.; Panici, P.B.; Romano, F.; et al. Gene Expression Profile of Patients with Mayer-Rokitansky-Küster-Hauser Syndrome: New Insights into the Potential Role of Developmental Pathways. PLoS ONE 2014, 9, e91010. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, Y.; Ma, W.; Li, H.; He, F.; Pu, D.; Su, T.; Wang, S. Analysis of WNT9B mutations in Chinese women with Mayer–Rokitansky–Küster–Hauser syndrome. Reprod. Biomed. Online 2014, 28, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Marion, R.; Punjabi, N.P.; Pereira, E.; Samanich, J.; Agarwal, C.; Li, J.; Huang, C.-K.; Ramesh, K.H.; Cannizzaro, A.L.; et al. A de novo 10.79 Mb interstitial deletion at 2q13q14.2 involving PAX8 causing hypothyroidism and mullerian agenesis: A novel case report and literature review. Mol. Cytogenet. 2014, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Ekici, A.B.; Strissel, P.L.; Oppelt, P.G.; Renner, S.P.; Brucker, S.; Beckmann, M.W.; Strick, R. HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina. Gene 2013, 518, 267–272. [Google Scholar] [CrossRef]
- Chang, X.; Qin, Y.; Xu, C.; Li, G.; Zhao, X.; Chen, Z.-J. Mutations in WNT4 are not responsible for Müllerian duct abnormalities in Chinese women. Reprod. Biomed. Online 2012, 24, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Ravel, C.; Bashamboo, A.; Bignon-Topalovic, J.; Siffroi, J.-P.; McElreavey, K.; Darai, E. Polymorphisms in DLGH1 and LAMC1 in Mayer–Rokitansky–Kuster–Hauser syndrome. Reprod. Biomed. Online 2012, 24, 462–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhao, H.; Sun, M.; Li, Y.; Chen, Z.-J. PAX2 in 192 Chinese women with Müllerian duct abnormalities: Mutation analysis. Reprod. Biomed. Online 2012, 25, 219–222. [Google Scholar] [CrossRef]
- Sandbacka, M.; Bruce, S.; Halttunen, M.; Puhakka, M.; Lahermo, P.; Hannula-Jouppi, K.; Lipsanen-Nyman, M.; Kere, J.; Aittomäki, K.; Laivuori, H. Methylation of H19 and its imprinted control region (H19 ICR1) in Müllerian aplasia. Fertil. Steril. 2011, 95, 2703–2706. [Google Scholar] [CrossRef]
- Ma, J.; Qin, Y.; Liu, W.; Duan, H.; Xia, M.; Chen, Z.-J. Analysis of PBX1 mutations in 192 Chinese women with Müllerian duct abnormalities. Fertil. Steril. 2011, 95, 2615–2617. [Google Scholar] [CrossRef]
- Gervasini, C.; Grati, F.R.; Lalatta, F.; Tabano, S.; Gentilin, B.; Colapietro, P.; De Toffol, S.; Frontino, G.; Motta, F.; Maitz, S.; et al. SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome. Genet. Med. 2010, 12, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Acién, P.; Galán, F.; Manchón, I.; Ruiz, E.; Acién, M.; Alcaraz, A.L. Hereditary renal adysplasia, pulmonary hypoplasia and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: A case report. Orphanet J. Rare Dis. 2010, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Oram, R.A.; Edghill, E.L.; Blackman, J.; Taylor, M.J.; Kay, T.; Flanagan, S.E.; Ismail-Pratt, I.; Creighton, S.M.; Ellard, S.; Hattersley, A.T.; et al. Mutations in the hepatocyte nuclear factor-1β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am. J. Obstet. Gynecol. 2010, 203, 364.e1–364.e5. [Google Scholar] [CrossRef]
- Ravel, C.; Lorenço, D.; Dessolle, L.; Mandelbaum, J.; McElreavey, K.; Darai, E.; Siffroi, J.P. Mutational analysis of the WNT gene family in women with Mayer-Rokitansky-Kuster-Hauser syndrome. Fertil. Steril. 2009, 91, 1604–1607. [Google Scholar] [CrossRef]
- Hofstetter, G.; Concin, N.; Marth, C.; Rinne, T.; Erdel, M.; Janecke, A. Genetic analyses in a variant of Mayer-Rokitansky-Kuster-Hauser syndrome (MURCS association). Wien. Klin. Wochenschr. 2008, 120, 435–439. [Google Scholar] [CrossRef]
- Drummond, J.B.; Rezende, C.F.; Peixoto, F.C.; Carvalho, J.S.; Reis, F.M.; De Marco, L. Molecular analysis of the β-catenin gene in patients with the Mayer-Rokitansky-Küster-Hauser syndrome. J. Assist. Reprod. Genet. 2008, 25, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Lalwani, S.; Wu, H.-H.; Reindollar, R.H.; Gray, M.R. HOXA10 mutations in congenital absence of uterus and vagina. Fertil. Steril. 2008, 89, 325–330. [Google Scholar] [CrossRef]
- Burel, A.; Mouchel, T.; Odent, S.; Tiker, F.; Knebelmann, B.; Pellerin, I.; Guerrier, D. Role of HOXA7 to HOXA13 and PBX1 genes in various forms of MRKH syndrome (congenital absence of uterus and vagina). J. Negat. Results Biomed. 2006, 5, 4. [Google Scholar] [CrossRef]
- Oppelt, P.; Strissel, P.; Kellermann, A.; Seeber, S.; Humeny, A.; Beckmann, M.; Strick, R. DNA sequence variations of the entire anti-Müllerian hormone (AMH) gene promoter and AMH protein expression in patients with the Mayer–Rokitanski–Küster–Hauser syndrome. Hum. Reprod. 2005, 20, 149–157. [Google Scholar] [CrossRef]
