The Presence of PDL-1 on CD8+ Lymphocytes Is Linked to Survival in Neonatal Sepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Participant Enrollment
2.2. Clinical Data Collection
2.3. Diagnostic Criteria for Clinical Sepsis and/or Culture-Proven Sepsis
2.4. Participant Categorization and Stratification
2.5. Bacteriological Analysis
2.6. Immunological Analysis
2.7. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Gestational Age, Spearman Rank | p-Value | Birth Weight, Spearman Rank | p-Value |
---|---|---|---|---|
CD8, % | 0.15 | >0.05 | 0.17 | >0.05 |
CD14, MFI | 0.13 | >0.05 | 0.11 | >0.05 |
CD 64 Index | −0.13 | >0.05 | −0.11 | >0.05 |
HLADR+ Mon, % | 0.12 | >0.05 | 0.09 | >0.05 |
HLADR+ Lymp, % | 0.02 | >0.05 | 0.02 | >0.05 |
PDL-1(CD 274) Mon, % | −0.2 | >0.05 | −0.26 | >0.05 |
PD-1 (CD 279) Mon, % | 0.07 | >0.05 | 0.03 | >0.05 |
PDL-1 (CD 274) CD4, % | −0.17 | >0.05 | −0.15 | >0.05 |
PD-1 (CD 279) CD4, % | 0.01 | >0.05 | 0.17 | >0.05 |
References
- De Souza, D.; Machado, F. Epidemiology of Pediatric Septic Shock. J. Pediatric Intensive Care 2019, 8, 3–10. [Google Scholar]
- Ministry of Health. Health of the Population of the Republic of Kazakhstan and the Activities of Healthcare Organizations in 2019: Statistical Collection; Ministry of Health: Astana, Kazakhstan, 2020; 323p.
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatric Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iskander, K.N.; Osuchowski, M.F.; Stearns-Kurosawa, D.; Kurosawa, S.; Stepien, D.; Valentine, C.; Remick, D. Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding. Physiol. Rev. 2013, 93, 1247–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaud-Ribeiro, L.; Silami, P.H.N.C.; Lima-Setta, F.; Prata-Barbosa, A. Pediatric Sepsis Research: Where Are We and Where Are We Going? Front. Pediatr. 2022, 10, 829119. [Google Scholar] [CrossRef]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef]
- Atreya, M.R.; Wong, H.R. Precision medicine in pediatric sepsis. Curr. Opin. Pediatr. 2019, 31, 322–327. [Google Scholar] [CrossRef]
- Jubel, J.M.; Barbati, Z.R.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. The Role of PD-1 in Acute and Chronic Infection. Front. Immunol. 2020, 11, 487. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.Y.; Lin, C.W.; Cheng, K.S.; Lin, C.; Wang, Y.M.; Lin, I.T.; Chou, Y.H.; Hsu, P.N. Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection. Clin. Exp. Immunol. 2010, 161, 551–559. [Google Scholar] [CrossRef]
- Niu, B.; Zhou, F.; Su, Y.; Wang, L.; Xu, Y.; Yi, Z.; Wu, Y.; Du, H.; Ren, G. Different Expression Characteristics of LAG3 and PD-1 in Sepsis and Their Synergistic Effect on T Cell Exhaustion: A New Strategy for Immune Checkpoint Blockade. Front. Immunol. 2019, 10, 1888. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Y.; Lou, J.; Li, J.; Bo, L.; Zhu, K.; Wan, X.; Deng, X.; Cai, Z. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit. Care 2010, 14, R220. [Google Scholar] [CrossRef] [Green Version]
- Expert Commission on Health Development Ministry of Health of the Republic of Kazakhstan. Protocol Bacterial Sepsis of the Newborn; Ministry of Health: Astana, Kazakhstan, 2014.
