A Review on Scholarly Publication Recommender Systems: Features, Approaches, Evaluation, and Open Research Directions
Abstract
1. Introduction
2. Research Methodology
3. User-Item Modelling
3.1. Item Modeling and Features
| References | Ti | Ab | Ke | Au | Af | PD | V | Tx | Rl | Ck |
|---|---|---|---|---|---|---|---|---|---|---|
| [21] | x | x | x | x | x | x | x | |||
| [22] | x | x | x | x | x | x | ||||
| [23] | x | x | x | x | x | |||||
| [24] | x | x | x | x | x | x | ||||
| [25,26] | x | x | x | x | x | x | ||||
| [27] | x | x | x | x | x | |||||
| [28] | x | x | x | x | ||||||
| [29] | x | x | x | x | x | |||||
| [30] | x | x | x | x | x | x | ||||
| [31] | x | x | x | x | ||||||
| [32] | x | x | x | x | ||||||
| [9] | x | x | x | x | x | |||||
| [33] | x | x | x | x | x | |||||
| [34,35,36,37,38,39,40,41,42,43,44,45,46] | x | x | x | |||||||
| [47] | x | x | x | x | x | x | ||||
| [48] | x | x | x | x | x | x | ||||
| [49] | x | x | x | x | x | x | ||||
| [50] | x | x | x | x | x | |||||
| [51] | x | x | x | x | ||||||
| [52,53] | x | x | x | x | x | |||||
| [54] | x | x | x | |||||||
| [55] | x | x | x | x | ||||||
| [56] | x | x | x | |||||||
| [57,58] | x | x | x | x | ||||||
| [59,60,61,62,63,64,65,66] | x | x | ||||||||
| [67] | x | x | x | x | x | |||||
| [68] | x | x | x | x | x | |||||
| [69] | x | x | x | x | ||||||
| [70] | x | x | x | x | x | |||||
| [71] | x | x | x | |||||||
| [72,73] | x | x | ||||||||
| [74] | x | x | x | |||||||
| [75] | x | x | ||||||||
| [76] | x | x | ||||||||
| [77] | x | x | x | |||||||
| [78] | x | x | ||||||||
| [79] | x | x | x | x | ||||||
| [80] | x | x | ||||||||
| [81] | x | x | ||||||||
| [82] | x | x | x | |||||||
| [83] | x | x | ||||||||
| [84,85,86,87,88] | x | |||||||||
| [89] | x | x | x | x | x | |||||
| [90] | x | x | x | x | x | |||||
| [91] | x | x | x | x | ||||||
| [92] | x | x | x | x | ||||||
| [93,94] | x | x | x | |||||||
| [95,96,97] | x | x | ||||||||
| [98,99,100,101,102,103,104] | x | |||||||||
| [105] | x | x | x | |||||||
| [106] | x | x | x | |||||||
| [107,108] | x | x | ||||||||
| [109,110] | x | x | x | x | ||||||
| [111] | x | x | x | |||||||
| [112,113] | x | x | ||||||||
| [114,115] | x | |||||||||
| [115] | x | |||||||||
| [116] | x | x | x | |||||||
| [117] | x | x | ||||||||
| [118] | x | |||||||||
| [119] | x | |||||||||
| [120] | x | |||||||||
| [121] | x | |||||||||
| [122] | x | |||||||||
| [123,124,125,126,127] | x | x | ||||||||
| [17,20,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160] | x | x | ||||||||
| [161] | x | |||||||||
| [19] | x | |||||||||
| [18,162,163,164,165,166,167] | x |
3.2. User Modelling and Features
4. Recommendation Approaches
4.1. Content-Based Filtering (CBF) Approach
| Recommendation Approach | References |
|---|---|
| Content-Based Filtering | [19,23,24,31,33,36,37,42,43,44,45,47,49,51,54,55,56,59,60,65,72,73,81,82,83,84,85,86,88,89,91,95,96,97,98,100,101,102,103,105,108,114,118,120,121,124,126,127,142,154,163,166,167,169,170,175,177,181,187,191,199] |
| Collaborative Filtering | [17,18,20,28,35,41,67,79,82,93,109,112,113,115,117,128,130,131,136,137,138,140,141,143,144,145,148,149,150,151,153,159,160,161,165,179,180,182,200,200] |
| Hybrid Filtering | [9,21,22,25,26,27,29,30,32,34,38,39,40,46,48,50,52,53,57,58,61,62,63,64,66,68,69,70,71,74,75,76,77,78,80,87,90,92,94,99,104,106,107,110,111,116,119,122,123,125,129,132,133,134,135,139,146,147,152,155,156,157,158,162,164,168,171,172,173,174,176,178,183,184,185,186,188,189,190,192,193,194,201,202,203] |
4.2. Collaborative Filtering (CF) Approach
4.3. Hybrid-Based Filtering Approach
5. Evaluation
5.1. Dataset
5.2. Evaluation Methods
5.2.1. Offline Evaluation Method
5.2.2. Online Evaluation Method
5.2.3. User Studies
5.3. Evaluation Metrics
6. Discussion and Conclusions
7. Future Research Directions
- Interdisciplinary Recommendations: Interdisciplinary recommendations have become increasingly significant, with data indicating that 80% of recent studies are interdisciplinary in nature. Despite the recognition of its importance, as mentioned by researchers [126,155], there remains a gap in developing recommender systems that cater specifically to interdisciplinary studies. It is suggested that future research should focus on creating systems capable of facilitating interdisciplinary recommendations, thereby pushing the boundaries of academic exploration.
- Recommendation with Explanation: Recommender systems are designed to help users navigate vast information spaces. As these systems evolve to address users’ diverse informational needs, incorporating explanations for recommendations becomes critical. Providing reasoning for why a particular item is recommended can significantly enhance user satisfaction and trust. However, achieving this will require the development of richer datasets, comprehensive evaluation metrics, and possibly larger volunteer-driven studies to test and refine these systems.
- User Modelling, Satisfaction, and Personalised Recommendations: Our review indicates that current research tends to prioritise similarity-based matching between user profiles and item attributes. This approach, while effective, often leads to redundant recommendations, reducing user satisfaction. Future research should focus on developing more nuanced user models that go beyond content-based matching, emphasising serendipity and diversity in recommendations that could increase user engagement. Additionally, as user-centric approaches gain prominence, there is a growing need for personalised recommendations that respect user privacy, a concern that must be addressed in the design of future systems.
- Topic Evolution: An intriguing direction for future research involves incorporating topic evolution into recommender systems. By tracking how research areas evolve over time, systems could generate “must-read” lists tailored to a user’s previous reading history. This would be particularly useful for providing recommendations that reflect the latest developments in a field. Additionally, recommending various types of content—such as literature reviews or interdisciplinary papers—based on a user’s expertise could enhance the utility of these systems.
- Situational Awareness: The needs of a new PhD student differ significantly from those of an established researcher. Current recommender systems do not adequately account for these different research contexts. Addressing situational awareness in recommendation systems could lead to more tailored and effective recommendations for users at different stages of their academic careers.
- Sparsity: The vast discrepancy between the number of publications and user interactions creates a highly sparse user-item matrix, posing a significant challenge for recommendation systems. Therefore, developing advanced techniques to mitigate this sparsity, particularly in collaborative filtering, is crucial for improving recommendation accuracy.
- Reproducibility: A significant issue in the field is the lack of transparency in the implementation of recommendation approaches. The absence of shared code, datasets, and detailed methodological information impedes reproducibility, which is critical for the advancement of the field. Addressing these issues by promoting openness and methodological clarity will be essential for fostering robust scientific progress.
- Emerging Role of Generative AI (GenAI) and Large Language Models (LLMs): Recent advances in GenAI and LLMs, such as GPT-4, LLaMA, and Claude, have started to influence scholarly paper recommendation systems, as in several other domains. These models enable novel capabilities such as generative retrieval, conversational recommendation, and cold-start mitigation by synthesising paper representations from minimal metadata. However, they also introduce challenges around hallucination, bias amplification, reproducibility, and computational cost. While our survey focused on established and domain-adapted traditional approaches and LLMs (e.g., SciBERT, SPECTER, and BERT-GCN), exploring the integration of general-purpose GenAI in RecSys and addressing its unique risks represent promising directions for future research and warrant dedicated investigation.
Author Contributions
Funding
Conflicts of Interest
Appendix A. Additional Materials
| References | Ci | Ti | Ab | Ke | Au | Ve | Py | Ft | Tx | Ck |
|---|---|---|---|---|---|---|---|---|---|---|
| [24] | x | x | x | x | x | x | x | |||
| [82] | x | x | x | x | x | x | ||||
| [136,143] | x | x | ||||||||
| [50] | x | x | x | x | x | x | ||||
| [52] | x | x | x | x | ||||||
| [70] | x | x | x | x | x | |||||
| [78] | x | x | x | |||||||
| [90] | x | x | x | x | x | |||||
| [83] | x | x | x | |||||||
| [27] 1 | x | x | x | x | ||||||
| [109] | x | x | x | x | ||||||
| [135,164] | x | x | x | |||||||
| [116] | x | x | x | |||||||
| [19,61,123] 2 | x | x | ||||||||
| [17,18,20,128,129,133,134,137,138,139,140,144,145,146,148,149,150,151,152,162,163] | x | x | ||||||||
| [165] | x | |||||||||
| [69] | x | x | x | |||||||
| [141,147] | x | |||||||||
| [130,131,132] | ||||||||||
| [49] | x | x | x | x | ||||||
| [59,60] | x | x | ||||||||
| [71,72] | x | x | ||||||||
| [76] | x | |||||||||
| [84,85] | x | |||||||||
| [93] | x | |||||||||
| [124] | x | x | ||||||||
| [142] 3 | x | |||||||||
| [169,170] 4 | ||||||||||
| [9,21,25,47,51,53,55,56,68,74,77,79,81,86,92,95,96,97,98,110,111,112,114,153,154,161,166,167,171] | x | |||||||||
| [76] | x |
| Ref. | Implicit Feedback | Explicit Feedback | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | B | T | Sv | Bm | Rd | Cl | V | D | Sr | Ac | Sh | Cm | An | Ci | Sc | R | P | Vo | |
| [91,185] | x | x | x | ||||||||||||||||
| [26] | x | x | |||||||||||||||||
| [34,36,43,44,89,122,172,173,191] | x | ||||||||||||||||||
| [182] | x | x | x | x | |||||||||||||||
| [37] | x | x | x | x | x | ||||||||||||||
| [41] | x | x | |||||||||||||||||
| [38,87,181] | x | x | |||||||||||||||||
| [40,88,94,104,174,177,179] | x | x | |||||||||||||||||
| [175] | x | x | x | x | |||||||||||||||
| [187] | x | x | x | ||||||||||||||||
| [66] | x | x | |||||||||||||||||
| [62,63,67,115] | x | ||||||||||||||||||
| [48] | x | x | x | x | x | x | x | ||||||||||||
| [107,186,188] | x | ||||||||||||||||||
| [29,156] | x | x | |||||||||||||||||
| [184] | x | x | x | ||||||||||||||||
| [45,176,183] | x | ||||||||||||||||||
| [158] | x | x | x | x | |||||||||||||||
| [113] | x | x | |||||||||||||||||
| [101,102,103,117] | x | ||||||||||||||||||
| [39] | x | x | x | x | |||||||||||||||
| [73,100] | x | ||||||||||||||||||
| [42,54,180] | x | ||||||||||||||||||
| [65,99,118,178] | x | ||||||||||||||||||
| [125] | x | ||||||||||||||||||
| [75,108] | x | ||||||||||||||||||
| [64] | x | x | |||||||||||||||||
| [22] | x | ||||||||||||||||||
| [127] | x | ||||||||||||||||||
| [28,30,57,58,126,155,157,159] | x | x | |||||||||||||||||
| [119] | x | ||||||||||||||||||
| [23,31,32,33,35,46,106,120,121,160,189,190] | x | ||||||||||||||||||
References
- De Solla Price, D.J. Networks of Scientific Papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef]
- Bornmann, L.; Mutz, R. Growth rates of modern science: A bibliometric analysis. J. Assoc. Inf. Sci. Technol. 2015, 66, 2215–2222. [Google Scholar] [CrossRef]
- Beel, J.; Gipp, B.; Langer, S.; Breitinger, C. Research Paper Recommender Systems: A Literature Survey. Int. J. Digit. Libr. 2016, 17, 305–338. [Google Scholar] [CrossRef]
- Holdings of the ACM DL. 2018. Available online: https://dl.acm.org/contents_guide.cfm?coll=portal&dl=GUIDE (accessed on 28 January 2019).
