Associations between Sedentary Time and Sedentary Patterns and Cardiorespiratory Fitness in Chinese Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. CRF
2.3. Sedentary Behavior
2.4. Covariate
2.5. Statistics Analysis
3. Results
3.1. Descriptive Characteristics of the Sample
3.2. Descriptive Characteristics of ST and SP
3.3. Correlation Analysis of SB Variables and CRF
3.4. Associations between ST and CRF in Children and Adolescents
3.5. Associations between SP and CRF in Children and Adolescents
3.6. Exploration of the Intensity Attribute of the Duration of Breaks in ST in Girls
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sui, X.; LaMonte, M.J.; Blair, S.N. Cardiorespiratory fitness and risk of nonfatal cardiovascular disease in women and men with hypertension. Am. J. Hypertens. 2007, 20, 608–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, S.N.; Kohl, H.R.; Paffenbarger, R.J.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989, 262, 2395–2401. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Leger, L.A.; Olds, T.S.; Cazorla, G. Secular trends in the performance of children and adolescents (1980-2000): An analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports Med. 2003, 33, 285–300. [Google Scholar] [CrossRef]
- Ried-Larsen, M.; Grontved, A.; Moller, N.C.; Larsen, K.T.; Froberg, K.; Andersen, L.B. Associations between objectively measured physical activity intensity in childhood and measures of subclinical cardiovascular disease in adolescence: Prospective observations from the European Youth Heart Study. Br. J. Sports Med. 2014, 48, 1502–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, P.L.; Moeller, N.C.; Korsholm, L.; Kolle, E.; Wedderkopp, N.; Froberg, K.; Andersen, L.B. The association between aerobic fitness and physical activity in children and adolescents: The European youth heart study. Eur. J. Appl. Physiol. 2010, 110, 267–275. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Ortega, F.B.; Martinez-Gomez, D.; Labayen, I.; Moreno, L.A.; De Bourdeaudhuij, I.; Manios, Y.; Gonzalez-Gross, M.; Mauro, B.; Molnar, D.; et al. Objectively measured physical activity and sedentary time in European adolescents: The HELENA study. Am. J. Epidemiol. 2011, 174, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.S.; Leblanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phy. 2011, 8, 98–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, T.J.; Rollo, S.; Kuzik, N.; Demchenko, I.; Belanger, S.; Brisson-Boivin, K.; Carson, V.; Da, C.B.; Davis, M.; Hornby, S.; et al. International school-related sedentary behaviour recommendations for children and youth. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Santos, R.; Ekelund, U.; Sardinha, L.B. Association between Physical Activity, Sedentary Time, and Healthy Fitness in Youth. Med. Sci. Sport. Exer. 2014, 47, 575–580. [Google Scholar] [CrossRef]
- Kuzik, N.; Costa, B.G.G.D.; Hwang, Y.; Verswijveren, S.J.J.M.; Rollo, S.; Tremblay, M.S.; Bélanger, S.; Carson, V.; Davis, M.; Hornby, S.; et al. School-Related Sedentary Behaviours and Indicators of Health and Well-Being Among Children and Youth_ A Systematic Review. Int. J. Behav. Nutr. Phy. 2022, 19, 40–71. [Google Scholar] [CrossRef] [PubMed]
