Effect of Vagus Nerve Stimulation on Blood Inflammatory Markers in Children with Drug-Resistant Epilepsy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Biochemical Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar]
- Alexopoulos, A.V.; Kotagal, P.; Loddenkemper, T.; Hammel, J.; Bingaman, W.E. Long-term results with vagus nerve stimulation in children with pharmacoresistant epilepsy. Seizure 2006, 15, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Healy, S.; Lang, J.; Naude, J.T.W.; Gibbon, F.; Leach, P. Vagal nerve stimulation in children under 12 years old with medically intractable epilepsy. Child’s Nerv. Syst. 2013, 29, 2095–2099. [Google Scholar] [CrossRef]
- Berg, A.T.; Rychlik, K.; Levy, S.R.; Testa, F.M. Complete remission of childhood-onset epilepsy: Stability and prediction over two decades. Brain 2014, 137, 3213–3222. [Google Scholar] [CrossRef] [Green Version]
- Orosz, I.; McCormick, D.; Zamponi, N.; Varadkar, S.; Feucht, M.; Parain, D.; Griens, R.; Vallée, L.; Boon, P.; Rittey, C.; et al. Vagus nerve stimulation for drug-resistant epilepsy: A European long-term study up to 24 months in 347 children. Epilepsia 2014, 55, 1576–1584. [Google Scholar] [CrossRef]
- Terra, V.C.; Furlanetti, L.L.; Nunes, A.A.; Thomé, U.; Nisyiama, M.A.; Sakamoto, A.C.; Machado, H.R. Vagus nerve stimulation in pediatric patients: Is it really worthwhile? Epilepsy Behav. 2014, 31, 329–333. [Google Scholar] [CrossRef]
- Grioni, D.; Landi, A.; Gasperini, S.; Trezza, A.; Fiori, L.; Rigoldi, M.; Parini, R.; Sganzerla, E.P. Vagal Nerve Stimulation in the Treatment of Drug-Resistant Epileptic Encephalopathies in Inborn Errors of Metabolism. Child Neurol. Open 2015, 2, 2329048X15612432. [Google Scholar] [CrossRef] [Green Version]
- Grioni, D.; Landi, A.; Fiori, L.; Sganzerla, E.P. Does emergent implantation of a vagal nerve stimulator stop refractory status epilepticus in children? Seizure 2018, 61, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Soleman, J.; Stein, M.; Knorr, C.; Datta, A.N.; Constantini, S.; Fried, I.; Guzman, R.; Kramer, U. Improved quality of life and cognition after early vagal nerve stimulator implantation in children. Epilepsy Behav. 2018, 88, 139–145. [Google Scholar] [CrossRef]
- Boon, P.; De Cock, E.; Mertens, A.; Trinka, E. Neurostimulation for drug-resistant epilepsy: A systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response. Curr. Opin. Neurol. 2018, 31, 198–210. [Google Scholar] [CrossRef]
- Grioni, D.; Landi, A. Does Vagal Nerve Stimulation Treat Drug-Resistant Epilepsy in Patients with Tuberous Sclerosis Complex? World Neurosurg. 2019, 121, 251–253. [Google Scholar] [CrossRef]
- Starnes, K.; Miller, K.; Wong-Kisiel, L.; Lundstrom, B.N. A Review of Neurostimulation for Epilepsy in Pediatrics. Brain Sci. 2019, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Toffa, D.H.; Touma, L.; El Meskine, T.; Bouthillier, A.; Nguyen, D.K. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure 2020, 83, 104–123. [Google Scholar] [CrossRef]
- Vezzani, A.; Granata, T. Critical Review Brain Inflammation in Epilepsy: Experimental and Clinical Evidence. Epilepsia 2005, 46, 1724–1743. [Google Scholar]