- Orduna-Malea, E.; Ayllón, J.M.; Martín-Martín, A.; Delgado López-Cózar, E. Methods for estimating the size of Google Scholar. Scientometrics 2015, 104, 931–949. [Google Scholar] [CrossRef]
- Gusenbauer, M. Google Scholar to Overshadow Them All? Comparing the Sizes of 12 Academic Search Engines and Bibliographic Databases. Scientometrics 2019, 118, 177–214. [Google Scholar] [CrossRef]
- arXiv Monthly Submission Rates. Available online: https://arxiv.org/stats/monthly_submissions (accessed on 14 July 2024).
- Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using Collaborative Filtering to Weave an Information Tapestry. Commun. ACM 1992, 35, 61–70. [Google Scholar] [CrossRef]
- Bollacker, K.D.; Lawrence, S.; Giles, C.L. CiteSeer: An Autonomous Web Agent for Automatic Retrieval and Identification of Interesting Publications. In Proceedings of the Second International Conference on Autonomous Agents, Minneapolis, MN, USA, 10–13 May 1998; pp. 116–123. [Google Scholar] [CrossRef]
- Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; Riedl, J. GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the CSCW ’94, Chapel Hill, NC, USA, 22–26 October 1994. [Google Scholar]
- Konstan, J.; Riedl, J. Recommender systems: From algorithms to user experience. User Model.-User-Adapt. Interact. 2012, 22, 101–123. [Google Scholar] [CrossRef]
- Jones, K.S. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21. [Google Scholar] [CrossRef]
- Robertson, S.; Zaragoza, H. The Probabilistic Relevance Framework: BM25 and Beyond. Found. Trends Inf. Retr. 2009, 3, 333–389. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013; Volume 2, pp. 3111–3119. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Lawrence, S.; Giles, C.L.; Bollacker, K. Digital libraries and autonomous citation indexing. Computer 1999, 32, 67–71. [Google Scholar] [CrossRef]
- West, J.D.; Wesley-Smith, I.; Bergstrom, C.T. A Recommendation System Based on Hierarchical Clustering of an Article-Level Citation Network. IEEE Trans. Big Data 2016, 2, 113–123. [Google Scholar] [CrossRef]
- Gori, M.; Pucci, A. Research Paper Recommender Systems: A Random-Walk Based Approach. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings) (WI’06), Hong Kong, China, 18–22 December 2006; pp. 778–781. [Google Scholar] [CrossRef]
- Strohman, T.; Croft, W.B.; Jensen, D. Recommending Citations for Academic Papers. In Proceedings of the 30th International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007; pp. 705–706. [Google Scholar]
- Kucuktunc, O.; Saule, E.; Kaya, K.; Çatalyürek, U. TheAdvisor: A Webservice for Academic Recommendation. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13, Indianapolis, IN, USA, 22–26 July 2013; pp. 433–434. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Guo, C.; Sun, Y. Meta-Path-Based Ranking with Pseudo Relevance Feedback on Heterogeneous Graph for Citation Recommendation. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM ’14, Shanghai, China, 3–7 November 2014; ACM: New York, NY, USA, 2014; pp. 121–130. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Wei, C.P.; Lee, C.H.; Chen, Y.S. Coauthorship network-based literature recommendation with topic model. Online Inf. Rev. 2017, 41, 318–336. [Google Scholar] [CrossRef]
- Alzoghbi, A.; Ayala, V.; Fischer, P.; Lausen, G. PubRec: Recommending Publications Based on Publicly Available Meta-Data; CEUR-WS: Aachen, Germany, 2015; Volume 1458, pp. 11–18. [Google Scholar]
- Livne, A.; Gokuladas, V.; Teevan, J.; Dumais, S.; Adar, E. CiteSight: Supporting Contextual Citation Recommendation Using Differential Search; ACM—Association for Computing Machinery: New York, NY, USA, 2014. [Google Scholar]
- Mu, D.; Guo, L.; Cai, X.; Hao, F. Query-Focused Personalized Citation Recommendation with Mutually Reinforced Ranking. IEEE Access 2017, 6, 3107–3119. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Wei, C.P.; Liao, Y.F. Coauthorship networks and academic literature recommendation. Electron. Commer. Res. Appl. 2010, 9, 323–334. [Google Scholar] [CrossRef]
- Guo, L.; Cai, X.; Hao, F.; Mu, D.; Fang, C.; Yang, L. Exploiting Fine-Grained Co-Authorship for Personalized Citation Recommendation. IEEE Access 2017, 5, 12714–12725. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Kim, J.G. Personalized Academic Research Paper Recommendation System. arXiv 2013, arXiv:1304.5457. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, Y.; Cheng, X.; Du, W.; Liu, Y.; Ma, J. A hybrid approach for article recommendation in research social networks. J. Inf. Sci. 2018, 44, 696–711. [Google Scholar] [CrossRef]
- Yang, W.S.; Lin, Y.R. A task-focused literature recommender system for digital libraries. Online Inf. Rev. 2013, 37, 581–601. [Google Scholar] [CrossRef]
- Sun, J.; Ma, J.; Liu, X.; Liu, Z.; Wang, G.; Jiang, H.; Silva, T. A Novel Approach for Personalized Article Recommendation in Online Scientific Communities. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 1543–1552. [Google Scholar] [CrossRef]
- Tejeda-Lorente, A.; Porcel, C.; Bernabé-Moreno, J.; Herrera-Viedma, E. REFORE: A recommender system for researchers based on bibliometrics. Appl. Soft Comput. J. 2015, 30, 778–791. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Z. Literature recommendation by researchers’ publication analysis. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 1964–1969. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Chuang, S.M. Combining article content and Web usage for literature recommendation in digital libraries. Online Inf. Rev. 2004, 28, 260–272. [Google Scholar] [CrossRef]
- Loh, S.; Lorenzi, F.; Granada, R.; Lichtnow, D.; Krug Wives, L.; De Oliveira, J. Identifying Similar Users by Their Scientific Publications to Reduce Cold Start in Recommender Systems, Lisbon. In Proceedings of the WEBIST 2009–Proceedings of the 5th International Conference on Web Information Systems and Technologies, Lisbon, Portugal, 23–26 March 2009; pp. 593–600. [Google Scholar]
- Ohta, M.; Hachiki, T.; Takasu, A. Related paper recommendation to support online-browsing of research papers. In Proceedings of the Fourth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2011), Stevens Point, WI, USA, 4–6 August 2011; pp. 130–136. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Dong, X.; Liu, T.; Huang, Y. Personalized Paper Recommendation Based on User Historical Behavior. In Natural Language Processing and Chinese Computing; Zhou, M., Zhou, G., Zhao, D., Liu, Q., Zou, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–12. [Google Scholar]
- Pera, M.; Ng, Y.K. Exploiting the wisdom of social connections to make personalized recommendations on scholarly articles. J. Intell. Inf. Syst. 2014, 42, 371–391. [Google Scholar] [CrossRef]
- Ma, K.; Lu, T.; Abraham, A. Hybrid Parallel Approach for Personalized Literature Recommendation System; Institute of Electrical and Electronics Engineers Inc.: Porto, Portugal, 2014; pp. 31–36. [Google Scholar] [CrossRef]
- Sun, J.; Ma, J.; Liu, Z.; Miao, Y. Leveraging Content and Connections for Scientific Article Recommendation in Social Computing Contexts. Comput. J. 2014, 57, 1331–1342. [Google Scholar] [CrossRef]
- Bansal, T.; Belanger, D.; McCallum, A. Ask the GRU: Multi-Task Learning for Deep Text Recommendations; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 107–114. [Google Scholar] [CrossRef]
- Alzoghbi, A.; Ayala, V.; Fischer, P.; Lausen, G. Learning-to-rank in research paper CBF recommendation: Leveraging irrelevant papers. CEUR Workshop Proc. 2016, 1673, 43–46. [Google Scholar]
- Zhao, W.; Wu, R.; Dai, W.; Dai, Y. Research Paper Recommendation Based on the Knowledge Gap. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 373–380. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, R.; Liu, H. Paper recommendation based on the knowledge gap between a researcher’s background knowledge and research target. Inf. Process. Manag. 2016, 52, 976–988. [Google Scholar] [CrossRef]
- Al Alshaikh, M.; Uchyigit, G.; Evans, R. A Research Paper Recommender System Using a Dynamic Normalized Tree of Concepts Model for User Modelling; IEEE Computer Society: Brighton, UK, 2017; pp. 200–210. [Google Scholar] [CrossRef]
- Ma, X.; Wang, R. Personalized Scientific Paper Recommendation Based on Heterogeneous Graph Representation. IEEE Access 2019, 7, 79887–79894. [Google Scholar] [CrossRef]
- Zarrinkalam, F.; Kahani, M. SemCiR: A citation recommendation system based on a novel semantic distance measure. Program 2013, 47, 92–112. [Google Scholar] [CrossRef]
- Xue, H.; Guo, J.; Lan, Y.; Cao, L. Personalized Paper Recommendation in Online Social Scholar System; Institute of Electrical and Electronics Engineers Inc.: Beijing, China, 2014; pp. 612–619. [Google Scholar] [CrossRef]
- Ren, X.; Liu, J.; Yu, X.; Khandelwal, U.; Gu, Q.; Wang, L.; Han, J. ClusCite: Effective Citation Recommendation by Information Network-Based Clustering. In Proceedings of the KDD ’14: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 821–830. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, Y.; Cai, X.; Dai, H.; Mu, D.; Guo, L.; Dai, T. A LSTM Based Model for Personalized Context-Aware Citation Recommendation. IEEE Access 2018, 6, 59618–59627. [Google Scholar] [CrossRef]
- Mayr, P. How Do Practitioners, PhD Students and Postdocs in the Social Sciences Assess Topic-Specific Recommendations? CEUR-WS: Aachen, Germany, 2016; Volume 1610, pp. 84–92. [Google Scholar]