- Clément-Ziza, M.; Khen-Dunlop, N.; Gonzales, J.; Crétolle-Vastel, C.; Picard, J.-Y.; Tullio-Pelet, A.; Besmond, C.; Munnich, A.; Lyonnet, S.; Nihoul-Fékété, C. Exclusion ofWNT4 as a major gene in Rokitansky-Küster-Hauser anomaly. Am. J. Med. Genet. Part A 2005, 137, 98–99. [Google Scholar] [CrossRef]
- Zenteno, J.C.; Carranza-Lira, S.; Kofman-Alfaro, S. Molecular analysis of the anti-Müllerian hormone, the anti-Müllerian hormone receptor, and galactose-1-phosphate uridyl transferase genes in patients with the Mayer-Rokitansky-Küster-Hauser syndrome. Arch. Gynecol. Obstet. 2004, 269, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Plevraki, E.; Kita, M.; Goulis, D.G.; Hatzisevastou-Loukidou, H.; Lambropoulos, A.F.; Avramides, A. Bilateral ovarian agenesis and the presence of the testis-specific protein 1-Y-linked gene: Two new features of Mayer-Rokitansky-Küster-hauser syndrome. Fertil. Steril. 2004, 81, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Klipstein, S.; Bhagavath, B.; Topipat, C.; Sasur, L.; Reindollar, R.; Gray, M. The N314D polymorphism of the GALT gene is not associated with congenital absence of the uterus and vagina. Mol. Hum. Reprod. 2003, 9, 171–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydos, S.; Tükün, A.; Bökesoy, I. Gonadal dysgenesis and the Mayer-Rokitansky-Kuster-Hauser syndrome in a girl with 46,X,del(X)(pter→q22:). Arch. Gynecol. Obstet. 2003, 267, 173–174. [Google Scholar] [CrossRef]
- Timmreck, L.S.; Gray, M.R.; Handelin, B.; Allito, B.; Rohlfs, E.; Davis, A.J.; Gidwani, G.; Reindollar, R.H. Analysis of cystic fibrosis transmembrane conductance regulator gene mutations in patients with congenital absence of the uterus and vagina. Am. J. Med. Genet. 2003, 120, 72–76. [Google Scholar] [CrossRef]
- Resendes, B.L.; Sohn, S.H.; Stelling, J.R.; Tineo, R.; Davis, A.J.; Gray, M.R.; Reindollar, R.H. Role for anti-Müllerian hormone in congenital absence of the uterus and vagina. Am. J. Med. Genet. 2001, 98, 129–136. [Google Scholar] [CrossRef]
- Cramer, D.W.; Goldstein, D.P.; Fraer, C.; Reichardt, J. Vaginal agenesis (Mayer-Rokitansky-Kuster-Hauser Syndrome) associated with the N314D mutation of galactose-1-phosphate uridyl transferase (GALT). Mol. Hum. Reprod. 1996, 2, 145–148. [Google Scholar] [CrossRef] [Green Version]
Chromosome Location | Suspected Genes Involved | Associated Syndromes | Non-Humans Study | Phenotype | References |
---|---|---|---|---|---|
1q21 | RBM8A | TAR syndrome (thrombocytopenia, absence of the radius) [25,26,27,28] | Drosophila melanogaster: RBM8A encodes Y14 protein, which affects oocyte differentiation and determination of primordial germ cells [29] | Type I + II | [25,26,27,30] |
16p11.2 | TBX6 | Autism spectrum disorders, neurological disorders, unaffected persons [28] | Mouse models: Deletion of TBX6 presents skeletal (mainly vertebral) and urinary tract malformations [31,32] | Type I + II | [27,30,33,34,35,36,37,38] |
17q12 | LHX1 | Anomalies in the embryogenesis, in body axis formation [28,39] | Mouse model: LHX1 null mutant mice are characterized by absent uterus and oviducts [40] Mouse model: LHX1 mutant mice had lack of kidneys and anencephaly [28,41] Mouse embryos with decreased LHX1 activity had lower capacity of primordial germ cells (PGCs; [42]) | Type I + II | [25,26,33,34,43,44,45,46,47,48,49,50,51,52] |
HNF1B | Renal cysts and diabetes [28] | Mouse models: Expression of HNF1B in MDs and in epithelial tissue of liver, pancreas, lungs and kidneys [53] | |||
22q11 | Uncertain (TBX1) | DiGeorge or Velocardiofacial syndrome (heart defects, hypocalcemia, immunodeficiency, typical facial malformations, cognitive and behavioral disorders) | Type I + II | [25,26,27,33,54,55,56,57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllidi, V.E.; Mavrogianni, D.; Kalampalikis, A.; Litos, M.; Roidi, S.; Michala, L. Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. Children 2022, 9, 961. https://doi.org/10.3390/children9070961
Triantafyllidi VE, Mavrogianni D, Kalampalikis A, Litos M, Roidi S, Michala L. Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. Children. 2022; 9(7):961. https://doi.org/10.3390/children9070961
Chicago/Turabian StyleTriantafyllidi, Varvara Ermioni, Despoina Mavrogianni, Andreas Kalampalikis, Michael Litos, Stella Roidi, and Lina Michala. 2022. "Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature" Children 9, no. 7: 961. https://doi.org/10.3390/children9070961
APA StyleTriantafyllidi, V. E., Mavrogianni, D., Kalampalikis, A., Litos, M., Roidi, S., & Michala, L. (2022). Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. Children, 9(7), 961. https://doi.org/10.3390/children9070961