- Judice, P.B.; Silva, A.M.; Berria, J.; Petroski, E.L.; Ekelund, U.; Sardinha, L.B. Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.A.; Skidmore, P.M.; Stoner, L.; Harrex, H.; Saeedi, P.; Black, K.; Barone, G.B. Associations of accelerometer-measured sedentary time, sedentary bouts, and physical activity with adiposity and fitness in children. J. Sports Sci. 2020, 38, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.P.; Charman, S.J.; Ploetz, T.; Savory, L.A.; Kerr, C.J. Associations between prolonged sedentary time and breaks in sedentary time with cardiometabolic risk in 10-14-year-old children: The HAPPY study. J. Sports Sci. 2017, 35, 2164–2171. [Google Scholar] [CrossRef] [PubMed]
- Denton, S.J.; Trenell, M.I.; Plotz, T.; Savory, L.A.; Bailey, D.P.; Kerr, C.J. Cardiorespiratory fitness is associated with hard and light intensity physical activity but not time spent sedentary in 10-14 year old schoolchildren: The HAPPY study. PLoS ONE 2013, 8, e61073. [Google Scholar] [CrossRef]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Matsuzaka, A.; Takahashi, Y.; Yamazoe, M.; Kumakura, N.; Ikeda, A.; Wilk, B.; Bar-Or, O. Validity of the Multistage 20-M Shuttle-Run Test for Japanese Children, Adolescents, and Adults. Pediatri. Exerc. Sci. 2014, 16, 113–125. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S.; Dale, M.; LeBlanc, A.G.; Belanger, K.; Ortega, F.B.; Leger, L. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br. J. Sports Med. 2017, 51, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Sardinha, L.B.; Anderssen, S.A.; Harro, M.; Franks, P.W.; Brage, S.; Cooper, A.R.; Riddoch, C.; Froberg, K. Associations between objectively assessed physical activity and indicators of body fatness in 9- to 10-y-old European children: A population-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am. J. Clin. Nutr. 2004, 80, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Belcher, B.R.; Berrigan, D.; Papachristopoulou, A.; Brady, S.M.; Bernstein, S.B.; Brychta, R.J.; Hattenbach, J.D.; Tigner, I.J.; Courville, A.B.; Drinkard, B.E.; et al. Effects of Interrupting Children’s Sedentary Behaviors With Activity on Metabolic Function: A Randomized Trial. J. Clin. Endocrinol. Metab. 2015, 100, 3735–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Yin, X.; Sun, Y.; Zhang, T.; Li, M.; Zhang, F.; Liu, Y.; Xu, J.; Pei, D.; Huang, T. Research on Environmental Influencing Factors of Overweight and Obesity in Children and Adolescents in China. Nutrients 2021, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Mota, J.; Okely, A.D.; Pratt, M.; Moreira, C.; Coelho-E-Silva, M.J.; Vale, S.; Sardinha, L.B. The independent associations of sedentary behaviour and physical activity on cardiorespiratory fitness. Br. J. Sports Med. 2014, 48, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gomez, D.; Ortega, F.B.; Ruiz, J.R.; Vicente-Rodriguez, G.; Veiga, O.L.; Widhalm, K.; Manios, Y.; Béghin, L.; Valtueña, J.; Kafatos, A.; et al. Excessive sedentary time and low cardiorespiratory fitness in European adolescents: The HELENA study. Arch. Dis. Child. 2011, 96, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Cabanas-Sánchez, V.; Martínez-Gómez, D.; Esteban-Cornejo, I.; Pérez-Bey, A.; Castro Piñero, J.; Veiga, O.L. Associations of total sedentary time, screen time and non-screen sedentary time with adiposity and physical fitness in youth: The mediating effect of physical activity. J. Sports Sci. 2019, 37, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, L.; Syväoja, H.; Kallio, J.; Kulmala, J.; Kujala, U.M.; Tammelin, T.H. Objectively measured physical activity, body composition and physical fitness: Cross-sectional associations in 9- to 15-year-old children. Eur. J. Sport Sci. 2018, 18, 882–892. [Google Scholar] [CrossRef] [Green Version]
