Multimodal Interaction of Contextual and Non-Contextual Sound and Haptics in Virtual Simulations
Abstract
:1. Introduction
2. Background
2.1. Multimodal Interactions
2.2. Haptic Multimodal Interaction
3. Experimental Design
3.1. Aim
3.2. Methods
3.3. Participants
3.4. Auditory Stimuli
3.5. Procedure
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hayward, V.; Astley, O.R.; Cruz-Hernandez, M.; Grant, D.; Robles-De-La-Torre, G. Haptic interfaces and devices. Sens. Rev. 2004, 24, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Burdea, G.; Coiffet, P. Virtual Reality Technology; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Jafari, N.; Adams, K.D.; Tavakoli, M. Haptics to improve task performance in people with disabilities: A review of previous studies and a guide to future research with children with disabilities. J. Rehabil. Assist. Technol. Eng. 2016, 3, 1–13. [Google Scholar] [CrossRef]
- Culbertson, H.; Schorr, S.B.; Okamura, A.M. Haptics: The present and future of artificial touch sensation. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 385–409. [Google Scholar] [CrossRef]
- El Saddik, A.; Orozco, M.; Eid, M.; Cha, J. Springer Series on Touch and Haptic Systems. In Haptic Technologies: Bringing Touch to Multimedia; Springer: New York, NY, USA, 2011. [Google Scholar]
- Coles, T.R.; Meglan, D.; John, N.W. The role of haptics in medical training simulators: A survey of the state of the art. IEEE Trans. Haptics 2011, 4, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.H.; Carroll, L.A.; Bell, H. The future of selected fidelity in training devices. Educ. Technol. 1996, 35, 32–36. [Google Scholar]
- Cook, D.A.; Hamstra, S.J.; Brydges, R.; Zendejas, B.; Szostek, J.H.; Wang, A.T.; Erwin, P.J.; Hatala, R. Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Med. Teach. 2013, 35, 867–898. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.; Haluck, R.S.; Zoppetti, G.; Benson, A.; Boyd, J.; Charles, N.; Reeser, J.; Sampson, S. A haptic surgical simulator for laparoscopic cholecystectomy using real-time deformable organs. In Proceedings of the IASTED International Conference Biomedical Engineering, Salzburg, Austria, 25–27 June 2003. [Google Scholar]
- Nguyen, M.; Melaisi, M.; Cowan, B.; Uribe-Quevedo, A.; Kapralos, B. Low-end haptic devices for knee bone drilling in a serious game. World J. Sci. Technol. Sustain. Dev. 2017, 14, 241–253. [Google Scholar] [CrossRef]
- Seitz, A.R.; van Wassenhove, V.; Shams, L. Simultaneous and independent acquisition of multisensory and unisensory associations. Perception 2007, 36, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Choe, C.S.; Welch, R.B.; Gilford, R.M.; Juola, J.F. The “ventriloquist effect”: Visual dominance or response bias? Percept. Psychophys. 1975, 18, 55–60. [Google Scholar] [CrossRef] [Green Version]
- McGurk, H.; MacDonald, J. Hearing lips and seeing voices. Nature 1976, 264, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W. Gestalt Psychology, 2nd ed.; Liveright Publishing: New York, NY, USA, 1947. [Google Scholar]
- Fryer, L.; Freeman, J.; Pring, L. Touching words is not enough: How visual experience influences haptic–auditory associations in the ‘‘Bouba–Kiki’’ effect. Cognition 2014, 132, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, K. Left in the dark: Playing computer games with the sound turned off. In From Pac-Man to Pop Music: Interactive Audio in Games and New Media; Collins, K., Ed.; Ashgate Publishing Group: Aldershot, UK, 2008; pp. 163–176. [Google Scholar]
