Performance Evaluation of Deep Learning Models for Classifying Cybersecurity Attacks in IoT Networks
Abstract
:1. Introduction
2. Materials
Dataset
3. Methods
3.1. Preprocessing, Feature Selection, and Data Standardization
3.2. Proposed Models of Deep Learning Architecture
3.3. Performance Evaluations
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerodimos, A.; Maglaras, L.; Ferrag, M.A.; Ayres, N.; Kantzavelou, I. IoT: Communication protocols and security threats. Internet Things Cyber-Phys. Syst. 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Mishra, N.; Pandya, S. Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review. IEEE Access 2021, 9, 59353–59377. [Google Scholar] [CrossRef]
- Alahmadi, A.A.; Aljabri, M.; Alhaidari, F.; Alharthi, D.J.; Rayani, G.E.; Marghalani, L.A.; Alotaibi, O.B.; Bajandouh, S.A. DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions. Electronics 2023, 12, 3103. [Google Scholar] [CrossRef]
- Haque, S.; El-Moussa, F.; Komninos, N.; Muttukrishnan, R. A Systematic Review of Data-Driven Attack Detection Trends in IoT. Sensors 2023, 23, 7191. [Google Scholar] [CrossRef]
- IoT Connected Devices Worldwide 2019–2030. Statista. Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 31 October 2023).
- Popova, P.; Marinova, K.; Popov, V. Internet of Things and Big Data Analytics for Risk Management in Digital Tourism Ecosystems. Risks 2023, 11, 180. [Google Scholar] [CrossRef]
- Fehringer, H.; Stary, C. User-Informed Adaptation in IoT Home Healthcare: Grounding Development in Empirical Evidence. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1901–1925. [Google Scholar] [CrossRef]
- Alahmad, T.; Neményi, M.; Nyéki, A. Applying IoT Sensors and Big Data to Improve Precision Crop Production: A Review. Agronomy 2023, 13, 2603. [Google Scholar] [CrossRef]
- Ndjuluwa, L.N.P.; Adebisi, J.A.; Dayoub, M. Internet of Things for Crop Farming: A Review of Technologies and Applications. Commodities 2023, 2, 367–381. [Google Scholar] [CrossRef]
- Allioui, H.; Mourdi, Y. Exploring the Full Potentials of IoT for Better Financial Growth and Stability: A Comprehensive Survey. Sensors 2023, 23, 8015. [Google Scholar] [CrossRef] [PubMed]
- Aldhaheri, A.; Alwahedi, F.; Ferrag, M.A.; Battah, A. Deep learning for cyber threat detection in IoT networks: A review. Internet Things Cyber-Phys. Syst. 2024, 4, 110–128. [Google Scholar] [CrossRef]
- Chaudhary, S.; Mishra, P.K. DDoS attacks in Industrial IoT: A survey. Comput. Netw. 2023, 236, 110015. [Google Scholar] [CrossRef]
- Kumari, P.; Jain, A.K. A comprehensive study of DDoS attacks over IoT network and their countermeasures. Comput. Secur. 2023, 127, 103096. [Google Scholar] [CrossRef]
- Aguru, A.D.; Erukala, S.B. A lightweight multi-vector DDoS detection framework for IoT-enabled mobile health informatics systems using deep learning. Inf. Sci. 2024, 662, 120209. [Google Scholar] [CrossRef]
- Lei, T.; Xue, J.; Wang, Y.; Baker, T.; Niu, Z. An empirical study of problems and evaluation of IoT malware classification label sources. J. King Saud Univ.—Comput. Inf. Sci. 2024, 36, 101898. [Google Scholar] [CrossRef]
- Affinito, A.; Zinno, S.; Stanco, G.; Botta, A.; Ventre, G. The evolution of Mirai botnet scans over a six-year period. J. Inf. Secur. Appl. 2023, 79, 103629. [Google Scholar] [CrossRef]
