Exploring the Ethical Implications of Using Generative AI Tools in Higher Education
Abstract
:1. Introduction
2. Background
2.1. Overview of Generative AI Tool Use in Higher Education
2.2. Identifying Challenges and Concerns in AIED
2.3. Key Differences: Ethical Implications and User Trust
2.4. Shifting the Focus to Ethical Implications
3. Materials and Methods
4. Research Results
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
GenAI | Generative Artificial Intelligence |
AIED | Artificial Intelligence in Education |
HEIs | Higher Education Institutions |
TEACH | Teachers |
RES | Researchers |
STUD | Students |
UGS | Undergraduate students |
GS | Graduate students |
DS | Doctoral students |
References
- Teubner, T.; Flath, C.M.; Weinhardt, C.; van der Aalst, W.; Hinz, O. Welcome to the Era of ChatGPT et al. Bus. Inf. Syst. Eng. 2023, 65, 95–101. [Google Scholar] [CrossRef]
- Gordon, C. ChatGPT Is the Fastest Growing App in the History of Web Applications. Available online: https://www.forbes.com/sites/cindygordon/2023/02/02/chatgpt-is-the-fastest-growing-ap-in-the-history-of-web-applications/ (accessed on 14 November 2024).
- Economic Potential of Generative AI|McKinsey. Available online: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction (accessed on 17 October 2023).
- AI for Everyone? Critical Perspectives; University of Westminster Press: London, UK, 2021; Available online: https://www.jstor.org/stable/j.ctv26qjjhj (accessed on 14 November 2024).
- Al-kfairy, M.; Mustafa, D.; Kshetri, N.; Insiew, M.; Alfandi, O. Ethical Challenges and Solutions of Generative AI: An Interdisciplinary Perspective. Informatics 2024, 11, 58. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Zhu, Z.; Wang, J.; Tran, T.; Du, Z. Artificial intelligence in education: A systematic literature review. Expert Syst. Appl. 2024, 252, 124167. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Kazim, E. Artificial Intelligence in Education (AIEd): A high-level academic and industry note 2021. AI Ethics 2022, 2, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.; Guo, P. From “Ban It Till We Understand It” to “Resistance is Futile”: How University Programming Instructors Plan to Adapt as More Students Use AI Code Generation and Explanation Tools such as ChatGPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on International Computing Education Research—Volume 1, Cambridge, UK, 8–10 August 2023; Association for Computing Machinery: New York, NY, USA, 2023; Volume 1, pp. 106–121. [Google Scholar] [CrossRef]
- Huang, K. Alarmed by A.I. Chatbots, Universities Start Revamping How They Teach. The New York Times. 16 January 2023. Available online: https://www.nytimes.com/2023/01/16/technology/chatgpt-artificial-intelligence-universities.html (accessed on 8 November 2024).
- Susnjak, T.; McIntosh, T.R. ChatGPT: The End of Online Exam Integrity? Educ. Sci. 2024, 14, 656. [Google Scholar] [CrossRef]
- AlAfnan, M.A.; Dishari, S.; Jovic, M.; Lomidze, K. ChatGPT as an Educational Tool: Opportunities, Challenges, and Recommendations for Communication, Business Writing, and Composition Courses. J. Artif. Intell. Technol. 2023, 3, 60–68. [Google Scholar] [CrossRef]
- Robert, J.; Muscanell, N. 2023 EDUCAUSE Horizon Action Plan: Generative AI. 2023. Available online: https://library.educause.edu/resources/2023/9/2023-educause-horizon-action-plan-generative-ai (accessed on 10 December 2024).
- McCarthy, J. WHAT IS ARTIFICIAL INTELLIGENCE? Available online: https://www-formal.stanford.edu/jmc/whatisai.pdf (accessed on 26 November 2024).
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Mutasa, S.; Sun, S.; Ha, R. Understanding artificial intelligence based radiology studies: What is overfitting? Clin. Imaging 2020, 65, 96–99. [Google Scholar] [CrossRef]
- Lim, W.M.; Gunasekara, A.; Pallant, J.L.; Pallant, J.I.; Pechenkina, E. Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. Int. J. Manag. Educ. 2023, 21, 100790. [Google Scholar] [CrossRef]
- UNIN|Innovation Library|Generative AI Primer. Available online: https://www.uninnovation.network/innovation-library/generative-ai-primer (accessed on 14 November 2024).