- Ravizza, T.; Gagliardi, B.; Noé, F.; Boer, K.; Aronica, E.; Vezzani, A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol. Dis. 2008, 29, 142–160. [Google Scholar] [CrossRef]
- Choi, J.; Nordli, D.R.; Alden, T.D.; DiPatri, A.; Laux, L.; Kelley, K.; Rosenow, J.; Schuele, S.U.; Rajaram, V.; Koh, S. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J. Neuroinflamm. 2009, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Riazi, K.; Galic, M.A.; Pittman, Q.J. Contributions of peripheral inflammation to seizure susceptibility: Cytokines and brain excitability. Epilepsy Res. 2010, 89, 34–42. [Google Scholar] [CrossRef]
- Aronica, E.; Ravizza, T.; Zurolo, E.; Vezzani, A. Astrocyte immune responses in epilepsy. Glia 2012, 60, 1258–1268. [Google Scholar]
- Librizzi, L.; Noè, F.; Vezzani, A.; de Curtis, M.; Ravizza, T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann. Neurol. 2012, 72, 82–90. [Google Scholar] [CrossRef]
- Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci. 2013, 36, 174–184. [Google Scholar] [CrossRef]
- Vezzani, A.; Aronica, E.; Mazarati, A.; Pittman, Q. Epilepsy and brain inflammation. Exp. Neurol. 2011, 244, 11–21. [Google Scholar] [CrossRef]
- Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology 2012, 69, 16–24. [Google Scholar] [CrossRef] [Green Version]
- de Vries, E.E.; Munckhof, B.V.D.; Braun, K.P.; van Royen-Kerkhof, A.; de Jager, W.; Jansen, F.E. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016, 63, 177–190. [Google Scholar] [CrossRef]
- Vezzani, A.; Lang, B.; Aronica, E. Immunity and Inflammation in Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 6, a022699. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, T.; Olszewski, J.; Lloyd-Smith, D. Focal seizures due to chronic localized encephalitis. Neurology 1958, 8, 435. [Google Scholar] [CrossRef]
- Dubé, C.M.; Brewster, A.L.; Richichi, C.; Zha, Q.; Baram, T.Z. Fever, febrile seizures and epilepsy. Trends Neurosci. 2007, 30, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef]
- Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Investig. 2007, 117, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Johnston, G.R.; Webster, N.R. Cytokines and the immunomodulatory function of the vagus nerve. Br. J. Anaesth. 2009, 102, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Martelli, D.; McKinley, M.; McAllen, R. The cholinergic anti-inflammatory pathway: A critical review. Auton. Neurosci. 2014, 182, 65–69. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J. Physiol. 2016, 594, 5781–5790. [Google Scholar] [CrossRef] [Green Version]
- Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef] [Green Version]
- Meregnani, J.; Clarençon, D.; Vivier, M.; Peinnequin, A.; Mouret, C.; Sinniger, V.; Picq, C.; Job, A.; Canini, F.; Jacquier-Sarlin, M.; et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton. Neurosci. 2011, 160, 82–89. [Google Scholar] [CrossRef]
- Hoover, D.B. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol. Ther. 2017, 179, 1–16. [Google Scholar] [CrossRef]
- Jin, H.; Guo, J.; Liu, J.; Lyu, B.; Foreman, R.D.; Yin, J.; Shi, Z.; Chen, J.D. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, 192–202. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front. Immunol. 2017, 8, 1452. [Google Scholar] [CrossRef]