- Kaur, B.; Dadkhah, S.; Shoeleh, F.; Neto, E.C.; Xiong, P.; Iqbal, S.; Lamontagne, P.; Ray, S.; Ghorbani, A.A. Internet of Things (IoT) security dataset evolution: Challenges and future directions. Internet Things 2023, 22, 100780. [Google Scholar] [CrossRef]
- Abbas, S.; Bouazzi, I.; Ojo, S.; Al Hejaili, A.; Sampedro, G.A.; Almadhor, A.; Gregus, M. Evaluating deep learning variants for cyber-attacks detection and multi-class classification in IoT networks. PeerJ Comput. Sci. 2024, 10, e1793. [Google Scholar] [CrossRef] [PubMed]
- Akgun, D.; Hizal, S.; Cavusoglu, U. A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Comput. Secur. 2022, 118, 102748. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Yang, S.; Luo, X.; Li, D.; Wang, J. A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization. PeerJ Comput. Sci. 2023, 9, e1569. [Google Scholar] [CrossRef]
- Neto, E.C.P.; Dadkhah, S.; Ferreira, R.; Zohourian, A.; Lu, R.; Ghorbani, A.A. CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment. Sensors 2023, 23, 5941. [Google Scholar] [CrossRef]
- Khanday, S.A.; Fatima, H.; Rakesh, N. A Novel Data Preprocessing Model for Lightweight Sensory IoT Intrusion Detection. Int. J. Math. Eng. Manag. Sci. 2024, 9, 188–204. [Google Scholar] [CrossRef]
- Abbas, S.; Al Hejaili, A.; Sampedro, G.A.; Abisado, M.; Almadhor, A.; Shahzad, T.; Ouahada, K. A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures. IEEE Access 2023, 11, 112189–112198. [Google Scholar] [CrossRef]
- Le, T.-T.-H.; Wardhani, R.W.; Putranto, D.S.C.; Jo, U.; Kim, H. Toward Enhanced Attack Detection and Explanation in Intrusion Detection System-Based IoT Environment Data. IEEE Access 2023, 11, 131661–131676. [Google Scholar] [CrossRef]
- Inuwa, M.M.; Das, R. A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks. Internet Things 2024, 26, 101162. [Google Scholar] [CrossRef]
- CIC IoT Dataset 2023. Available online: https://www.unb.ca/cic/datasets/iotdataset-2023.html (accessed on 31 October 2023).
- Frye, M.; Mohren, J.; Schmitt, R.H. Benchmarking of Data Preprocessing Methods for Machine Learning-Applications in Production. Procedia CIRP 2021, 104, 50–55. [Google Scholar] [CrossRef]
Type | Target | Total Number of Records | Percentage of Records Used (1%) | Class Distribution |
---|---|---|---|---|
Benign | Benign | 1,098,195 | 10,982 | 2.35% |
DDoS | Attack | 33,984,560 | 339,846 | 72.79% |
DoS | Attack | 8,090,738 | 80,907 | 17.33% |
Mirai | Attack | 2,634,124 | 26,341 | 5.64% |
Recon | Attack | 354,565 | 3546 | 0.76% |
Spoofing | Attack | 486,504 | 4865 | 1.04% |
Web | Attack | 24,829 | 248 | 0.05% |
Bruteforce | Attack | 13,064 | 131 | 0.03% |
Total | 46,686,579 | 466,866 |
# | Characteristics | Minimum and Maximum Values | # | Characteristics | Minimum and Maximum Values |
---|---|---|---|---|---|
1 | flow_duration | [0;68,378.35] | 21 | SSH | [0;1] |
2 | Header_Length | [0;9,861,631.0] | 22 | TCP | [0;1] |
3 | Protocol Type | [0;47] | 23 | UDP | [0;1] |
4 | Duration | [0;255] | 24 | ARP | [0;1] |
5 | Rate | [0;7,340,032.0] | 25 | ICMP | [0;1] |
6 | Srate | [0;7,340,032.0] | 26 | IPv | [0;1] |
7 | Drate | [0;1.232] | 27 | LLC | [0;1] |
8 | fin_flag_number | [0;1] | 28 | Tot sum | [42;8,5296.6] |
9 | syn_flag_number | [0;1] | 29 | Min | [42;3380.3] |