- Lipscomb, S.D.; Zehnder, S.M. Immersion in the virtual environment: The effect of a musical score on the video gaming experience. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 337–343. [Google Scholar] [CrossRef]
- Robb, J.; Garner, T.; Collins, K.; Nacke, L. The impact of health-related sounds on player experience. Simul. Gaming 2017, 48, 402–427. [Google Scholar] [CrossRef]
- Hébert, S.; Béland, R.; Dionne-Fournelle, O. Physiological stress response to video-game playing: The contribution of built-in music. Life Sci. 2005, 76, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- Shilling, R.; Zyda, M.; Wardynski, E.C. Introducing emotion into military simulation and videogame design: America’s army: Operations and VIRTE. Game-On 2002. [Google Scholar]
- Sanders, R.; Scorgie, R. The Effect of Sound Delivery Methods on the User’s Sense of Presence in a Virtual Environment. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2002. (Unpublished). [Google Scholar]
- Nacke, L.E.; Grimshaw, M.N.; Lindley, C.A. More than a feeling: Measurement of sonic user experience and psychophysiology in a first-person shooter game. Interact. Comput. 2010, 22, 336–343. [Google Scholar] [CrossRef]
- Conrad, C.; Konuk, Y.; Werner, P.; Cao, C.G.; Warshaw, A.; Rattner, D.; Jones, D.B.; Gee, D. The effect of define auditory conditions versus mental loading on the laparoscopic motor skill performance of experts. Surg. Endosc. 2010, 24, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Storms, S.L.; Zyda, M.J. Interactions in perceived quality of auditory-visual displays. Presence Teleop. Virt. 2000, 9, 557–580. [Google Scholar] [CrossRef]
- Larsson, P.; Västjäll, D.; Kleiner, M. On the quality of experience: A multi-modal approach to perceptual ego-motion and sensed presence in virtual environments. In Proceedings of the First International Speech Communications Association Tutorial and Research Workshop on Auditory Quality of Systems, Herne, Germany, 23–25 April 2003. [Google Scholar]
- Bonneel, N.; Suied, C.; Viaud-Delmon, I.; Drettakis, G. Bimodal perception of audio-visual material properties for virtual environments. ACM Trans. Appl. Percept. 2010, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hulusić, V.; Debattista, K.; Aggarwal, V.; Chalmers, A. Maintaining frame rate perception in interactive environments by exploiting audio-visual cross-modal interaction. Vis. Comput. 2010, 27, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Rojas, D.; Kapralos, B.; Hogue, A.; Collins, K.; Cristancho, S.; Nacke, L.; Conati, C.; Dubrowski, A. Developing effective serious games: The effect of ambient auditory conditions on visual fidelity perception in stereoscopic 3D. IEEE Trans. Syst. Man Cybern. B 2013, 43, 1572–1583. [Google Scholar] [CrossRef]
- Rojas, D.; Cowan, B.; Kapralos, B.; Collins, K.; Dubrowski, A. The effect of contextual sound cues on visual fidelity perception. In Proceedings of the Medicine Meets Virtual Reality, Manhattan Beach, CA, USA, 20–22 February 2013. [Google Scholar]
- Lam, J.; Kapralos, B.; Kanev, K.; Collins, K.; Hogue, A.; Jenkin, M. The effect of sound on visual realism perception and task completion time in a cel-shaded serious gaming virtual environment. In Proceedings of the Qomex 2015 International Workshop on Quality of MultiMedia Experience, Costa Navarino, Greece, 26–29 May 2015. [Google Scholar]
- Ehrsson, H.H.; Spence, C.; Passingham, R.E. That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 2004, 305, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Jousmäki, V.; Hari, R. Parchment-skin illusion: Sound-biased touch. Curr. Biol. 1998, 8. [Google Scholar] [CrossRef]