- Barker, B. Public service reform in education: Why is progress so slow? J. Educ. Adm. Hist. 2009, 41, 57–72. [Google Scholar] [CrossRef]
- Barber, M.; Bird, L.; Fleming, J.; Titterington-Giles, E.; Edwards, E.; Leyland, C. Gravity assist: Propelling higher education towards a brighter future—Digital teaching and learning review. Available online: https://blobofsproduks.blob.core.windows.net/files/Gravity%20assist/Gravity-assist-DTL-finalforweb.pdf (accessed on 5 December 2024).
- Kasneci, E.; Sessler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Ammar, W.; Groeneveld, D.; Bhagavatula, C.; Beltagy, I.; Crawford, M.; Downey, D.; Dunkelberger, J.; Elgohary, A.; Feldman, S.; Ha, V.; et al. Construction of the Literature Graph in Semantic Scholar. arXiv 2018, arXiv:1805.02262. [Google Scholar]
- Baidoo-anu, D.; Ansah, L.O. Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. J. AI 2023, 7, 52–62. [Google Scholar] [CrossRef]
- Kardan, A.A.; Sadeghi, H.; Ghidary, S.S.; Sani, M.R.F. Prediction of student course selection in online higher education institutes using neural network. Comput. Educ. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Shoaib, M.; Sayed, N.; Singh, J.; Shafi, J.; Khan, S.; Ali, F. AI student success predictor: Enhancing personalized learning in campus management systems. Comput. Hum. Behav. 2024, 158, 108301. [Google Scholar] [CrossRef]
- Ding, A.-C.E.; Shi, L.; Yang, H.; Choi, I. Enhancing teacher AI literacy and integration through different types of cases in teacher professional development. Comput. Educ. Open 2024, 6, 100178. [Google Scholar] [CrossRef]
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic review of research on artificial intelligence applications in higher education—Where are the educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 39. [Google Scholar] [CrossRef]
- Guilherme, A. AI and education: The importance of teacher and student relations. AI Soc. 2019, 34, 47–54. [Google Scholar] [CrossRef]
- Selwyn, N. Is Technology Good for Education? Polity Press: Cambridge, UK, 2016; Available online: https://research.monash.edu/en/publications/is-technology-good-for-education (accessed on 17 March 2024).
- The Ethics of Artificial Intelligence in Education: Practices, Challenges, and Debates. Available online: https://www.routledge.com/The-Ethics-of-Artificial-Intelligence-in-Education-Practices-Challenges-and-Debates/Holmes-Porayska-Pomsta/p/book/9780367349721 (accessed on 14 November 2024).