- Porter, A.K.; Matthews, K.J.; Salvo, D.; Kohl, H.W. Associations of Physical Activity, Sedentary Time, and Screen Time With Cardiovascular Fitness in United States Adolescents: Results From the NHANES National Youth Fitness Survey. J. Phys. Act. Health 2017, 14, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary Time and Its Association With Risk for Disease Incidence, Mortality, and Hospitalization in Adults: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Larouche, R.; Saunders, T.J.; Faulkner, G.E.; Colley, R.; Tremblay, M. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: A systematic review of 68 studies. J. Phys. Act. Health. 2014, 11, 206–226. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, L.; Kolle, E.; Steene-Johannessen, J.; Anderssen, S.A.; Andersen, L.B. Cross sectional analysis of the association between mode of school transportation and physical fitness in children and adolescents. Int. J. Behav. Nutr. Phy. 2013, 10, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, R.; Olga, A.; Tremblay, M.S. The whole day matters: Understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J. Sport Health Sci. 2020, 9, 493–510. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child. Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
Parameters | Boys (n = 255) | Girls (n = 280) | p | Cohen’s d |
---|---|---|---|---|
Age (y) a | 12.4 ± 3.4 | 12.7 ± 3.3 | 0.20 | 0.09 |
Residence (%) b | ||||
Urban | 61.2 | 65.4 | 0.32 | 0.04 |
Rural | 38.8 | 34.6 | ||
Height (cm) a | 153.2 ± 19.7 | 150.6 ± 15.2 | 0.08 | 0.15 |
Weight (kg) a | 45.3 ± 17 | 41.7 ± 12.3 | <0.001 | 0.24 |
BMI (kg/m2) a | 18.6 ± 3.2 | 18.0 ± 2.9 | 0.02 | 0.20 |
SES a | 0.05 ± 1.1 | −0.03 ± 0.9 | 0.42 | 0.08 |
Sleep time (h/d) a | 8.4 ± 1.3 | 8.0 ± 1.6 | <0.001 | 0.28 |
VO2max (mL/kg/min) a | 46.5 ± 4.1 | 42.9 ± 3.6 | <0.001 | 0.93 |
MVPA (min/d) a | 62.0 ± 19.3 | 49.5 ± 15.5 | <0.001 | 0.71 |
Parameters | Boys (n = 255) | Girls (n = 280) | p | Cohen’s d |
---|---|---|---|---|
Total ST (min/d) a | 655.1 ± 119.9 | 699.5 ± 106.7 | <0.001 | 0.30 |
Prolonged ST (min/d) a | 373.7 ± 157.4 | 414.0 ± 145.4 | <0.001 | 0.27 |
Non-prolonged ST (min/d) a | 281.5 ± 92.3 | 285.5 ± 94.3 | 0.62 | 0.04 |
Screen time (min/d) b | 31.4 (4.29, 88.9) | 30.0 (2.86, 95.7) | 0.81 | 0.02 |
Extracurricular learning time (min/d) a | 350.7 (259.3, 490.7) | 345.7 (250.7, 500.0) | 0.99 | <0.01 |
Passive traffic ST (min/d) a | 10.7 (5.7, 22.9) | 12.1 (7.1, 17.4) | 0.97 | <0.01 |
Social ST (min/d) a | 22.9 (12.9, 51.3) | 22.9 (15.2, 42.9) | 0.64 | 0.05 |
Prolonged sedentary bouts (number/d) a | 10.1 ± 3.2 | 9.9 ± 3.0 | 0.43 | 0.06 |
Non-prolonged sedentary bouts (number/d) a | 30.0 ± 14.2 | 22.8 ± 12 | <0.001 | 0.55 |
Breaks in ST (number/d) a | 41.2 ± 13.8 | 33.7 ± 11.5 | <0.001 | 0.59 |
Duration of breaks in ST (min/d) a | 98.1 ± 31.1 | 78.3 ± 24.0 | <0.001 | 0.71 |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. VO2max | - | |||||||||||
2. Total ST | −0.09 | - | ||||||||||
3. Prolonged ST | 0.05 | 0.07 | - | |||||||||
4. Non-prolonged ST | −0.06 | −0.05 | −0.83 ** | - | ||||||||
5. Screen time | −0.04 | −0.06 | −0.05 | 0.07 | - | |||||||
6. Extracurricular learning ST | −0.06 | 0.19 ** | −0.03 | −0.01 | −0.05 | - | ||||||
7. Passive traffic ST | −0.13 | −0.07 | −0.14 * | 0.11 | 0.07 | 0.03 | - | |||||