- He, Q.; Pei, J.; Kifer, D.; Mitra, P.; Giles, L. Context-aware Citation Recommendation. In Proceedings of the 19th International Conference on World Wide Web, WWW ’10, Raleigh, NC, USA, 26–30 April 2010; pp. 421–430. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chien, B.C. Applying Citation Network Analysis on Recommendation of Research Paper Collection. In Proceedings of the 4th Multidisciplinary International Social Networks Conference, MISNC ’17, Bangkok, Thailand, 17–19 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Semeraro, G.; Basile, P.; de Gemmis, M.; Lops, P. Discovering User Profiles from Semantically Indexed Scientific Papers. In From Web to Social Web: Discovering and Deploying User and Content Profiles; Berendt, B., Hotho, A., Mladenic, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 61–81. [Google Scholar]
- Jiang, Z.; Liu, X.; Gao, L. Chronological Citation Recommendation with Information-Need Shifting. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, Melbourne, Australia, 18–23 October 2015; pp. 1291–1300. [Google Scholar] [CrossRef]
- Bethard, S.; Jurafsky, D. Who Should I Cite: Learning Literature Search Models from Citation Behavior. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, ON, Canada, 26–30 October 2010; pp. 609–618. [Google Scholar]
- Sugiyama, K.; Kan, M.Y. A comprehensive evaluation of scholarly paper recommendation using potential citation papers. Int. J. Digit. Libr. 2015, 16, 91–109. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kan, M.Y. Exploiting Potential Citation Papers in Scholarly Paper Recommendation. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, Indianapolis, IN, USA, 22–26 July 2013; pp. 153–162. [Google Scholar]
- Nascimento, C.; Laender, A.; Da Silva, A.; Gonçalves, M. A Source Independent Framework for Research Paper Recommendation; Association for Computing Machinery: Ottawa, ON, Canada, 2011; pp. 297–306. [Google Scholar] [CrossRef]
- Xiao, Z.; Che, F.; Miao, E.; Lu, M. Increasing serendipity of recommender system with ranking topic model. Appl. Math. Inf. Sci. 2014, 8, 2041–2053. [Google Scholar] [CrossRef]
- He, Q.; Kifer, D.; Pei, J.; Mitra, P.; Lee Giles, C. Citation Recommendation Without Author Supervision. In Proceedings of the WSDM ’11: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 755–764. [Google Scholar] [CrossRef]
- Wang, C.; Blei, D.M. Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 448–456. [Google Scholar]
- Tian, G.; Jing, L. Recommending scientific articles using bi-relational graph-based iterative RWR. In Proceedings of the RecSys ’13: Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, 12–16 October 2013; pp. 399–402. [CrossRef]
- Yang, M.; Li, Y.M.; Zhang, Z. Scientific articles recommendation with topic regression and relational matrix factorization. J. Zhejiang Univ. Sci. C 2014, 15, 984–998. [Google Scholar] [CrossRef]
- Mohamed Hassan, H. Personalized Research Paper Recommendation Using Deep Learning; Association for Computing Machinery, Inc.: New York, NY, USA, 2017; pp. 327–330. [Google Scholar] [CrossRef]
- Hristakeva, M.; Kershaw, D.; Rossetti, M.; Knoth, P.; Pettit, B.; Vargas, S.; Jack, K. Building Recommender Systems for Scholarly Information. In Proceedings of the 1st Workshop on Scholarly Web Mining, Cambridge, UK, 10 February 2017; pp. 25–32. [Google Scholar]
- Bogers, T.; van den Bosch, A. Recommending Scientific Articles Using Citeulike. In Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ’08, Lausanne, Switzerland, 23–25 October 2008; pp. 287–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Cai, X.; Dai, H. A Novel Personalized Citation Recommendation Approach Based on GAN. In International Symposium on Methodologies for Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 268–278. [Google Scholar]
- Ahmad, S.; Afzal, M. Combining Co-Citation and Metadata for Recommending More Related Papers; Institute of Electrical and Electronics Engineers Inc.: Islamabad, Pakistan, 2018; pp. 218–222. [Google Scholar] [CrossRef]
- Sesagiri Raamkumar, A.; Foo, S.; Pang, N. Rec4LRW-scientific paper recommender system for literature review and writing. Front. Artif. Intell. Appl. 2015, 275, 106–119. [Google Scholar] [CrossRef]
- Sesagiri Raamkumar, A.; Foo, S.; Pang, N. User evaluation of a task for shortlisting papers from researcher’s reading list for citing in manuscripts. Aslib J. Inf. Manag. 2017, 69, 740–760. [Google Scholar] [CrossRef]
- Magara, M.; Ojo, S.; Zuva, T. Towards a Serendipitous Research Paper Recommender System Using Bisociative Information Networks (BisoNets); Institute of Electrical and Electronics Engineers Inc.: Durban, South Africa, 2018. [Google Scholar] [CrossRef]
- Hong, K.; Jeon, H.; Jeon, C. UserProfile-based personalized research paper recommendation system. In Proceedings of the 2012 8th International Conference on Computing and Networking Technology (INC, ICCIS and ICMIC), Gyeongju, Republic of Korea, 27–29 August 2012; pp. 134–138. [Google Scholar]
- Ebesu, T.; Fang, Y. Neural Citation Network for Context-Aware Citation Recommendation. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, Tokyo Japan, 7–11 August 2017; pp. 1093–1096. [Google Scholar] [CrossRef]
- Nishioka, C.; Scherp, A. Profiling vs. Time vs. Content: What Does Matter for Top-K Publication Recommendation Based on Twitter Profiles? Institute of Electrical and Electronics Engineers Inc.: Newark, NJ, USA, 2016; pp. 171–180. [Google Scholar] [CrossRef]
- Neethukrishnan, K.; Swaraj, K. Ontology Based Research Paper Recommendation Using Personal Ontology Similarity Method; Institute of Electrical and Electronics Engineers Inc.: Coimbatore, India, 2017. [Google Scholar] [CrossRef]
- Sesagiri Raamkumar, A.; Foo, S.; Pang, N. Evaluating a threefold intervention framework for assisting researchers in literature review and manuscript preparatory tasks. J. Doc. 2017, 73, 555–580. [Google Scholar] [CrossRef]
- Sesagiri Raamkumar, A.; Foo, S.; Pang, N. Can I have more of these please?: Assisting researchers in finding similar research papers from a seed basket of papers. Electron. Libr. 2018, 36, 568–587. [Google Scholar] [CrossRef]
- Chakraborty, T.; Modani, N.; Narayanam, R.; Nagar, S. DiSCern: A Diversified Citation Recommendation System for Scientific Queries; IEEE Computer Society: Brighton, UK, 2015; pp. 555–566. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Wei, C.P.; Huang, Y.c.; Tang, Y. Combining Coauthorship Network and Content for Literature Recommendation. In Proceedings of the PACIS, Taipei, Taiwan, 9–12 July 2010; p. 40. [Google Scholar]
- Ayala-Gomez, F.; Daroczy, B.; Benczur, A.; Mathioudakis, M.; Gionis, A. Global citation recommendation using knowledge graphs. J. Intell. Fuzzy Syst. 2018, 34, 3089–3100. [Google Scholar] [CrossRef]
- McNee, S.; Kapoor, N.; Konstan, J. Don’t Look Stupid: Avoiding Pitfalls When Recommending Research Papers. In Proceedings of the CSCW06: Computer Supported Cooperative Work, Banff, AB, Canada, 4–8 November 2006; pp. 171–180. [Google Scholar] [CrossRef]
- Jiang, Y.; Jia, A.; Feng, Y.; Zhao, D. Recommending Academic Papers via Users’ Reading Purposes. In Proceedings of the RecSys ’12: Sixth ACM Conference on Recommender Systems, Dublin, UK, 9–13 September 2012; pp. 241–244. [Google Scholar] [CrossRef]
- Achakulvisut, T.; Acuna, D.; Ruangrong, T.; Kording, K. Science Concierge: A fast content-based recommendation system for scientific publications. PLoS ONE 2016, 11, e0158423. [Google Scholar] [CrossRef]
- Kazemi, B.; Abhari, A. A Comparative Study on Content-Based Paper-to-Paper Recommendation Approaches in Scientific Literature. Soc. Model. Simul. Int. 2017, 49, 47–56. [Google Scholar]
- Paraschiv, I.; Dascalu, M.; Dessus, P.; Trausan-Matu, S.; McNamara, D. A paper recommendation system with readerbench: The graphical visualization of semantically related papers and concepts. Lect. Notes Educ. Technol. 2016, 445–451. [Google Scholar] [CrossRef]
- Guan, Z.; Wang, C.; Bu, J.; Chen, C.; Yang, K.; Cai, D.; He, X. Document recommendation in social tagging services. In Proceedings of the WWW ’10: Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010. [Google Scholar] [CrossRef]
- Ferrara, F.; Pudota, N.; Tasso, C. A keyphrase-based paper recommender system. Commun. Comput. Inf. Sci. 2011, 249, 14–25. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Yang, J.; Zheng, Z.; Wu, K. A personalization-oriented academic literature recommendation method. Data Sci. J. 2015, 14, 17. [Google Scholar] [CrossRef]
- Jia, H.; Saule, E. An Analysis of Citation Recommender Systems: Beyond the Obvious; Association for Computing Machinery, Inc.: New York, NY, USA, 2017; pp. 216–223. [Google Scholar] [CrossRef]
- Cui, T.; Tang, X.; Zeng, Q. User Network Construction Within Online Paper Recommendation Systems. In Proceedings of the 2010 IEEE 2nd Symposium on Web Society, Beijing, China, 16–17 August 2010; pp. 361–366. [Google Scholar] [CrossRef]
- Matsatsinis, N.F.; Lakiotaki, K.; Delias, P. A System based on Multiple Criteria Analysis for Scientific Paper Recommendation. In Proceedings of the PCI’ 2007 11th Panhellenic Conference in Informatics, Patra, Greece, 18–20 May 2007. [Google Scholar]
- Anand, A.; Chakraborty, T.; Das, A. FairScholar: Balancing relevance and diversity for scientific paper recommendation. Lect. Notes Comput. Sci. 2017, 10193, 753–757. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, M.; Li, X. Recommending scientific literatures in a collaborative tagging environment. Lect. Notes Comput. Sci. 2007, 4822, 478–481. [Google Scholar]
- Le Anh, V.; Hoang, H.; Tran, H.; Jung, J. SciRecSys: A recommendation system for scientific publication by discovering keyword relationships. Lect. Notes Comput. Sci. 2014, 8733, 72–82. [Google Scholar]