- Wagner, B. Ethics As An Escape From Regulation. From “Ethics-Washing” To Ethics-Shopping? In BEING PROFILED:COGITAS ERGO SUM: COGITAS ERGO SUM: 10 Years of Profiling the European Citizen; Bayamlioglu, E., Baraliuc, I., Janssens, L.A.W., Hildebrandt, M., Eds.; Amsterdam University Press: Amsterdam, The Netherlands, 2018; pp. 84–89. [Google Scholar] [CrossRef]
- Sharples, M. Towards social generative AI for education: Theory, practices and ethics. Learn. Res. Pract. 2023, 9, 159–167. [Google Scholar] [CrossRef]
- Prather, J.; Denny, P.; Leinonen, J.; Becker, B.A.; Albluwi, I.; Craig, M.; Keuning, H.; Kiesler, N.; Kohn, T.; Luxton-Reilly, A.; et al. The Robots Are Here: Navigating the Generative AI Revolution in Computing Education. In Proceedings of the Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education, Turku, Finland, 8–12 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 108–159. [Google Scholar] [CrossRef]
- Yan, L.; Sha, L.; Zhao, L.; Li, Y.; Martinez-Maldonado, R.; Chen, G.; Li, X.; Jin, Y.; Gasevic, D. Practical and Ethical Challenges of Large Language Models in Education: A Systematic Scoping Review. Br. J. Educ. Technol. 2024, 55, 90–112. [Google Scholar] [CrossRef]
- Zhan, H.; Zheng, A.; Lee, Y.K.; Suh, J.; Li, J.J.; Ong, D.C. Large Language Models are Capable of Offering Cognitive Reappraisal, if Guided. arXiv 2024, arXiv:2404.01288. [Google Scholar]
- Khosravi, H.; Shum, S.B.; Chen, G.; Conati, C.; Tsai, Y.-S.; Kay, J.; Knight, S.; Martinez-Maldonado, R.; Sadiq, S.; Gašević, D. Explainable Artificial Intelligence in education. Comput. Educ. Artif. Intell. 2022, 3, 100074. [Google Scholar] [CrossRef]
- Holmes, W.; Bialik, M.; Fadel, C. Artificial Intelligence in Education. Promise and Implications for Teaching and Learning; Center for Curriculum Redesign: Boston, MA, USA, 2019. [Google Scholar]
- Floridi, L.; Cowls, J. A Unified Framework of Five Principles for AI in Society. Harv. Data Sci. Rev. 2019, 1, 5. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Shin, D. The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. Int. J. Hum.-Comput. Stud. 2021, 146, 102551. [Google Scholar] [CrossRef]
- Lockey, S.; Gillespie, N.; Holm, D.; Asadi Someh, I. A Review of Trust in Artificial Intelligence: Challenges, Vulnerabilities and Future Directions; 2021; Available online: http://hdl.handle.net/10125/71284 (accessed on 10 January 2025).
- Araujo, T.; Helberger, N.; Kruikemeier, S.; de Vreese, C.H. In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 2020, 35, 611–623. [Google Scholar] [CrossRef]
- Holmes, W.; Porayska-Pomsta, K.; Holstein, K.; Sutherland, E.; Baker, T.; Shum, S.B.; Santos, O.C.; Rodrigo, M.T.; Cukurova, M.; Bittencourt, I.I.; et al. Ethics of AI in Education: Towards a Community-Wide Framework. Int. J. Artif. Intell. Educ. 2022, 32, 504–526. [Google Scholar] [CrossRef]
- Yuanyuan, X.; Gao, W.; Wang, Y.; Shan, X.; Lin, Y.-S. Enhancing user experience and trust in advanced LLM-based conversational agents. Comput. Artif. Intell. 2024, 2, 1467. [Google Scholar] [CrossRef]
- European Parliament. Directorate General for Parliamentary Research Services. The Ethics of Artificial Intelligence: Issues and Initiatives; Publications Office: Luxembourg, 2020; Available online: https://data.europa.eu/doi/10.2861/6644 (accessed on 14 November 2024).
- Xue, L.; Pang, Z. Ethical governance of artificial intelligence: An integrated analytical framework. J. Digit. Econ. 2022, 1, 44–52. [Google Scholar] [CrossRef]
- Kim, D.; Benbasat, I. The Effects of Trust-Assuring Arguments on Consumer Trust in Internet Stores: Application of Toulmin’s Model of Argumentation. Inf. Syst. Res. 2006, 17, 286–300. [Google Scholar] [CrossRef]
- Sandiumenge, I. Copyright Implications of the Use of Generative AI; Social Science Research Network: Rochester, NY, USA, 2023. [Google Scholar] [CrossRef]
- O’Connor, S. Open Artificial Intelligence Platforms in Nursing Education: Tools for Academic Progress or Abuse? Nurse Educ. Pract. 2023, 66, 103537. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Vetter, M.A.; Lucia, B. Toward a ‘More-Than-Digital’ AI Literacy: Reimagining Agency and Authorship in the Postdigital Era with ChatGPT. Postdigit Sci. Educ. 2024, 6, 922–939. [Google Scholar] [CrossRef]
- Bozkurt, A. GenAI et al.: Cocreation, Authorship, Ownership, Academic Ethics and Integrity in a Time of Generative. Open Prax. 2024, 16, 1–10. [Google Scholar] [CrossRef]
- The Ethics of Disclosing the Use of Artificial Intelligence Tools in Writing Scholarly Manuscripts. Available online: https://journals.sagepub.com/doi/epub/10.1177/17470161231180449 (accessed on 16 March 2025).