10 | rst_flag_number | [0;1] | 30 | Max | [42;27,052] |
11 | psh_flag_number | [0;1] | 31 | AVG | [42;7618.42] |
12 | ack_flag_number | [0;1] | 32 | Std | [0; 6961.53] |
13 | ack_count | [0;4.6] | 33 | Tot size | [42; 4483.9] |
14 | syn_count | [0;7.9] | 34 | IAT | [0;167,639,419.98] |
15 | fin_count | [0;27.2] | 35 | Number | [1;13.5] |
16 | urg_count | [0;3466.6] | 36 | Magnitude | [9.17;121.46] |
17 | rst_count | [0;8838.5] | 37 | Radius | [0;9865.62] |
18 | HTTP | [0;1] | 38 | Covariance | [0;48,937,857.68] |
19 | HTTPS | [0;1] | 39 | Variance | [0;1] |
20 | DNS | [0;1] | 40 | Weight | [1;244.6] |
Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | Model Size | Training Time (Seconds) | Inference Time (Seconds) |
---|---|---|---|---|---|---|---|
DNN | 99.02 | 98.97 | 99.02 | 98.95 | 1.30 MB | 2372 | 11 |
LSTM | 85.98 | 85.37 | 85.98 | 84.03 | 32.41 KB | 3701 | 25 |
CNN | 99.10 | 99.08 | 99.10 | 99.05 | 4.15 MB | 767 | 6 |
Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | Model Size | Training Time (Seconds) | Inference Time (Seconds) |
---|---|---|---|---|---|---|---|
DNN | 99.38 | 99.42 | 99.38 | 99.40 | 1.30 MB | 1379 | 6 |
LSTM | 99.36 | 99.39 | 99.36 | 99.37 | 31.63 KB | 1036 | 10 |
CNN | 99.40 | 99.43 | 99.40 | 99.41 | 4.14 MB | 618 | 7 |
Reference | Approach | Number of Features | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | Training Time (Seconds) | Inference Time (Seconds) |
---|---|---|---|---|---|---|---|---|
[18] | DNN | 47 | 88.64 | 91.2 | 88.64 | 88.51 | - | - |
CNN | 96.37 | 96.15 | 96.37 | 95.51 | - | - | ||
RNN | 96.52 | 96.25 | 96.52 | 95.73 | - | - | ||
[20] | CNN | - | 92.21 | 91.49 | 92.22 | 91.26 | 1515.4 | 7.2 |
RNN | 92.73 | 91.24 | 92.73 | 91.50 | 717.8 | 8.5 | ||
LSTM | 92.75 | 91.32 | 92.75 | 91.52 | 764.8 | 6.6 | ||
BiLSTM | 93.05 | 91.33 | 93.05 | 91.73 | 792.6 | 8.0 | ||
DL-BiLstm | 93.13 | 91.80 | 93.13 | 91.94 | 708.4 | 6.4 | ||
[21] | DNN | 47 | 99.11 | 67.94 | 90.66 | 97.72 | - | - |
[24] | Blending Model (DT, RF, GB) | 6 | 99.51 | 98.51 | 99.63 | 99.07 | 448.10 | 3.89 |
[14] | GRU | - | 99.85 | - | - | - | 3831 | - |
Our study | CNN | 40 | 99.10 | 99.08 | 99.10 | 99.05 | 767 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra-Suarez, F.L.; Tuesta-Monteza, V.A.; Mejia-Cabrera, H.I.; Arcila-Diaz, J. Performance Evaluation of Deep Learning Models for Classifying Cybersecurity Attacks in IoT Networks. Informatics 2024, 11, 32. https://doi.org/10.3390/informatics11020032
Becerra-Suarez FL, Tuesta-Monteza VA, Mejia-Cabrera HI, Arcila-Diaz J. Performance Evaluation of Deep Learning Models for Classifying Cybersecurity Attacks in IoT Networks. Informatics. 2024; 11(2):32. https://doi.org/10.3390/informatics11020032
Chicago/Turabian StyleBecerra-Suarez, Fray L., Victor A. Tuesta-Monteza, Heber I. Mejia-Cabrera, and Juan Arcila-Diaz. 2024. "Performance Evaluation of Deep Learning Models for Classifying Cybersecurity Attacks in IoT Networks" Informatics 11, no. 2: 32. https://doi.org/10.3390/informatics11020032
APA StyleBecerra-Suarez, F. L., Tuesta-Monteza, V. A., Mejia-Cabrera, H. I., & Arcila-Diaz, J. (2024). Performance Evaluation of Deep Learning Models for Classifying Cybersecurity Attacks in IoT Networks. Informatics, 11(2), 32. https://doi.org/10.3390/informatics11020032