- Raamkumar, A.; Foo, S.; Pang, N. Comparison of Techniques for Measuring Research Coverage of Scientific Papers: A Case Study; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 132–137. [Google Scholar] [CrossRef]
- Sesagiri Raamkumar, A.; Foo, S.; Pang, N. Using author-specified keywords in building an initial reading list of research papers in scientific paper retrieval and recommender systems. Inf. Process. Manag. 2017, 53, 577–594. [Google Scholar] [CrossRef]
- Bruns, S.; Valdez, A.C.; Greven, C.; Ziefle, M.; Schroeder, U. What Should I Read Next? A Personalized Visual Publication Recommender System. In Human Interface and the Management of Information. Information and Knowledge in Context; Yamamoto, S., Ed.; Springer: Cham, Switzerland, 2015; pp. 89–100. [Google Scholar]
- Vellino, A.; Zeber, D. A Hybrid, Multi-Dimensional Recommender for Journal Articles in a Scientific Digital Library. In Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology—Workshops, Silicon Valley, CA, USA, 5–12 November 2007; pp. 111–114. [Google Scholar] [CrossRef]
- Kodakateri Pudhiyaveetil, A.; Gauch, S.; Luong, H.; Eno, J. Conceptual Recommender System for CiteSeerX. In Proceedings of the RecSys ’09: Third ACM Conference on Recommender Systems, New York, NY, USA, 23–25 October 2009; pp. 241–244. [Google Scholar] [CrossRef]
- De Nart, D.; Ferrara, F.; Tasso, C. Personalized access to scientific publications: From recommendation to explanation. Lect. Notes Comput. Sci. 2013, 7899, 296–301. [Google Scholar] [CrossRef]
- De Nart, D.; Ferrara, F.; Tasso, C. Personalized Recommendation and Explanation by Using Keyphrases Automatically Extracted from Scientific Literature; SciTePress: Vilamoura, Algarve, 2013; pp. 96–103. [Google Scholar]
- De Nart, D.; Ferrara, F.; Tasso, C. RES: A personalized filtering tool for CiteSeerX queries based on keyphrase extraction. Lect. Notes Comput. Sci. 2013, 7899, 341–343. [Google Scholar] [CrossRef]
- Asabere, N.; Xia, F.; Meng, Q.; Li, F.; Liu, H. Scholarly paper recommendation based on social awareness and folksonomy. Int. J. Parallel Emergent Distrib. Syst. 2015, 30, 211–232. [Google Scholar] [CrossRef]
- Guan, P.; Wang, Y. Personalized scientific literature recommendation based on user’s research interest. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 1273–1277. [Google Scholar] [CrossRef]
- Tejeda-Lorente, A.; Bernabe-Moreno, J.; Porcel, C.; Herrera-Viedma, E. Using bibliometrics and fuzzy linguistic modeling to deal with cold start in recommender systems for digital libraries. Adv. Intell. Syst. Comput. 2018, 643, 393–404. [Google Scholar] [CrossRef]
- Alotaibi, S.; Vassileva, J. Personalized Recommendation of Research Papers by Fusing Recommendations from Explicit and Implicit Social Networks; CEUR-WS: Aachen, Germany, 2016; Volume 1618. [Google Scholar]
- Siebert, S.; Dinesh, S.; Feyer, S. Extending a Research-Paper Recommendation System with Scientometric Measures; CEUR-WS: Aachen, Germany, 2017; Volume 1823, pp. 112–121. [Google Scholar]
- Zhou, D.; Zhu, S.; Yu, K.; Song, X.; Tseng, B.; Zha, H.; Giles, C. Learning multiple graphs for document recommendations. In Proceedings of the WWW ’08: Proceedings of the 17th International Conference on World Wide Web, Beijing China, 21–25 April 2008. [CrossRef]
- Liu, X.; Yu, Y.; Guo, C.; Sun, Y.; Gao, L. Full-Text Based Context-Rich Heterogeneous Network Mining Approach for Citation Recommendation; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2014; pp. 361–370. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Zhang, X.; Lu, S. Academic Paper Recommendation Based on Community Detection in Citation-Collaboration Networks. In Web Technologies and Applications; Li, F., Shim, K., Zheng, K., Liu, G., Eds.; Springer: Cham, Switzerland, 2016; pp. 124–136. [Google Scholar]
- Meng, F.; Gao, D.; Li, W.; Sun, X.; Hou, Y. A Unified Graph Model for Personalized Query-Oriented Reference Paper Recommendation. In Proceedings of the CIKM ’13: Proceedings of the 22nd ACM international conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–1 November 2013; pp. 1509–1512. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Z.; Lee, I.; Xu, Z.; Yu, S.; Xia, F. CAR: Incorporating Filtered Citation Relations for Scientific Article Recommendation. In Proceedings of the 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), Chengdu, China, 19–21 December 2015; pp. 513–518. [Google Scholar]
- Färber, M.; Thiemann, A.; Jatowt, A. CITEWERTs: A system combining cite-worthiness with citation recommendation. Lect. Notes Comput. Sci. 2018, 10772, 815–819. [Google Scholar] [CrossRef]
- Xia, F.; Liu, H.; Lee, I.; Cao, L. Scientific Article Recommendation: Exploiting Common Author Relations and Historical Preferences. IEEE Trans. Big Data 2016, 2, 101–112. [Google Scholar] [CrossRef]
- Dhanda, M.; Verma, V. Recommender System for Academic Literature with Incremental Dataset. Procedia Comput. Sci. 2016, 89, 483–491. [Google Scholar] [CrossRef]
- Küçüktunç, O.; Saule, E.; Kaya, K.; Çatalyürek, U.V. Diversifying Citation Recommendations. ACM Trans. Intell. Syst. Technol. 2014, 5. [Google Scholar] [CrossRef]
- Watanabe, S.; Ito, T.; Ozono, T.; Shintani, T. A Paper Recommendation Mechanism for the Research Support System Papits. In Proceedings of the International Workshop on Data Engineering Issues in E-Commerce, Tokyo, Japan, 9 April 2005; Volume 2005, pp. 71–80. [Google Scholar] [CrossRef]
- Dhanda, M.; Verma, V. Personalized recommendation approach for academic literature using high-utility itemset mining technique. Adv. Intell. Syst. Comput. 2018, 519, 247–254. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Gauch, S.; Lakkaraju, P.; Luong, H.P. Concept-Based Document Recommendations for CiteSeer Authors. In Adaptive Hypermedia and Adaptive Web-Based Systems; Nejdl, W., Kay, J., Pu, P., Herder, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 83–92. [Google Scholar]
- Chandrasekaran, K.; Gauch, S.; Lakkaraju, P.; Luong, H. Concept-based document recommendations for CiteSeer authors. Lect. Notes Comput. Sci. 2008, 5149, 83–92. [Google Scholar] [CrossRef]
- Weng, S.S.; Chang, H.L. Using ontology network analysis for research document recommendation. Expert Syst. Appl. 2008, 34, 1857–1869. [Google Scholar] [CrossRef]
- Pan, L.; Dai, X.; Huang, S.; Chen, J. Academic paper recommendation based on heterogeneous graph. Lect. Notes Comput. Sci. 2015, 9427, 381–392. [Google Scholar] [CrossRef]
- Gao, Z. Examining Influences of Publication Dates on Citation Recommendation Systems; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 1400–1405. [Google Scholar] [CrossRef]
- Torres, R.; McNee, S.M.; Abel, M.; Konstan, J.A.; Riedl, J. Enhancing Digital Libraries with TechLens+. In Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, Tuscon, AZ, USA, 7–11 June 2004; pp. 228–236. [Google Scholar]
- Sugiyama, K.; Kan, M.Y. Scholarly Paper Recommendation via User’s Recent Research Interests. In Proceedings of the 10th Joint Conference on Digital Libraries, Gold Coast, Australia, 21–25 June 2010; pp. 29–38. [Google Scholar]
- Beel, J.; Langer, S.; Kapitsaki, G.; Breitinger, C.; Gipp, B. Exploring the potential of user modeling based on mind maps. Lect. Notes Comput. Sci. 2015, 9146, 3–17. [Google Scholar] [CrossRef]
- McNee, S.; Albert, I.; Cosley, D.; Gopalkrishnan, P.; Lam, S.; Rashid, A.; Konstan, J.; Riedl, J. On the Recommending of Citations for Research Papers. In Proceedings of the CSCW02: Computer Supported Cooperative Work, New Orleans, LO, USA, 16–20 November 2002; pp. 116–125. [Google Scholar]
- Huang, S.; Xue, G.R.; Zhang, B.Y.; Zheng, C.; Yu, Y.; Ma, W.Y. TSSP: A Reinforcement Algorithm to Find Related Papers. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04), Beijing, China, 20–24 September 2004; pp. 117–123. [Google Scholar] [CrossRef]
- Gipp, B.; Beel, J. Citation Proximity Analysis (CPA): A New Approach for Identifying Related Work Based on Co-Citation Analysis. In Proceedings of the 12th International Conference on Scientometrics and Informetrics, Rio de Janeiro, Brazil, 14–17 July 2009; Larsen, B., Ed.; BIREME/PANO/WHO: São Paulo, Brazil, 2009; Volume 1, pp. 571–575. [Google Scholar]
- Gipp, B.; Beel, J. Identifying related documents for research paper recommender by CPA and COA. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2009; Volume 1, pp. 20–22. [Google Scholar]
- Gipp, B.; Beel, J.; Hentschel, C. Scienstein: A research paper recommender system. In Proceedings of the International Conference on Emerging Trends in Computing (ICETIC’09), Virudhunagar, India, 8–10 January 2009; pp. 309–315. [Google Scholar]
- Liang, S.; Liu, Y.; Jian, L.; Gao, Y.; Lin, Z. A Utility-Based Recommendation Approach for Academic Literatures. In Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Lyon, Frence, 22–27 August 2011; Volume 3, pp. 229–232. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Q.; Qian, T. Finding Relevant Papers Based on Citation Relations. In Proceedings of the 12th International Conference on Web-Age Information Management, WAIM’11, Wuhan, China, 14–16 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 403–414. [Google Scholar]
- Zarrinkalam, F.; Kahani, M. A multi-criteria hybrid citation recommendation system based on linked data. In Proceedings of the 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 18–19 October 2012; pp. 283–288. [Google Scholar] [CrossRef]
- Huynh, T.; Hoang, K.; Do, L.; Tran, H.; Luong, H.; Gauch, S. Scientific Publication Recommendations Based on Collaborative Citation Networks. In Proceedings of the 2012 International Conference on Collaboration Technologies and Systems (CTS), Denver, CO, USA, 21–25 May 2012; pp. 316–321. [Google Scholar] [CrossRef]