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern. Neonatal Med. 2017, 31, 1646–1659. [Google Scholar] [CrossRef] [PubMed]
- Reis Machado, J.; Soave, D.F.; da Silva, M.V.; de Menezes, L.B.; Etchebehere, R.M.; dos Reis Monteiro, M.L.G.; Reis, M.A.d.; Corrêa, R.R.M.; Celes, M.R.N. Neonatal Sepsis and Inflammatory Mediators. Mediat. Inflamm. 2014, 2014, 269681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichberger, J.; Resch, E.; Resch, B. Diagnosis of Neonatal Sepsis: The Role of Inflammatory Markers. Front. Pediatr. 2022, 10, 840288. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Chen, G.-Y.; Liu, Z.; Zhao, Y.; Xu, G.-Y.; Li, S.-F.; Li, C.-N.; Chen, L.-S.; Tao, Z. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review. Crit. Care 2018, 22, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Tang, J.; Chen, D. Meta-analysis of diagnostic accuracy of neutrophil CD64 for neonatal sepsis. Ital. J. Pediatr. 2016, 42, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Aleem, N.F.; Sorour, A.S.; Elkholy, Y.S.; Sabry, A.M. Diagnostic Role of CD64 on Different Immune Cells in Early Diagnosis of Neonatal Sepsis. Egypt. J. Immunol. 2018, 25, 35–44. [Google Scholar]
- Ng, P.C.; Li, G.; Chui, K.M.; Chu, W.C.W.; Li, K.; Wong, R.P.O.; Fok, T.F. Quantitative Measurement of Monocyte HLA-DR Expression in the Identification of Early-Onset Neonatal Infection. Neonatology 2006, 89, 75–81. [Google Scholar] [CrossRef]
- Chen, Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis prognosis and prediction of sepsis. Front. Biosci. 2017, 22, 4547. [Google Scholar] [CrossRef] [Green Version]
- Pietrasanta, C.; Ronchi, A.; Vener, C.; Poggi, C.; Ballerini, C.; Testa, L.; Colombo, R.; Spada, E.; Dani, C.; Mosca, F.; et al. Presepsin (Soluble CD14 Subtype) as an Early Marker of Neonatal Sepsis and Septic Shock: A Prospective Diagnostic Trial. Antibiotics 2021, 10, 580. [Google Scholar] [CrossRef]
- Hashem, H.E.; Ibrahim, Z.H.; Ahmed, W.O. Diagnostic, Prognostic, Predictive, and Monitoring Role of Neutrophil CD11b and Monocyte CD14 in Neonatal Sepsis. Dis. Markers 2021, 2021, 4537760. [Google Scholar] [CrossRef]
- Siefker, D.T.; Adkins, B. Rapid CD8+ Function Is Critical for Protection of Neonatal Mice from an Extracellular Bacterial Enteropathogen. Front. Pediatr. 2017, 4, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortmann, I.; Dammann, M.-T.; Siller, B.; Humberg, A.; Demmert, M.; Tüshaus, L.; Lindert, J.; van Zandbergen, V.; Pagel, J.; Rupp, J.; et al. Infants Younger Than 90 Days Admitted for Late-Onset Sepsis Display a Reduced Abundance of Regulatory T Cells. Front. Immunol. 2021, 12, 666447. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, J.; Yi, W.; Li, J.; He, N.; Kang, L.; He, Z.; Chen, C. Identification of Immune-Related Key Genes as Potential Diagnostic Biomarkers of Sepsis in Children. J. Inflamm. Res. 2022, 15, 2441–2459. [Google Scholar] [CrossRef] [PubMed]