- Jayakar, P.; Gaillard, W.D.; Tripathi, M.; Libenson, M.H.; Mathern, G.W.; Cross, J.H. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia 2014, 55, 507–518. [Google Scholar] [CrossRef]
- Rosas-Ballina, M.; Goldstein, R.S.; Gallowitsch-Puerta, M.; Yang, L.; Valdés-Ferrer, S.I.; Patel, N.B.; Chavan, S.; Al-Abed, Y.; Yang, H.; Tracey, K.J. The Selective α7 Agonist GTS-21 Attenuates Cytokine Production in Human Whole Blood and Human Monocytes Activated by Ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol. Med. 2009, 15, 195–202. [Google Scholar] [CrossRef]
- Koopman, F.A.; Van Maanen, M.A.; Vervoordeldonk, M.J.; Tak, P.P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 2017, 282, 64–75. [Google Scholar] [CrossRef] [Green Version]
- McHugh, J.C.; Singh, H.W.; Phillips, J.; Murphy, K.; Doherty, C.P.; Delanty, N. Outcome Measurement after Vagal Nerve Stimulation Therapy: Proposal of a New Classification. Epilepsia 2007, 48, 375–378. [Google Scholar] [CrossRef]
- Johnson, R.L.; Wilson, C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Beekwilder, J.P.B.T. Overview of the clinical application of vagus nerve stimulation. J. Clin. Neurophysiol. 2010, 27, 130–138. [Google Scholar]
- Groves, D.A.; Brown, V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [Google Scholar]
- Krahl, S.E.; Clark, K.B.; Smith, D.C.; Browning, R.A. Q International League Against Epilepsy Locus Coeruleus Lesions Suppress the Seizure-Attenuating Effects of Vagus Nerve Stimulation. Epilepsia 1998, 39, 709–714. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, W.J.; Van Der Zanden, E.P.; The, F.O.; Bijlsma, M.F.; Van Westerloo, D.J.; Bennink, R.J.; Berthoud, H.-R.; Uematsu, S.; Akira, S.; van den Wijngaard, R.M.; et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 2005, 6, 844–851. [Google Scholar] [CrossRef]
- Bernik, T.R.; Friedman, S.G.; Ochani, M.; DiRaimo, R.; Ulloa, L.; Yang, H.; Sudan, S.; Czura, C.J.; Ivanova, S.M.; Tracey, K.J. Pharmacological Stimulation of the Cholinergic Antiinflammatory Pathway. J Exp. Med. 2002, 195, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Bonaz, B.; Sinniger, V.; Hoffmann, D.; Clarençon, D.; Mathieu, N.; Dantzer, C.; Vercueil, L.; Picq, C.; Trocmé, C.; Faure, P.; et al. Chronic vagus nerve stimulation in Crohn’s disease: A 6-month follow-up pilot study. Neurogastroenterol. Motil. 2016, 28, 948–953. [Google Scholar] [CrossRef]
- Buijs, R.M.; Van Der Vliet, J.; Garidou, M.-L.; Huitinga, I.; Escobar, C. Spleen Vagal Denervation Inhibits the Production of Antibodies to Circulating Antigens. PLoS ONE 2008, 3, e3152. [Google Scholar] [CrossRef]
Patient | Age at Surgery | Sex | Type of Epilepsy | MRI Findings | Preoperative EEG |
---|---|---|---|---|---|
1 | 2.5 years | M | West syndrome | No pathological findings | Hypsarrythmia |
2 | 13.8 years | M | Focal seizures | Post ischemic area in the left temporal, parietal, occipital lobes | Multifocal |
3 | 9.2 years | M | Focal | Post ischemic area in the right frontal, temporal, parietal lobes | Multifocal |
4 | 15.2 years | F | Generalized | No pathological findings. | Generalized |