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Frank, D.; Bernik, A.; Milković, M. Efficient Generative AI-Assisted Academic Research: Considerations for a Research Model Proposal. In Proceedings of the 2024 IEEE 11th International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC), Rijeka, Croatia, 16–19 July 2024; pp. 000025–000030. [Google Scholar] [CrossRef]
- Malik, T.; Hughes, L.; Dwivedi, Y.K.; Dettmer, S. Exploring the Transformative Impact of Generative AI on Higher Education. In Proceedings of the New Sustainable Horizons in Artificial Intelligence and Digital Solutions: 22nd IFIP WG 6.11 Conference on e-Business, e-Services and e-Society, I3E 2023, Curitiba, Brazil, 9–11 November 2023; Proceedings. Springer: Berlin/Heidelberg, Germany, 2023; pp. 69–77. [Google Scholar] [CrossRef]
- Al-leimon, O.; Juweid, M.E. “Publish or Perish” Paradigm and Medical Research: Replication Crisis in the Context of Artificial Intelligence Trend. Ann. Biomed. Eng. 2025, 53, 3–4. [Google Scholar] [CrossRef]
- Elbanna, S.; Child, J. From ‘publish or perish’ to ‘publish for purpose’. Eur. Manag. Rev. 2023, 20, 614–618. [Google Scholar] [CrossRef]
- Wu, C. Publish or perish: A study on academic misconduct in publishing among Chinese doctoral students. Br. J. Sociol. Educ. 2025, 46, 303–322. [Google Scholar] [CrossRef]
- Qiu, J. Publish or perish in China. Nature 2010, 463, 142. [Google Scholar] [CrossRef] [PubMed]
- Ajwang, S.O.; Ikoha, A.P. Publish or perish in the era of artificial intelligence: Which way for the Kenyan research community? Libr. Hi Tech News 2024, 41, 7–11. [Google Scholar] [CrossRef]
- Fundamental Values. Available online: https://academicintegrity.org/resources/fundamental-values (accessed on 30 December 2024).
- Eke, D.O. ChatGPT and the rise of generative AI: Threat to academic integrity? J. Responsible Technol. 2023, 13, 100060. [Google Scholar] [CrossRef]
- Bin-Nashwan, S.A.; Sadallah, M.; Bouteraa, M. Use of ChatGPT in academia: Academic integrity hangs in the balance. Technol. Soc. 2023, 75, 102370. [Google Scholar] [CrossRef]
- Perkins, M.; Roe, J. Decoding Academic Integrity Policies: A Corpus Linguistics Investigation of AI and Other Technological Threats. High. Educ. Policy 2023, 37, 633–653. [Google Scholar] [CrossRef]
- Roe, J.; Renandya, W.; Jacobs, G. A Review of AI-Powered Writing Tools and Their Implications for Academic Integrity in the Language Classroom. J. Engl. Appl. Linguist. 2023, 2, 3. [Google Scholar] [CrossRef]
- Vetter, M.A.; Lucia, B.; Jiang, J.; Othman, M. Towards a framework for local interrogation of AI ethics: A case study on text generators, academic integrity, and composing with ChatGPT. Comput. Compos. 2024, 71, 102831. [Google Scholar] [CrossRef]
- Perkins, M.; Basar Gezgin, U.; Roe, J. Reducing plagiarism through academic misconduct education. Int. J. Educ. Integr. 2020, 16, 3. [Google Scholar] [CrossRef]
- Levendowski, A. How Copyright Law Can Fix Artificial Intelligence’s Implicit Bias Problem; Social Science Research Network: Rochester, NY, USA, 2017; Available online: https://papers.ssrn.com/abstract=3024938 (accessed on 14 November 2024).