- Caragea, C.; Silvescu, A.; Mitra, P.; Lee Giles, C. Can’t See the Forest for the Trees? A Citation Recommendation System. In Proceedings of the JCDL ’13: 13th ACM/IEEE-CS Joint Conference on Digital Libraries, Indianapolis, IN, USA, 22–26 July 2013; pp. 111–114. [Google Scholar] [CrossRef]
- Liu, H.; Kong, X.; Bai, X.; Wang, W.; Bekele, T.M.; Xia, F. Context-Based Collaborative Filtering for Citation Recommendation. IEEE Access 2015, 3, 1695–1703. [Google Scholar] [CrossRef]
- Chakraborty, T.; Krishna, A.; Singh, M.; Ganguly, N.; Goyal, P.; Mukherjee, A. FeRoSA: A Faceted Recommendation System for Scientific Articles. In Proceedings of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD, Auckland, New Zealand, 19–22 April 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9652, pp. 528–541. [Google Scholar] [CrossRef]
- Haruna, K.; Ismail, M.; Damiasih, D.; Sutopo, J.; Herawan, T. A collaborative approach for research paper recommender system. PLoS ONE 2017, 12, e0184516. [Google Scholar] [CrossRef]
- Knoth, P.; Khadka, A. Can we do better than co-citations? Bringing Citation Proximity Analysis from idea to practice in research articles recommendation. In Proceedings of the CEUR Workshop Proceedings, Poznań, Poland, 19–21 June 2017; Volume 1888, pp. 14–25. [Google Scholar]
- Arif, M. Content Aware Citation Recommendation System; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Haruna, K.; Ismail, M.; Bichi, A.; Chang, V.; Wibawa, S.; Herawan, T. A citation-based recommender system for scholarly paper recommendation. Lect. Notes Comput. Sci. 2018, 10960, 514–525. [Google Scholar] [CrossRef]
- Son, J.; Kim, S. Academic paper recommender system using multilevel simultaneous citation networks. Decis. Support Syst. 2018, 105, 24–33. [Google Scholar] [CrossRef]
- Ollagnier, A.; Fournier, S.; Bellot, P. BIBLME RecSys: Harnessing Bibliometric Measures for a Scholarly Paper Recommender System; CEUR-WS: Aachen, Germany, 2018; Volume 2080, pp. 34–45. [Google Scholar]
- Kobayashi, Y.; Shimbo, M.; Matsumoto, Y. Citation Recommendation Using Distributed Representation of Discourse Facets in Scientific Articles. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, JCDL ’18, Fort Worth, TX, USA, 3–6 June 2018; pp. 243–251. [Google Scholar] [CrossRef]
- Khadka, A.; Knoth, P. Using Citation-context to Reduce Topic Drifting on Pure Citation-based Recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Canada, 2 October 2018; pp. 362–366. [Google Scholar]
- Tanner, W.; Akbas, E.; Hasan, M. Paper Recommendation Based on Citation Relation. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3053–3059. [Google Scholar] [CrossRef]
- Ekstrand, M.D.; Kannan, P.; Stemper, J.A.; Butler, J.T.; Konstan, J.A.; Riedl, J.T. Automatically Building Research Reading Lists. In Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 159–166. [Google Scholar]
- Kúçúktunç, O.; Saule, E.; Kaya, K.; Çatalyürek, Ú.V. Recommendation on Academic Networks using Direction Aware Citation Analysis. arXiv 2012, arXiv:1205.1143. [Google Scholar] [CrossRef]
- Jia, H.; Saule, E. Local Is Good: A Fast Citation Recommendation Approach. In Advances in Information Retrieval; Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 758–764. [Google Scholar]
- Jeong, C.; Jang, S.; Shin, H.; Park, E.; Choi, S. A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks. arXiv 2019, arXiv:1903.06464. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, X.; Chen, C. Authoritative scholarly paper recommendation based on paper communities. In Proceedings of the 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), Chengdu, China, 19–21 December 2014; pp. 1536–1540. [Google Scholar]
- Huang, W.; Wu, Z.; Liang, C.; Mitra, P.; Giles, C.L. A Neural Probabilistic Model for Context Based Citation Recommendation. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2404–2410. [Google Scholar]
- Sugiyama, K.; Kan, M.Y. Serendipitous Recommendation for Scholarly Papers Considering Relations Among Researchers. In Proceedings of the Ottawa, ON, Canada, 13–17 June 2011; pp. 307–310. [Google Scholar] [CrossRef]
- Alotaibi, S.; Vassileva, J. Trust-based recommendations for scientific papers based on the researcher’s current interest. Lect. Notes Comput. Sci. 2013, 7926, 717–720. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kan, M.Y. “Towards Higher Relevance and Serendipity in Scholarly Paper Recommendation” by Kazunari Sugiyama and Min-Yen Kan with Martin Vesely as Coordinator. SIGWEB Newsl. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, W.; Zhang, S. A Pagerank-based Collaborative Filtering Recommendation Approach in Digital Libraries. 2017. Available online: https://www.semanticscholar.org/paper/A-PAGERANK-BASED-COLLABORATIVE-FILTERING-APPROACH-Guo-Zhang/7338927eb70e467efedd3b2ef996a0629504c29e (accessed on 25 August 2025).
- Ha, J.; Kwon, S.H.; Kim, S.W.; Lee, D. Recommendation of Newly Published Research Papers Using Belief Propagation. In Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems, Towson, MD, USA, 5–8 October 2014; pp. 77–81. [Google Scholar]
- Chen, T.; Lee, M. Research paper recommender systems on big scholarly data. Lect. Notes Comput. Sci. 2018, 11016, 251–260. [Google Scholar] [CrossRef]
- Haruna, K.; Ismail, M. Research Paper Recommender System Evaluation Using Collaborative Filtering; American Institute of Physics Inc.: New York, NY, USA, 2018; Volume 1974. [Google Scholar] [CrossRef]
- Steinert, L.; Chounta, I.A.; Hoppe, H.U. Where to Begin? Using Network Analytics for the Recommendation of Scientific Papers. In Collaboration and Technology; Baloian, N., Zorian, Y., Taslakian, P., Shoukouryan, S., Eds.; Springer: Cham, Switzerland, 2015; pp. 124–139. [Google Scholar]
- Habib, R.; Afzal, M.T. Paper recommendation using citation proximity in bibliographic coupling. Turk. J. Electr. Eng. Comput. Sci. 2017, 33, 13. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, H.; Zhao, S.Z.; Chen, J.; Zhang, Y. Citation recommendation based on citation tendency. Scientometrics 2019, 121, 937–956. [Google Scholar] [CrossRef]
- Jia, H.; Saule, E. Graph Embedding for Citation Recommendation. arXiv 2018, arXiv:1812.03835. [Google Scholar] [CrossRef]
- Duma, D.; Liakata, M.; Clare, A.; Ravenscroft, J.; Klein, E. Applying Core Scientific Concepts to Context-Based Citation Recommendation; European Language Resources Association (ELRA): Reykjavik, Iceland, 2016; pp. 1737–1742. [Google Scholar]
- Färber, M.; Saier, T. Semantic Modelling of Citation Contexts for Context-aware Citation Recommendation. In Proceedings of the European Conference on Information Retrieval (ECIR’20), Lisbon, Portugal, 14–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Khadka, A. Capturing and Exploiting Citation Knowledge for the Recommendation of Scientific Publications; Open University: Milton Keynes, UK, 2020. [Google Scholar]
- Benard Magara, M.; Ojo, S.; Zuva, T. A Comparative Analysis of Text Similarity Measures and Algorithms in Research Paper Recommender Systems; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Sharma, R.; Gopalani, D.; Meena, Y. Concept-Based Approach for Research Paper Recommendation. Lect. Notes Comput. Sci. 2017, 10597, 687–692. [Google Scholar] [CrossRef]
- Huang, W.; Wu, Z.; Mitra, P.; Giles, C. RefSeer: A Citation Recommendation System; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2014; pp. 371–374. [Google Scholar] [CrossRef]
- Middleton, S.E.; De Roure, D.C.; Shadbolt, N.R. Capturing Knowledge of User Preferences: Ontologies in Recommender Systems. In Proceedings of the 1st International Conference on Knowledge Capture, Victoria, BC, Canada, 21–23 October 2001; pp. 100–107. [Google Scholar]
- Middleton, S.; Shadbolt, N.; De Roure, D. Capturing Interest Through Inference and Visualization: Ontological User Profiling in Recommender Systems; Association for Computing Machinery, Inc.: Las Vegas, NV, USA, 2003; pp. 62–69. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Li, X. A paper recommender for scientific literatures based on semantic concept similarity. Lect. Notes Comput. Sci. 2008, 5362, 359–362. [Google Scholar] [CrossRef]
- Popa, H.E.; Negru, V.; Pop, D.; Muscalagiu, I. DL-Agentrecom—A Multi-Agent Based Recommendation System for Scientific Documents. In Proceedings of the 2008 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 26–29 September 2008; pp. 320–324. [Google Scholar] [CrossRef]
- Dong, R.; Tokarchuk, L.; Ma, A. Digging friendship: Paper recommendation in social network. In Proceedings of the Networking & Electronic Commerce Research Conference (NAEC 2009), Riva Del Garda, Italy, 8–11 October 2009; pp. 21–28. [Google Scholar]
- Jomsri, P.; Sanguansintukul, S.; Choochaiwattana, W. A Framework for Tag-Based Research Paper Recommender System: An Ir Approach. In Proceedings of the 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, Perth, Australia, 20–23 April 2010; pp. 103–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L. A Research Paper Recommender System Based on Spreading Activation Model. In Proceedings of the The 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6 December 2010; pp. 928–931. [Google Scholar] [CrossRef]
- Parra-Santander, D.; Brusilovsky, P. Improving Collaborative Filtering in Social Tagging Systems for the Recommendation of Scientific Articles. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, 31 Augus–3 September 2010; Volume 1, pp. 136–142. [Google Scholar] [CrossRef]