5 | 12 years | M | Focal and generalized | Post ischemic area in the right frontal, temporal, insular, parietal lobes | Multifocal |
Class | Reduction in Seizure Frequency |
---|---|
Class I | 80–100% |
Class II | 50–79% |
Class III | <50% |
Class IV | Magnet benefit only |
Class V | No improvement |
Patient | McHugh Score | EEG Findings | Preoperative Antiseizure Drugs | Antiseizure Drugs at Last Follow-Up | Last Follow-Up (months) |
---|---|---|---|---|---|
1 | I | Normal | Steroids; many antiepileptic drugs were used (including Vigabatrin) without benefit | Vigabatrin | 54.7 |
2 | II | Improved | LTG, VPA, TPM | LTG, VPA | 59.7 |
3 | III | Unchanged | CBZ | OXC | 65.7 |
4 | I | Normal | LTG, ETS | LTG | 73 |
5 | III | Unchanged | VPA, OXC | VPA-OXC-PHT-BDZ | 74.7 |
Patient | Output Current | Frequency | ON/OFF Cycle | Pulse Width |
---|---|---|---|---|
1 | 1.5 mA | 30 Hz | 30 sec ON-1.8 min OFF | 500 μs |
2 | 1.75 mA | 30 Hz | 30 sec ON-3 min OFF | 500 μs |
3 | 2.25 mA | 30 Hz | 30 sec ON-1.8 min OFF | 500 μs |
4 | 1.75 mA | 30 Hz | 30 sec ON-3 min OFF | 250 μs |
5 | 2 mA | 30 Hz | 30 sec ON-3 min OFF | 500 μs |
Day 0 | Day 42 | ||
---|---|---|---|
CRP | 0.48 ± 0.76 | 0.49 ± 0.53 | ns |
ESR | 24.60 ± 20.33 | 14.40 ± 13.59 | ns |
WBC | 8020 ± 3451 | 8455 ± 2539 | ns |
Lymphocytes | 3134 ± 1523 | 4270 ± 2527 | ns |
CD3+ | 2211 ± 1560 | 2598 ± 1346 | ns |
CD4+/CD8+ ratio | 2.04 ± 0.49 | 2.32 ± 0.80 | ns |
CD4+ | 1114 ± 522 | 1647 ± 926 | ns |
CD8+ | 538 ± 199 | 725 ± 360 | ns |
CD19+ | 773.3 ± 626.3 | 988.7 ± 978.9 | p = 0.067 |
CD56+ | 303 ± 193 | 533 ± 234 | ns |
IgG | 917.2 ± 90.5 | 1043 ± 146.1 | p = 0.067 |
IgA | 176.3 ± 66.1 | 194.0 ± 65.0 | p = 0.067 |
IgM | 160 ± 24 | 132 ± 43 | ns |
IgE | 9.867 ± 10.1535 | 13.933 ± 11.0024 | p = 0.11 |
TNF-α | 67.9 ± 64.18 | 42.84 ± 31.36 | ns |
IL-1β | 2.21 ± 0.58 | 1.955 ± 0 | ns |
PTX3 | 1005.9 ± 939.1 | 652.8 ± 477.7 | p = 0.14 |
Variable | Group 1 (2 pts) | Group 2 (3 pts) | |
---|---|---|---|
IL-1β T0 | 2.60 ± 0.91 | 2.0 ± 0 | |
IL-1β T1 | 1.955 ± 0 | 1.955 ± 0 | ns |
TNF-α T0 | 55.62 ± 34.33 | 76.08 ± 86.01 | |
TNF- α T1 | 57.63 ± 55.27 | 32.98 ± 8.65 | ns |
PTX 3 T0 | 3591.9 ± 1730.99 | 1757.31 ± 621.18 | |
PTX 3 T1 | 1889.55 ± 151.25 | 1563.81 ± 332.84 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baro, V.; Bonavina, M.V.; Saettini, F.; D’Amico, G.; Trezza, A.; Denaro, L.; Grioni, D.; Landi, A. Effect of Vagus Nerve Stimulation on Blood Inflammatory Markers in Children with Drug-Resistant Epilepsy: A Pilot Study. Children 2022, 9, 1133. https://doi.org/10.3390/children9081133
Baro V, Bonavina MV, Saettini F, D’Amico G, Trezza A, Denaro L, Grioni D, Landi A. Effect of Vagus Nerve Stimulation on Blood Inflammatory Markers in Children with Drug-Resistant Epilepsy: A Pilot Study. Children. 2022; 9(8):1133. https://doi.org/10.3390/children9081133
Chicago/Turabian StyleBaro, Valentina, Maria Vittoria Bonavina, Francesco Saettini, Giovanna D’Amico, Andrea Trezza, Luca Denaro, Daniele Grioni, and Andrea Landi. 2022. "Effect of Vagus Nerve Stimulation on Blood Inflammatory Markers in Children with Drug-Resistant Epilepsy: A Pilot Study" Children 9, no. 8: 1133. https://doi.org/10.3390/children9081133