- Amadi, M.; Visentin, S.; Tosato, F.; Fogar, P.; Giacomini, G.; Res, G.; Bonadies, L.; Zaramella, P.; Plebani, M.; Cosmi, E.; et al. Neonatal lymphocyte subpopulations analysis and maternal preterm premature rupture of membranes: A pilot study. Clin. Chem. Lab. Med. 2021, 59, 1688–1698. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.J.; Hope, J.L.; Mueller, Y.M.; Fike, A.J.; Kumova, O.K.; van Zessen, D.B.H.; Steegers, E.A.P.; van der Burg, M.; Katsikis, P.D. Public Clonotypes and Convergent Recombination Characterize the Naïve CD8+ T-Cell Receptor Repertoire of Extremely Preterm Neonates. Front. Immunol. 2017, 8, 1859. [Google Scholar] [CrossRef] [Green Version]
- Rudd, B.D. Neonatal T Cells: A Reinterpretation. Annu. Rev. Immunol. 2020, 38, 229–247. [Google Scholar] [CrossRef]
- Fike, A.J.; Kumova, O.K.; Carey, A.J. Dissecting the defects in the neonatal CD8+ T-cell response. J. Leukoc. Biol. 2019, 106, 1051–1061. [Google Scholar] [CrossRef]
- Guignant, C.; Lepape, A.; Huang, X.; Kherouf, H.; Denis, L.; Poitevin, F.; Malcus, C.; Chéron, A.; Allaouchiche, B.; Gueyffier, F.; et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care 2011, 15, R99. [Google Scholar] [CrossRef] [Green Version]
- Spec, A.; Shindo, Y.; Burnham, C.-A.D.; Wilson, S.; Ablordeppey, E.; Beiter, E.R.; Chang, K.; Drewry, A.M.; Hotchkiss, R.S. T cells from patients with Candida sepsis display a suppressive immunophenotype. Crit. Care 2015, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Fallon, E.A.; Chung, C.S.; Heffernan, D.S.; Chen, Y.; de Paepe, M.E.; Ayala, A. Survival and Pulmonary Injury After Neonatal Sepsis: PD1/PDL1′s Contributions to Mouse and Human Immunopathology. Front. Immunol. 2021, 12, 634529. [Google Scholar] [CrossRef]
- Zasada, M.; Lenart, M.; Rutkowska-Zapała, M.; Stec, M.; Durlak, W.; Grudzień, A.; Krzeczkowska, A.; Mól, N.; Pilch, M.; Siedlar, M.; et al. Analysis of PD-1 expression in the monocyte subsets from non-septic and septic preterm neonates. PLoS ONE 2017, 12, e0186819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Zhou, L. PD-1 signaling pathway in sepsis: Does it have a future? Clin. Immunol. 2021, 229, 108742. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Monneret, G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 2017, 14, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Wang, Y.P.; Xie, J.; Zhao, Z.Z.; Gupta, S.; Guo, Y.; Jia, S.H.; Parodo, J.; Marshall, J.C.; Deng, X. Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis. Blood 2021, 138, 806–810. [Google Scholar] [CrossRef]
- Nakamori, Y.; Park, E.J.; Shimaoka, M. Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Front. Immunol. 2021, 11, 624279. [Google Scholar] [CrossRef]