- Pan, C.; Li, W. Research Paper Recommendation with Topic Analysis. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, Hebei, 25–27 June 2010; Volume 4, pp. V4264–V4268. [Google Scholar] [CrossRef]
- Choochaiwattana, W. Usage of Tagging for Research Paper Recommendation. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), Chengdu, China, 20–22 August 2010; Volume 2, pp. V2439–V2442. [Google Scholar] [CrossRef]
- Pera, M.; Ng, Y.K. A Personalized Recommendation System on Scholarly Publications. In Proceedings of the CIKM ’11: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011. [CrossRef]
- Amini, B.; Ibrahim, R.; Othman, M.; Rastegari, H. Incorporating scholar’s background knowledge into recommender system for digital libraries. In Proceedings of the 2011 Malaysian Conference in Software Engineering, Johor Bahru, Malaysia, 13–14 December 2011; pp. 516–523. [Google Scholar] [CrossRef]
- Amini, B.; Ibrahim, R.; Othman, M. Exploiting scholar’s background knowledge to improve recommender system for digital libraries. Int. J. Digit. Content Technol. Its Appl. 2012, 6, 119–128. [Google Scholar] [CrossRef]
- Tang, X.; Zeng, Q. Keyword clustering for user interest profiling refinement within paper recommender systems. J. Syst. Softw. 2012, 85, 87–101. [Google Scholar] [CrossRef]
- Doerfel, S.; Jäschke, R.; Hotho, A.; Stumme, G. Leveraging Publication Metadata and Social Data into Folkrank for Scientific Publication Recommendation. In Proceedings of the RSWeb ’12: Proceedings of the 4th ACM RecSys Workshop on Recommender Systems and the Social Web, Dublin, UK, 9 September 2012; pp. 9–16. [Google Scholar] [CrossRef]
- Beel, J.; Langer, S.; Genzmehr, M.; Nürnberger, A. Introducing Docear’S Research Paper Recommender System. In Proceedings of the JCDL ’13: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, Indianapolis, IN, USA, 22–26 July 2013; pp. 459–460. [Google Scholar] [CrossRef]
- Alotaibi, S.; Vassileva, J. Effect of Different Implicit Social Networks on Recommending Research Papers; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 217–221. [Google Scholar] [CrossRef]
- Tsolakidis, A.; Triperina, E.; Christidis, N.; Sgouropoulou, C. Research Publication Recommendation System Based on a Hybrid Approach; Association for Computing Machinery: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Amami, M.; Faiz, R.; Stella, F.; Pasi, G. A Graph Based Approach to Scientific Paper Recommendation; Association for Computing Machinery, Inc.: New York, NY, USA, 2017; pp. 777–782. [Google Scholar] [CrossRef]
- Sripadh, T.; Ramesh, G. Personalized research paper recommender system. Lect. Notes Comput. Vis. Biomech. 2018, 28, 437–446. [Google Scholar] [CrossRef]
- Magara, M.; Ojo, S.; Zuva, T. Toward Altmetric-Driven Research-Paper Recommender System Framework; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 63–68. [Google Scholar] [CrossRef]
- Khadka, A.; Cantador, I.; Fernandez, M. Capturing and Exploiting Citation Knowledge for Recommending Recently Published Papers. In Proceedings of the 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Virtual, 4–6 November 2020; pp. 239–244. [Google Scholar] [CrossRef]
- Khadka, A.; Cantador, I.; Fernandez, M. Exploiting Citation Knowledge in Personalised Recommendation of Recent Scientific Publications. In Proceedings of the Twelfth Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 2231–2240. [Google Scholar]
- Schwarzer, M.; Schubotz, M.; Meuschke, N.; Breitinger, C.; Markl, V.; Gipp, B. Evaluating Link-Based Recommendations for Wikipedia. In Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, JCDL ’16, New York, NY, USA, 19–23 June 2016; pp. 191–200. [Google Scholar] [CrossRef]
- Lops, P.; de Gemmis, M.; Semeraro, G. Content-based Recommender Systems: State of the Art and Trends. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., Eds.; Springer: Boston, MA, USA, 2011; pp. 73–105. [Google Scholar] [CrossRef]
- Basu, C.; Hirsh, H.; Cohen, W. Recommendation As Classification: Using Social and Content-based Information in Recommendation. In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI ’98/IAAI ’98, Menlo Park, CA, USA, 26–30 July 1998; pp. 714–720. [Google Scholar]
- Bollacker, K.D.; Lawrence, S.; Giles, C.L. A System for Automatic Personalized Tracking of Scientific Literature on the Web. In Proceedings of the Fourth ACM Conference on Digital Libraries, DL ’99, New York, NY, USA, 11–14 August 1999; pp. 105–113. [Google Scholar] [CrossRef]
- Zhu, J.; Patra, B.G.; Yaseen, A. Recommender system of scholarly papers using public datasets. AMIA Summits Transl. Sci. Proc. 2021, 2021, 672–679. [Google Scholar]
- Cohan, A.; Feldman, S.; Beltagy, I.; Downey, D.; Weld, D.S. Specter: Document-level representation learning using citation-informed transformers. arXiv 2020, arXiv:2004.07180. [Google Scholar]
- Haruna, K.; Ismail, M.A.; Qazi, A.; Kakudi, H.A.; Hassan, M.; Muaz, S.A.; Chiroma, H. Research paper recommender system based on public contextual metadata. Scientometrics 2020, 125, 101–114. [Google Scholar] [CrossRef]
- Yadav, P.; Pervin, N. Towards efficient navigation in digital libraries: Leveraging popularity, semantics and communities to recommend scholarly articles. J. Inf. 2022, 16, 101336. [Google Scholar] [CrossRef]
- Hadhiatma, A.; Azhari, A.; Suyanto, Y. A Scientific Paper Recommendation Framework Based on Multi-Topic Communities and Modified PageRank. IEEE Access 2023, 11, 25303–25317. [Google Scholar] [CrossRef]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, 1–5 May 2001; pp. 285–295. [Google Scholar]
- Agarwal, N.; Haque, E.; Liu, H.; Parsons, L. Research Paper Recommender Systems: A Subspace Clustering Approach. In Advances in Web-Age Information Management; Fan, W., Wu, Z., Yang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 475–491. [Google Scholar]
- Tang, T.Y.; McCalla, G.I. The Pedagogical Value of Papers: A Collaborative-Filtering based Paper Recommender. J. Digit. Inf. 2009, 10. [Google Scholar]
- Besimi, N.; Çiço, B.; Besimi, A. Hybrid solution for scalable research articles recommendation. In Proceedings of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Vellino, A. A comparison between usage-based and citation-based methods for recommending scholarly research articles. In Proceedings of the ASIST Annual Meeting, Pittsburgh, PA, USA, 22–27 October 2010; Volume 47. [Google Scholar] [CrossRef]
- Yang, C.; Wei, B.; Wu, J.; Zhang, Y.; Zhang, L. CARES: A Ranking-Oriented CADAL Recommender System. In Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, Association for Computing Machinery, JCDL ’09, Austin, TX, USA, 15–19 June 2009; pp. 203–212. [Google Scholar] [CrossRef]
- Mei, Q.; Guo, J.; Radev, D. DivRank: The Interplay of Prestige and Diversity in Information Networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, New York, NY, USA, 24–28 July 2010; pp. 1009–1018. [Google Scholar] [CrossRef]
- Cano, V. Citation behavior: Classification, utility, and location. J. Am. Soc. Inf. Sci. 1989, 40, 284–290. [Google Scholar] [CrossRef]
- Burke, R. Hybrid Recommender Systems: Survey and Experiments. User Model.-User-Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Burke, R. Knowledge-Based Recommender Systems. In Encyclopedia of Library and Information Systems; Marcel Dekker: New York, NY, USA, 2000; p. 2000. [Google Scholar]
- Mobasher, B.; Cooley, R.; Srivastava, J. Automatic Personalization Based on Web Usage Mining. Commun. ACM 2000, 43, 142–151. [Google Scholar] [CrossRef]
- Burke, R. Hybrid Web Recommender Systems. In The Adaptive Web: Methods and Strategies of Web Personalization; Springer: Berlin/Heidelberg, Germany, 2007; pp. 377–408. [Google Scholar]
- Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676. [Google Scholar] [CrossRef]
- Lin, Y.; Meng, Y.; Sun, X.; Han, Q.; Kuang, K.; Li, J.; Wu, F. BertGCN: Transductive Text Classification by Combining GNN and BERT. In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online, 1–6 August 2021; Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 1456–1462. [Google Scholar] [CrossRef]
- Jack, K.; Hammerton, J.; Harvey, D.; Hoyt, J.J.; Reichelt, J.; Henning, V. Mendeleys reply to the datatel challenge. Procedia Comput. Sci. 2010, 1, 1–3. [Google Scholar]
- Shani, G.; Gunawardana, A. Evaluating Recommendation Systems. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., Eds.; Springer: Boston, MA, USA, 2011; pp. 257–297. [Google Scholar] [CrossRef]
- Beel, J.; Genzmehr, M.; Langer, S.; Nürnberger, A.; Gipp, B. A Comparative Analysis of Offline and Online Evaluations and Discussion of Research Paper Recommender System Evaluation. In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, RepSys ’13, New York, NY, USA, 12 October 2013; pp. 7–14. [Google Scholar] [CrossRef]
- Yang, S.; Hsu, C. A New Ontology-Supported and Hybrid Recommending Information System for Scholars. In Proceedings of the 2010 13th International Conference on Network-Based Information Systems, Gifu, Japan, 14–16 September 2010; pp. 379–384. [Google Scholar] [CrossRef]
- Philip, S.; Musa, E. A Paper Recommender System Based on the Past Ratings of a User. Int. J. Adv. Comput. Technol. 2014, 3, 41–46. [Google Scholar]
- Yu, L.; Yang, J.; Yang, D.; Yang, X. A Decision Support System for Finding Research Topic based on Paper Recommendation. In Proceedings of the PACIS, Jeju Island, Republic of Korea, 18–22 June 2013. [Google Scholar]
- Patil, S.; Ansari, P.M.B. User Profile Based Personalized Research Paper Recommendation System Using Top-K Query. 2015. Available online: https://www.semanticscholar.org/paper/UserProfile-based-personalized-research-paper-Hong-Jeon/9814ffbfb182ea6e9f30efbe20789d2f84c968e0 (accessed on 11 November 2024).