8. Social ST | −0.001 | −0.08 | 0.03 | −0.04 | 0.24 ** | −0.01 | −0.04 | - | ||||
9. Prolonged sedentary bouts | 0.03 | 0.06 | 0.91 ** | −0.73 ** | −0.05 | −0.04 | −0.16 * | 0.06 | - | |||
10. Non-prolonged sedentary bouts | 0.17 ** | −0.62 ** | −0.24 ** | 0.16 ** | −0.02 | −0.14 ** | −0.05 | −0.01 | −0.25 ** | - | ||
11. Breaks in ST | 0.19 ** | −0.62 ** | −0.03 | −0.01 | −0.04 | −0.15 ** | −0.10 | 0.001 | −0.02 | 0.97 ** | - | |
12. Duration of breaks in ST | 0.19 ** | −0.51 ** | −0.05 | 0.02 | 0.07 | −0.17 ** | −0.09 | 0.05 | −0.05 | 0.84 ** | 0.86 ** | - |
Independent Variables | Boys | Girls | ||
---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | |
Total ST | −0.001 (−0.005, 0.004) | 0.001 (−0.004, 0.005) | 0.003 (−0.001, 0.007) | 0.005 (−0.001, 0.009) |
Prolonged ST | −0.001 (−0.003, 0.002) | −0.001 (−0.002, 0.002) | 0.001 (−0.001, 0.003) | 0.001 (−0.001, 0.003) |
Non-prolonged ST | −0.001 (−0.005, 0.004) | −0.001 (−0.005, 0.004) | −0.001 (−0.004, 0.002) | −0.001 (−0.004, 0.002) |
Screen time | −0.002 (−0.007, 0.003) | −0.002 (−0.008, 0.003) | −0.005 (−0.010, −0.001) * | −0.006 (−0.010, −0.001) ** |
Extracurricular learning ST | 0.001 (−0.002, 0.003) | 0.001 (−0.001, 0.003) | −0.001 (−0.003, 0.001) | −0.001 (−0.002, 0.001) |
Passive traffic ST | 0.001 (−0.033, 0.035) | 0.001 (−0.033, 0.035) | −0.030 (−0.061, −0.001) * | −0.031 (−0.061, −0.002) * |
Social ST | 0.004 (−0.006, 0.015) | 0.004 (−0.007, 0.015) | 0.003 (−0.004, 0.010) | 0.003 (−0.003, 0.010) |
Independent Variables | Boys | Girls | ||
---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | |
Prolonged sedentary bouts | 0.001 (−0.129, 0.129) | 0.001 (−0.128, 0.130) | 0.066 (−0.035, 0.167) | 0.056 (−0.046, 0.158) |
Non-prolonged sedentary bouts | 0.025 (−0.012, 0.061) | 0.025 (−0.014, 0.064) | 0.020 (−0.011, 0.051) | 0.030 (−0.002, 0.063) |
Breaks in ST | 0.027 (−0.011, 0.064) | 0.028 (−0.013, 0.068) | 0.031 (−0.003, 0.064) | 0.041 (0.007, 0.076) * |
Duration of breaks in ST | 0.010 (−0.004, 0.025) | 0.011 (−0.004, 0.027) | 0.015 (0.001, 0.028) * | 0.021 (0.007, 0.035) ** |
Independent Variables | Model 1 | Model 2 |
---|---|---|
Breaks in ST | 0.075 (0.027, 0.123) ** | 0.003 (−0.042, 0.048) |
Duration of breaks in ST | 0.021 (0.012, 0.046) ** | 0.001 (−0.024, 0.025) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yin, X.; Li, Y.; Sun, Y.; Zhang, T.; Zhang, F.; Liu, Y.; Guo, Y.; Sun, P. Associations between Sedentary Time and Sedentary Patterns and Cardiorespiratory Fitness in Chinese Children and Adolescents. Children 2022, 9, 1140. https://doi.org/10.3390/children9081140
Li M, Yin X, Li Y, Sun Y, Zhang T, Zhang F, Liu Y, Guo Y, Sun P. Associations between Sedentary Time and Sedentary Patterns and Cardiorespiratory Fitness in Chinese Children and Adolescents. Children. 2022; 9(8):1140. https://doi.org/10.3390/children9081140
Chicago/Turabian StyleLi, Ming, Xiaojian Yin, Yuqiang Li, Yi Sun, Ting Zhang, Feng Zhang, Yuan Liu, Yaru Guo, and Pengwei Sun. 2022. "Associations between Sedentary Time and Sedentary Patterns and Cardiorespiratory Fitness in Chinese Children and Adolescents" Children 9, no. 8: 1140. https://doi.org/10.3390/children9081140
APA StyleLi, M., Yin, X., Li, Y., Sun, Y., Zhang, T., Zhang, F., Liu, Y., Guo, Y., & Sun, P. (2022). Associations between Sedentary Time and Sedentary Patterns and Cardiorespiratory Fitness in Chinese Children and Adolescents. Children, 9(8), 1140. https://doi.org/10.3390/children9081140