- Morley, J.; Kinsey, L.; Elhalal, A.; Garcia, F.; Ziosi, M.; Floridi, L. Operationalising AI ethics: Barriers, enablers and next steps. AI Soc. 2023, 38, 411–423. [Google Scholar] [CrossRef]
- Borenstein, J.; Howard, A. Emerging challenges in AI and the need for AI ethics education. AI Ethics 2021, 1, 61–65. [Google Scholar] [CrossRef]
- Franke, G.R.; Crown, D.F.; Spake, D.F. Gender differences in ethical perceptions of business practices: A social role theory perspective. J. Appl. Psychol. 1997, 82, 920–934. [Google Scholar] [CrossRef]
- Are Women More Ethical Than Men? Available online: https://greatergood.berkeley.edu/article/item/are_women_more_ethical_than_men (accessed on 2 January 2025).
- Isidro, H.; Sobral, M. The Effects of Women on Corporate Boards on Firm Value, Financial Performance, and Ethical and Social Compliance. J. Bus. Ethics 2015, 132, 1–19. [Google Scholar] [CrossRef]
- Ethics, Technology, and Engineering: An Introduction, 2nd Edition|Wiley. Available online: https://www.wiley.com/en-ie/Ethics%2C+Technology%2C+and+Engineering%3A+An+Introduction%2C+2nd+Edition-p-9781119879435 (accessed on 2 January 2025).
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Farooq, A.; Dubinina, A.; Virtanen, S.; Isoaho, J. Understanding Dynamics of Initial Trust and its Antecedents in Password Managers Adoption Intention among Young Adults. Procedia Comput. Sci. 2021, 184, 266–274. [Google Scholar] [CrossRef]
- Straub, E.T. Understanding Technology Adoption: Theory and Future Directions for Informal Learning. Rev. Educ. Res. 2009, 79, 625–649. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
Questions | % | N |
---|---|---|
1. Gender | ||
Male | 44.1% | 389 |
Female | 55.90% | 494 |
2. Age group | ||
>18 | 0% | 0 |
18–25 | 71.10% | 628 |
26–35 | 11.00% | 97 |
36–45 | 8.10% | 71 |
46–55 | 7.00% | 63 |
56–65 | 2.30% | 20 |
66+ | ||
3. Academic segment/role at the university | ||
Teachers and researchers | 10.80% | 95 |
Undergraduate students | 69.90% | 617 |
Graduate students | 16.40% | 145 |
Doctoral study | 2.90% | 26 |
4. Year of study | ||
0 | 10.40% | 92 |
1 | 35.90% | 317 |
2 | 34.70% | 306 |
3 | 19.00% | 168 |
Descriptive Statistics | The Kolmogorov–Smirnov Test | |||||||
---|---|---|---|---|---|---|---|---|
Results | N | Min | Max | Avg | Std Dev | CV | Statistics | p-Value |
“I understand the potential negative consequences of using GenAI tools” | 883 | 1.00 | 5.00 | 3.68 | 1.138 | 1.318 | 0.161 | 0.000 |
“I am aware of my responsibility as a user of GenAI tools” | 883 | 1.00 | 5.00 | 3.68 | 1.136 | 1.318 | 0.125 | 0.002 |
“I understand the ethical principles of using GenAI tools” | 883 | 1.00 | 5.00 | 3.62 | 1.336 | 1.336 | 0.261 | 0.003 |
Duration of GenAI Tools Usage | Academic Role | Gender | ||||
---|---|---|---|---|---|---|
Students (UG, GS, DS) | Teachers Research. | Male | Female | |||
Understanding of potential negative consequences | >3 months | n% | 13.38% | 12.71% | 24.69% | 9.81% |
<3 months | n% | 86.62% | 87.29% | 75.31% | 90.19% | |
Total | n% | 41.09% | 58.91% | 21.98% | 78.02% | |
Chi-square (p) | 26.43 (<0.000) | 23.27 (<0.000) |
Length of GenAI Tools Usage | Academic Role | Gender | ||||
---|---|---|---|---|---|---|
Students (UG, GS, DS) | Teachers Research. | Male | Female | |||