Antibody | Clone ID | Source |
---|---|---|
FITC αHuman CD24 | 555427 | BD Pharmingen |
FITC αHuman CD14 | 555397 | BD Pharmingen |
Purified α-Human CD3/CD4/CD8 | MA1-12474 | BD Simultest |
Purified α human CD3/CD16+CD56 | 342403 | BD Simultest |
PE α-human HLA-DR | 555561 | BD Pharmingen |
PE α-human CD64 | 558592 | BD Pharmingen |
PE-Cy7 α-human CD19 | 557835 | BD Pharmingen |
PE-Cy7 α-human CD274 | 558017 | BD Pharmingen |
PE-Cy7 α-human CD279 (PD-1) | 561272 | BD Pharmingen |
Parameter | Non-Septic Infants n = 100 | Surviving Septic Infants n = 80 | Deceased Septic Infants n = 30 | p-Value |
---|---|---|---|---|
Birth weight, grams, | 2390 (898) | 1927 (990) | 1576 (860) | 0.016 |
Gestational age, weeks, mean (SD) | 35 (3.5) | 32.2 (5.1) | 29.6 (4.1) | 0.018 |
Cesarean section, % | 50 | 61 | 70 | 0.016 |
CRP, mg/L, mean (SD) | 4.6 (6.5) | 9.5 (11.2) | 5.6 (10.1) | 0.01 |
Procalcitonin, ng/mL | 0.24 (3.1) | 0.57 (1.6) | 1.6 (5.1) | 0.31 |
Culture-proven pathogens, Gram-positive%: Gram-negative% | - | 71:29 | 75:25 | 0.54 |
Parameter | Non-Septic Infants n = 100 | Surviving Septic Infants n = 80 | Deceased Septic Infants n = 30 | p-ANOVA |
---|---|---|---|---|
HGB, g/L, median (IQR) | 174.8 (162–193) | 162 (139–177) | 159 (142–170) | 0.008 |
RBC, ×109/L, median (IQR) | 4.55 (3.9–4.9) | 4.1 (3.5–4.66) | 3.9 (3.66–4.2) | 0.038 |
Platelet, ×1012/L, median (IQR) | 144 (106–190) | 143 (80–189) | 131 (80–187) | >0.05 |
Platelet–lymphocyte ratio, median (IQR) | 2.8 (1.9–4.5) | 3.2 (1.9–5.6) | 2.6 (1.66–3.9) | >0.05 |
WBC, × 109/L, median (IQR) | 15.2 (11.7–22.6) | 15.5 (11.5–23.7) | 17.4 (8.9–33.2) | >0.05 |
Leukopenia, count/total amount (%) | 0 | 3/80 (3.7%) | 2/30 (6.6%) | >0.05 |
Leukocytosis, count/total amount (%) | 27/100 (27%) | 12/30 (40%) | 24/80 (33%) | >0.05 |
Lymphocytes%, median (IQR) | 48.8 (37.8–66.0) | 49.7 (36.1–75.7) | 68.2 (47.5–79.5) | >0.05 |
Neutrophils%, median (IQR) | 35 (24.8–51.5) | 36.3 (19.8–45.4) | 24.8 (14.8–41.8) | >0.05 |
Lymphocytes, ×109/L, median (IQR) | 7.25 (5.0–10.55) | 6.5 (4.4–11.7) | 8.9 (4.5–15.3) | >0.05 |
Neutrophils 109 L−1, median (IQR) | 5.6 (3.75–7.6) | 4.7 (2.6–7.3) | 4.3 (1.7–6.75) | >0.05 |
NLR, median (IQR) | 0.67 (0.36–1.25) | 0.72 (0.33–1.3) | 0.71 (0.27–1.1) | >0.05 |
NLR > 1, count/total amount (%) | 34/100 (34%) | 24/80 (30%) | 11/30 (36%) | >0.05 |
Parameter | Non-Septic Infants | Surviving Septic Infants | Deceased Septic Infants | p-Value |
---|---|---|---|---|
CD3%, median (IQR) | 65.5 (57.5–71.5) | 62.0 (50.0–71.0) | 58.5 (48.0–72) | >0.05 |
CD4%, median (IQR) | 45 (36.0–50.0) | 39.0 (29.0–51.0) | 39.5 (34.0–46.0) | >0.05 |
CD8%, median (IQR) | 20.0 (15.0–26.0) | 18.0 (14.0–250.) | 15.0 (13.0–24.0) | 0.03 |