- Jain, M. Algorithm for Research Paper Recommendation System. Int. J. Inf. Technol. Knowl. Manag. 2012, 443–445. [Google Scholar]
- Pruitikanee, S.; Jorio, L.D.; Laurent, A.; Sala, M. Paper Recommendation System: A Global and Soft Approach. 2012. Available online: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00803915v1/document (accessed on 28 January 2019).
- Singh, S.; Ahuja, N. Article recommendation system based on keyword using map-reduce. In Proceedings of the 2015 Third International Conference on Image Information Processing (ICIIP), Waknaghat, India, 21–24 December 2015; pp. 548–550. [Google Scholar] [CrossRef]
- Rashid, A.M.; Albert, I.; Cosley, D.; Lam, S.K.; McNee, S.M.; Konstan, J.A.; Riedl, J. Getting to Know You: Learning New User Preferences in Recommender Systems. In Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI ’02, New York, NY, USA, 13–16 January 2002; pp. 127–134. [Google Scholar] [CrossRef]
- Adamopoulos, P.; Tuzhilin, A. On Unexpectedness in Recommender Systems: Or How to Better Expect the Unexpected. ACM Trans. Intell. Syst. Technol. 2014, 5, 54. [Google Scholar] [CrossRef]
- Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Inf. Syst. 2004, 22, 5–53. [Google Scholar] [CrossRef]
- McNee, S.M.; Riedl, J.; Konstan, J.A. Being Accurate is Not Enough: How Accuracy Metrics Have Hurt Recommender Systems. In Proceedings of the CHI ’06 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’06, New York, NY, USA, 22–27 April 2006; pp. 1097–1101. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, D.; Zhang, Q.; Li, H.; Yang, T. Do Clicks Measure Recommendation Relevancy?: An Empirical User Study. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, New York, NY, USA, 26–30 September 2010; pp. 249–252. [Google Scholar] [CrossRef]
- Tang, T.; McCalla, G. Utilizing Artificial Learners to Help Overcome the Cold-Start Problem in a Pedagogically-Oriented Paper Recommendation System. In Adaptive Hypermedia and Adaptive Web-Based Systems; De Bra, P.M.E., Nejdl, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 245–254. [Google Scholar]
- Tang, T.Y.; McCalla, G. A Multidimensional Paper Recommender: Experiments and Evaluations. IEEE Internet Comput. 2009, 13, 34–41. [Google Scholar] [CrossRef]
- Jokar, N.; Honarvar, A.; Esfandiari, K. A contextual information based scholary paper recommender system using big data platform. J. Fundam. Appl. Sci. 2016, 8, 914–924. [Google Scholar] [CrossRef]
- Raamkumar, A.S.; Foo, S.; Pang, N. A Framework for Scientific Paper Retrieval and Recommender Systems. arXiv 2016, arXiv:1609.01415. [Google Scholar] [CrossRef]
- Sesagiri Raamkumar, A.; Foo, S. Multi-method Evaluation in Scientific Paper Recommender Systems. In Proceedings of the Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP ’18, New York, NY, USA, 8–11 July 2018; pp. 179–182. [Google Scholar] [CrossRef]
- Alotaibi, S.; Vassileva, J. Multi-dimensional Ratings for Research Paper Recommender Systems: A Qualitative Study. In Proceedings of the International Symposium on Web AlGorithms, Victoria, BC, Canada, 5–7 August 2015. [Google Scholar]
- Huang, Z.; Chung, W.; Ong, T.H.; Chen, H. A Graph-Based Recommender System for Digital Library. In Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’02, New York, NY, USA, 14–18 July 2002; pp. 65–73. [Google Scholar] [CrossRef]
- Labille, K.; Gauch, S.; Joseph, A.S.; Bogers, T.; Koolen, M. Conceptual Impact-Based Recommender System for CiteSeerx. In Proceedings of the CBRecSys@ RecSys, Vienna, Austria, 2 December 2015; pp. 50–53. [Google Scholar]
- Mönnich, M.; Spiering, M. Adding value to the library catalog by implementing a recommendation system. D-Lib Mag. 2008, 14, 1082–9873. [Google Scholar] [CrossRef]
- Tran, H.N.; Huynh, T.; Hoang, K. A Potential Approach to Overcome Data Limitation in Scientific Publication Recommendation. In Proceedings of the 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 8–10 October 2015; pp. 310–313. [Google Scholar] [CrossRef]
- Igbe, T.; Ojokoh, B. Incorporating user’s preferences into scholarly publications recommendation. Intell. Inf. Manag. 2016, 8, 27. [Google Scholar] [CrossRef]
- Cai, T.; Cheng, H.; Luo, J.; Zhou, S. An Efficient and Simple Graph Model for Scientific Article Cold Start Recommendation. In Conceptual Modeling; Comyn-Wattiau, I., Tanaka, K., Song, I.Y., Yamamoto, S., Saeki, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 248–259. [Google Scholar]
- Wang, G.; He, X.; Ishuga, C.I. HAR-SI: A novel hybrid article recommendation approach integrating with social information in scientific social network. Knowl.-Based Syst. 2018, 148, 85–99. [Google Scholar] [CrossRef]
- Keshavarz, S.; Honarvar, A.R. A Parallel Paper recommender system in Big Data Scholarly. In Proceedings of the International Conference on Electrical Engineering and Computer, Dhaka, Bangladesh, 19–20 December 2015. [Google Scholar]
- Tang, T.; McCalla, G. Beyond Learners’ Interest: Personalized Paper Recommendation Based on Their Pedagogical Features for an e-Learning System. In PRICAI 2004: Trends in Artificial Intelligence; Zhang, C., Guesgen, H.W., Yeap, W.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 301–310. [Google Scholar]
- Winoto, P. Contexts in a Paper Recommendation System with Collaborative Filtering. 2012. Available online: https://www.irrodl.org/index.php/irrodl/article/view/1243/2367 (accessed on 25 August 2025).
- Shimbo, M.; Takahiko, I.; Matsumoto, Y. Evaluation of kernel-based link analysis measures on research paper recommendation. In Proceedings of the 7th ACM International Conference on Digital Libraries, Vancouver, BC, Canada, 18–23 June 2007; pp. 354–355. [Google Scholar]
- Manouselis, N.; Verbert, K. Layered Evaluation of Multi-Criteria Collaborative Filtering for Scientific Paper Recommendation. Procedia Comput. Sci. 2013, 18, 1189–1197. [Google Scholar] [CrossRef]
- Chen, C.; Mayanglambam, S.D.; Hsu, F.; Lu, C.; Lee, H.; Ho, J. Novelty Paper Recommendation Using Citation Authority Diffusion. In Proceedings of the 2011 International Conference on Technologies and Applications of Artificial Intelligence, Chung-Li, Taiwan, 11–13 November 2011; pp. 126–131. [Google Scholar] [CrossRef]
- Sun, Y.; Ni, W.; Men, R. A Personalized Paper Recommendation Approach Based on Web Paper Mining and Reviewer’s Interest Modeling. In Proceedings of the 2009 International Conference on Research Challenges in Computer Science, Shanghai, China, 28–29 December 2009; pp. 49–52. [Google Scholar] [CrossRef]
- Hong, K.; Jeon, H.; Jeon, C. Advanced personalized research paper recommendation system based on expanded userprofile through semantic analysis. Int. J. Digit. Content Technol. Its Appl. 2013, 7, 67. [Google Scholar]
- Amami, M.; Pasi, G.; Stella, F.; Faiz, R. An LDA-Based Approach to Scientific Paper Recommendation. In Natural Language Processing and Information Systems; Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 200–210. [Google Scholar]
- Siama, P.; Yaneeb, J.; Ukrit, M. Digital Research Paper Recommendation System Appling Feature Based Method. In Proceedings of the International Conference on Language Education and Innovation, Phuket, Thailand, June 2015; Volume 2. [Google Scholar]
- Jiang, Z.; Liu, X.; Gao, L. Dynamic Topic/Citation Influence Modeling for Chronological Citation Recommendation. In Proceedings of the 5th International Workshop on Web-scale Knowledge Representation Retrieval & Reasoning, Web-KR ’14, New York, NY, USA, 3 November 2014; pp. 15–18. [Google Scholar] [CrossRef]
- Jiang, Z.; Lu, Y.; Liu, X. Cross-language Citation Recommendation via Publication Content and Citation Representation Fusion. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, JCDL ’18, New York, NY, USA, 3–6 June 2018; 2018; pp. 347–348. [Google Scholar] [CrossRef]
- Roy, D. An Improved Test Collection and Baselines for Bibliographic Citation Recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM ’17, New York NY, USA, 6–10 November 2017; 2017; pp. 2271–2274. [Google Scholar] [CrossRef]
- Tang, X.; Wan, X.; Zhang, X. Cross-language Context-aware Citation Recommendation in Scientific Articles. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’14, New York, NY, USA, 6–11 July 2014; pp. 817–826. [Google Scholar] [CrossRef]
- Lin, J.; Wilbur, W.J. PubMed related articles: A probabilistic topic-based model for content similarity. BMC Bioinform. 2007, 8, 423. [Google Scholar] [CrossRef]
- Rokach, L.; Mitra, P.; Kataria, S.; Huang, W.; Giles, L. A Supervised Learning Method for Context-Aware Citation Recommendation in a Large Corpus. INVITED SPEAKER: Analyzing the Performance of Top-K Retrieval Algorithms 1978:1978. Available online: https://fontoura.org/papers/lsdsir2013.pdf (accessed on 25 August 2025).