Awareness of user responsibility | >3 months | n% | 10.02% | 12.09% | 22.13% | 6.24% |
<3 months | n% | 89.98% | 87.91% | 77.87% | 93.76% | |
Total | n% | 34.68% | 65.32% | 18.88% | 81.12% | |
Chi-square (p) | 26.39 (<0.000) | 24.2 (<0.000) |
Length of GenAI Tools Usage | Academic Role | Gender | ||||
---|---|---|---|---|---|---|
Students | Teachers Research. | Male | Female | |||
Understanding of ethical principles | >3 months | n% | 9.16% | 14.27% | 20.91% | 21.22% |
<3 months | n% | 90.84% | 85.73% | 79.09% | 78.78% | |
Total | n% | 27.29% | 72.71% | 24.47% | 75.73% | |
Chi-square (p) | 18.26 (<0.000) | 21.39 (<0.000) |
Posterior Distribution Characterization for Pairwise Correlations 1 | |||||
---|---|---|---|---|---|
Underst. of Negative Consequen. | Awareness of User Responsibility | Understanding of Ethical Principles | |||
Understanding of potential negative consequences | Posterior | Mode | 0.844 | 0.824 | |
Mean | 0.844 | 0.823 | |||
Variance | 0.000 | 0.000 | |||
95% Credible Interval | Lower Bound | 0.825 | 0.802 | ||
Upper Bound | 0.863 | 0.844 | |||
N | 0.883 | 0.883 | 0.883 | ||
Awareness of user responsibility | Posterior | Mode | 0.844 | 0.875 | |
Mean | 0.844 | 0.874 | |||
Variance | 0.000 | 0.000 | |||
95% Credible Interval | Lower Bound | 0.825 | 0.858 | ||
Upper Bound | 0.863 | 0.889 | |||
N | 0.883 | 0.883 | 0.883 | ||
Understanding of ethical principles | Posterior | Mode | 0.824 | 0.875 | |
Mean | 0.823 | 0.874 | |||
Variance | 0.000 | 0.000 | |||
95% Credible Interval | Lower Bound | 0.802 | 0.858 | ||
Upper Bound | 0.844 | 0.889 | |||
N | 0.883 | 0.883 | 0.883 |
Reliability Statistics | |||
---|---|---|---|
Cronbach’s Alpha | Part 1 | Value | 0.876 |
N of Items | 2 a | ||
Part 2 | Value | 0.678 | |
N of Items | 2 b | ||
Total N of Items | 4 | ||
Correlation Between Forms | 0.723 | ||
Spearman–Brown Coefficient | Equal Length | 0.839 | |
Unequal Length | 0.839 | ||
Guttman Split-Half Coefficient | 0.829 |
ANOVA with Cochran’s Test | ||||||
---|---|---|---|---|---|---|
Source of Variance | Sum of Squares | df | Mean Square | Cochran’s Q | Sig | |
Between People | 2,717,136 | 882 | 3081 | |||
Within People | Between Items | 3310 | 3 | 1103 | 6413 | 0.093 |
Residual | 1,363,940 | 2646 | 0.515 | |||
Total | 1,367,250 | 2649 | 0.516 | |||
Total | 4,084,386 | 3531 | 1157 | |||
Grand Mean = 3.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đerić, E.; Frank, D.; Vuković, D. Exploring the Ethical Implications of Using Generative AI Tools in Higher Education. Informatics 2025, 12, 36. https://doi.org/10.3390/informatics12020036
Đerić E, Frank D, Vuković D. Exploring the Ethical Implications of Using Generative AI Tools in Higher Education. Informatics. 2025; 12(2):36. https://doi.org/10.3390/informatics12020036
Chicago/Turabian StyleĐerić, Elena, Domagoj Frank, and Dijana Vuković. 2025. "Exploring the Ethical Implications of Using Generative AI Tools in Higher Education" Informatics 12, no. 2: 36. https://doi.org/10.3390/informatics12020036
APA StyleĐerić, E., Frank, D., & Vuković, D. (2025). Exploring the Ethical Implications of Using Generative AI Tools in Higher Education. Informatics, 12(2), 36. https://doi.org/10.3390/informatics12020036