CD4/CD8, median (IQR) | 2.1 (1.3–2.7) | 2.1 (1.4–3.1) | 2.5 (1.7–3.4) | >0.05 |
CD19%, median (IQR) | 21 (13.0–28.0) | 20.6 (12.0–29) | 21.9 (15.0–32.3) | >0.05 |
CD56/16%, median (IQR) | 13.0 (8.5–17.0) | 15.0 (8.0– 24.0) | 13.3 (9.1–20.0) | >0.05 |
CD3+CD56/16+%, median (IQR) | 0.64 (0.12–1.59) | 0.32 (0.09–1.2) | 0.7 (0.28–2.7) | >0.05 |
Parameter | Non-Septic Infants | Surviving Septic Infants | Deceased Septic Infants | p-Value |
---|---|---|---|---|
CD14 MFI Mon, Median (IQR) | 28 (17.0–37.0) | 16.0 (12.0–21.0) | 21.0 (12.5 24.0) | 0.002 |
CD 64 Index, Median (IQR) | 3.2 (2.2–5.2) | 9.2 (2.9–17.7) | 5.7 (3.22–9.0) | 0.001 |
CD 64 Index > 4, count/total amount, (%) | 31/100 (31%) | 20/30 (66%) | 53/80 (66.2%) | 0.001 |
HLADR+ Mon%, Median (IQR) | 97.5 (90–99) | 95.0 (82–99.0) | 90 (63.0–99.0) | >0.05 |
HLADR+ Lymp%, Median (IQR) | 6.8 (3.8–10.4) | 6.4 (3.4–15.3) | 7.0 (4.35–16.5) | >0.05 |
PDL-1 (CD 274) Mon%, Median (IQR) | 0.87 (1.16–2.0) | 1.14 (0.44–5.2) | 1.3 (0.93–5.0) | >0.05 |
PD-1 (CD 279) Mon%, Median (IQR) | 69.0 (34.1–78) | 67 (61–72) | 75.5 (70.0–80.5) | >0.05 |
PDL-1 (CD 274) CD4%, Median (IQR) | 0.47 (0.28–0.8) | 0.59 (0.26–1.0) | 0.72 (0.45–0.98) | >0.05 |
PD-1 (CD 279) CD4%, Median (IQR) | 45.0 (26–65) | 62 (30–73) | 74.0 (68.5–79.0) | 0.012 |
PDL-1 (CD 274) CD8%, Median (IQR) | 0.94 (0.38–1.6) | 0.85 (0.48–7.3) | 2.8 (2.5–8.5) | 0.02 |
PD-1 (CD 279) CD8%, Median (IQR) | 83 (73–92) | 79 (74.0–84.6) | 85.0 (78.0–90.0) | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmaltdinova, L.L.; Zhumadilova, Z.A.; Kolesnichenko, S.I.; Lavrinenko, A.V.; Kadyrova, I.A.; Avdienko, O.V.; Panibratec, L.G.; Vinogradskaya, E.V. The Presence of PDL-1 on CD8+ Lymphocytes Is Linked to Survival in Neonatal Sepsis. Children 2022, 9, 1171. https://doi.org/10.3390/children9081171
Akhmaltdinova LL, Zhumadilova ZA, Kolesnichenko SI, Lavrinenko AV, Kadyrova IA, Avdienko OV, Panibratec LG, Vinogradskaya EV. The Presence of PDL-1 on CD8+ Lymphocytes Is Linked to Survival in Neonatal Sepsis. Children. 2022; 9(8):1171. https://doi.org/10.3390/children9081171
Chicago/Turabian StyleAkhmaltdinova, Lyudmila L., Zhibek A. Zhumadilova, Svetlana I. Kolesnichenko, Alyona V. Lavrinenko, Irina A. Kadyrova, Olga V. Avdienko, Lyudmila G. Panibratec, and Elena V. Vinogradskaya. 2022. "The Presence of PDL-1 on CD8+ Lymphocytes Is Linked to Survival in Neonatal Sepsis" Children 9, no. 8: 1171. https://doi.org/10.3390/children9081171
APA StyleAkhmaltdinova, L. L., Zhumadilova, Z. A., Kolesnichenko, S. I., Lavrinenko, A. V., Kadyrova, I. A., Avdienko, O. V., Panibratec, L. G., & Vinogradskaya, E. V. (2022). The Presence of PDL-1 on CD8+ Lymphocytes Is Linked to Survival in Neonatal Sepsis. Children, 9(8), 1171. https://doi.org/10.3390/children9081171