- Billsus, D.; Pazzani, M.J. Learning Collaborative Information Filters. In Proceedings of the Fifteenth International Conference on Machine Learning, ICML ’98, San Francisco, CA, USA, 24–27 July 1998; pp. 46–54. [Google Scholar]
- Breese, J.S.; Heckerman, D.; Kadie, C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA, 24–26 July 1998; pp. 43–52. [Google Scholar]
- Ge, M.; Delgado-Battenfeld, C.; Jannach, D. Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, New York, NY, USA, 26–30 September 2010; pp. 257–260. [Google Scholar] [CrossRef]
- Knijnenburg, B.P.; Willemsen, M.C.; Gantner, Z.; Soncu, H.; Newell, C. Explaining the User Experience of Recommender Systems. User Model.-User-Adapt. Interact. 2012, 22, 441–504. [Google Scholar] [CrossRef]
- Pu, P.; Chen, L.; Hu, R. Evaluating Recommender Systems from the User’s Perspective: Survey of the State of the Art. User Model.-User-Adapt. Interact. 2012, 22, 317–355. [Google Scholar] [CrossRef]
- Corneli, J.; Jordanous, A.; Guckelsberger, C.; Pease, A.; Colton, S. Modelling serendipity in a computational context. arXiv 2014, arXiv:1411.0440. [Google Scholar]
- Lu, Q.; Chen, T.; Zhang, W.; Yang, D.; Yu, Y. Serendipitous Personalized Ranking for Top-N Recommendation. In Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, WI-IAT ’12, Macau, China, 4–7 December 2012; IEEE Computer Society: Brighton, UK, 2012; Volume 1, pp. 258–265. [Google Scholar]
- Zheng, Q.; Chan, C.K.; Ip, H.H.S. An Unexpectedness Augmented Utility Model for Making Serendipitous Recommendation. In Advances in Data Mining: Applications and Theoretical Aspects; Perner, P., Ed.; Springer: Cham, Switzerland, 2015; pp. 216–230. [Google Scholar]
- Adomavicius, G.; Kwon, Y. Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques. IEEE Trans. Knowl. Data Eng. 2012, 24, 896–911. [Google Scholar] [CrossRef]
- Konstan, J.A.; McNee, S.M.; Ziegler, C.N.; Torres, R.; Kapoor, N.; Riedl, J.T. Lessons on Applying Automated Recommender Systems to Information-seeking Tasks. In Proceedings of the 21st National Conference on Artificial Intelligence, AAAI’06, Boston, MA, USA, 16–17 July 2006; AAAI Press: Washington, DC, USA, 2006; Volume 2, pp. 1630–1633. [Google Scholar]
- Steinert, L.; Hoppe, H.U. A Comparative Analysis of Network-Based Similarity Measures for Scientific Paper Recommendations. In Proceedings of the 2016 Third European Network Intelligence Conference (ENIC), Wroclaw, Poland, 5–7 September 2016; pp. 17–24. [Google Scholar] [CrossRef]
- Färber, M.; Coutinho, M.; Yuan, S. Biases in scholarly recommender systems: Impact, prevalence, and mitigation. Scientometrics 2023, 128, 2703–2736. [Google Scholar] [CrossRef]
- Pramod, D. Privacy-preserving techniques in recommender systems: State-of-the-art review and future research agenda. Data Technol. Appl. 2023, 57, 32–55. [Google Scholar] [CrossRef]




| Recommendation Task | References | |
|---|---|---|
| A piece of work | A paper | [17,20,49,59,60,69,70,71,72,76,78,80,82,83,84,85,90,93,109,116,123,124,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,162,163,164,165,169,170] |
| A set of papers | [20,70,71,78,80,85,90,116,149,150,151,164,165,170] | |
| A manuscript | [18,19,24,27,50,52,61,152] | |
| A snapshot of text | [9,21,25,47,51,53,55,56,68,74,77,79,81,86,92,95,96,97,98,110,111,112,114,153,154,161,166,167,171] | |
| A user | [22,23,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,54,57,58,62,63,64,65,66,67,73,75,87,88,89,91,94,99,100,101,102,103,104,105,106,107,108,113,115,117,118,119,120,121,122,125,126,127,155,156,157,158,159,160,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192] | |
| Citation Knowledge | Description |
|---|---|
| Citation Graph | Captures citation relations between papers as a graph, where nodes represent citing papers and edges represent the relations based on citations. Relations can be directed [128,148] or undirected [159]. Although this method is commonly used due to the availability of metadata, it may not always accurately reflect preferences, as citations can serve different purposes, including criticism [168,193,194]. |
| Citation Proximity | Refers to the distance between co-cited papers in a publication [130]; for example, shorter distances imply stronger relevance. It was conceptualised in 2009 by [130,195] applied it for web page recommendations, and [141] utilised it for the research paper recommendation task. |
| Citation Context | The text surrounding a citation, indicating the semantics of the citation [52,58,147]. It has been used to enrich the profiles of target manuscripts [52] or user preferences [58,193,194] in recommending scientific publications. |
| Citation Intention | Captures the purpose of a citation, such as providing background or comparing work. Different intentions may reflect varying levels of relevance. While extensively used in scientometrics, it has been less explored in recommendation systems [134,166,193]. |
| Citation Section | Refers to the section of a paper where the citation appears (e.g., the introduction or related work) [139,168]. Different sections imply different relevance. Ref. [168] explored this notion in combination with citation graphs, finding improved performance, especially for citations in the introduction, background, and method sections. |
| References | CG | CC | CS | CP | CI |
|---|---|---|---|---|---|
| [146] | x | x | x | ||
| [9,21,52,74,110,129,152,164] | x | x | |||
| [139] | x | x | |||
| [17,18,19,20,24,25,49,53,68,70,71,77,78,79,82,83,85,93,109,111,116,123,124,128,133,135,136,137,138,140,142,143,144,145,148,149,150,151,153,162,163,165] | x | ||||
| [47,50,114,147,154,167] | x | ||||
| [166] | x | x | |||
| [134] | x | x | x |
| Dataset | Description | A/P | Users | Items | R | ||
|---|---|---|---|---|---|---|---|
| AMiner 1 | AMiner contains a series of datasets capturing relations among citations, academic social networks, topics, etc. The data on the citations dataset V11 is reported here | 2019 | NS | 4 M | No | No | No |
| Open Citations 2 | Open repository of scholarly citation data | 2019 | NS | 7.5 M | No | No | No |
| Open Academic Graph 3 | Large knowledge graph combining Microsoft Academic Graph and AMiner | 2019 | 253 M | 381 M | No | No | No |
| ArXiv 4 | Open-access e-prints of publications in different fields such as physics, mathematics, etc. | 2019 | NS | 1.5 M | No | Yes 5 | No |
| CORE 6 | Dataset of open-access research publications published up to 2018 | 2019 | No | 9.8 M | No | Yes 7 | No |
| CiteULike [67] | Dataset of users’ selected bookmarks to academic papers | 2019 | 5551 | 16,980 | No | No | No |
| Mendeley [218] | Dataset shared by Mendeley for a recommender system challenge | 2010 8 | 50,000 | 4.8 M | Yes 9 | No | No |
| SPD 1 [126] | ACL anthology-based papers published between 2000 and 2006 | 2019 | 28 | 597 | Yes | Yes | No |
| SPD 2 [67] | ACM proceedings-based papers published between 2000 and 2010 | 2019 | 50 | 100,531 | Yes 10 | No | No |
| [193] | 35,473 articles collected after selecting authors from DBLP | 2020 | 547 | 15,174 | 17,637 | No | No |
| [194] | 35,473 articles collected after selecting authors from DBLP | 2020 | 446 | 9399 | 11,381 | No | No |
| Paper | Evaluation Methods | |||
|---|---|---|---|---|
| Offline | Online | User Study | Participants | |
| [98] | x | 16 | ||
| [75] | x | 123 | ||
| [136] | x | - | ||
| [145] | x | 31 | ||
| [50] | x | 4 | ||
| [141] | x | 10 | ||
| [147] | x | 14 | ||
| [187] | x | 938 | ||
| [206,233,234] | x | 24 | ||
| [178] | x | 12 | ||
| [235] | x | 25 | ||
| [236,237] | x | 119 | ||
| [28] | x | x | 3 | |
| [181,238] | x | 15 | ||
| [73] | x | 5 | ||
| [44] | x | 200 | ||
| [163,239] | x | 2 | ||
| [31,43] | x | 40 | ||
| [100] | x | 7 | ||
| [240] | x | 30 | ||
| [134] | x | x | 5 | |
| [149] | x | 19 | ||
| [125] | x | x | 111 | |
| [82] | x | 138 | ||
| [128] | x | x | - | |
| [129] | x | - | ||
| [17,173,241] | x | |||
| [17,18,21,28,36,37,38,42,45,47,49,52,53,55,57,58,59,60,61,62,66,67,74,76,83,92,93,110,111,112,113,115,118,120,126,137,140,143,144,146,155,160,161,170,171,174,176,177,205,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261] | x | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadka, A.; Sthapit, S. A Review on Scholarly Publication Recommender Systems: Features, Approaches, Evaluation, and Open Research Directions. Informatics 2025, 12, 108. https://doi.org/10.3390/informatics12040108
Khadka A, Sthapit S. A Review on Scholarly Publication Recommender Systems: Features, Approaches, Evaluation, and Open Research Directions. Informatics. 2025; 12(4):108. https://doi.org/10.3390/informatics12040108
Chicago/Turabian StyleKhadka, Anita, and Saurav Sthapit. 2025. "A Review on Scholarly Publication Recommender Systems: Features, Approaches, Evaluation, and Open Research Directions" Informatics 12, no. 4: 108. https://doi.org/10.3390/informatics12040108
APA StyleKhadka, A., & Sthapit, S. (2025). A Review on Scholarly Publication Recommender Systems: Features, Approaches, Evaluation, and Open Research Directions. Informatics, 12(4), 108. https://doi.org/10.3390/informatics12040108