- Guest, S.; Catmur, C.; Lloyd, D.; Spence, C. Audiotactile interactions in roughness perception. Exp. Brain Res. 2002, 146, 161–171. [Google Scholar] [CrossRef] [PubMed]
- DiFranco, D.E.; Beauregard, G.L.; Srinivasan, M.A. The effect of auditory cues on the haptic perception of stiffness in virtual environments. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Dallas, TX, USA, 17–22 November 1997. [Google Scholar]
- Jang, I.; Lee, D. On utilizing pseudo-haptics for cutaneous fingertip haptic device. In Proceedings of the IEEE Haptics Symposium, Houston, TX, USA, 23–26 February 2014. [Google Scholar]
- Lécuyer, A. Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback. Presence Teleop. Virt. 2009, 18, 39–53. [Google Scholar] [CrossRef]
- Ban, Y.; Narumi, T.; Tanikawa, T.; Hirose, M. Displaying shapes with various types of surfaces using visuo-haptic interaction. In Proceedings of the ACM Symposium on Virtual Reality Software Technology, Edinburgh, UK, 11–13 November 2014. [Google Scholar]
- Hug, D. Hear me Interact. In Total Interaction: Theory and Practice of a New Paradigm for the Design Disciplines; Buurman, G.M., Ed.; Birkhäuser: Berlin, Germany, 2017; pp. 202–220. [Google Scholar]
- Ballas, J. Self-produced sound: Tightly binding haptics and audio. In Proceedings of the International Workshop on Haptic and Audio Interaction Design, Seoul, Korea, 29–30 November 2007. [Google Scholar]
- Adelstein, B.D.; Begault, D.R.; Anderson, M.R.; Wenzel, E.M. Sensitivity to haptic-audio asynchrony. In Proceedings of the International Conference on Multimodal Interfaces, Vancouver, BC, Canada, 5–7 November 2003; pp. 73–76. [Google Scholar]
- McGee, M.R.; Gray, P.D.; Brewster, S.A. The effective combination of haptic and auditory textural information. Lect. Notes Comput. Sci. 2001, 20158, 118–126. [Google Scholar] [CrossRef]
- Kassuba, T.; Menz, M.M.; Röder, B.; Siebner, H.R. Multisensory interactions between auditory and haptic object recognition. Cereb. Cortex 2013, 23, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Frid, E.; Moll, J.; Bresin, R.; Sallnäs Pysander, E. Haptic Feedback combined with movement sonificiation using a friction sound improves task performance in a virtual throwing task. J. Multimodal User Interfaces 2018, 1–12. [Google Scholar] [CrossRef]
- Giordano, B.L.; Visell, Y.; Yao, H.Y.; Hayward, V.; Cooperstock, J.R.; McAdams, S. Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions. J. Acoust. Soc. Am. 2012, 131, 4002–4012. [Google Scholar] [CrossRef] [PubMed]
- Díaz, I.; Hernantes, J.; Mansa, I.; Lozano, A.; Borro, D.; Gil, J.J.; Sánchez, E. Influence of multisensory feedback on haptic accessibility tasks. Virtual Real. 2006, 10, 31–40. [Google Scholar] [CrossRef]
- Collins, K. Game Sound; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Collins, K. Playing with Sound; MIT Press: Cambridge, MA, USA, 2013; pp. 33–40. [Google Scholar]
- Melaisi, M.; Nguyen, M.; Uribe, A.; Kapralos, B. The effect of sound on haptic fidelity perception. In Proceedings of the IEEE Global Engineering Education Conference, Athens, Greece, 25–28 April 2017; pp. 714–717. [Google Scholar]
- Kinoshita, H.; Nagahata, M.; Takano, N.; Takemoto, S.; Matsunaga, S.; Abe, S.; Yoshinari, M.; Kawada, E. Development of a drilling simulator for dental implant surgery. J. Dent. Educ. 2016, 80, 83–90. [Google Scholar] [PubMed]
- Wang, Q.; Qin, J.; Wang, W.; Shan, J.; Zhang, J.; Liu, X.; Heng, P.-A. Haptic rendering of drilling process in orthopedic surgical simulation based on the volumetric object. In Proceedings of the IEEE International Conference on Digital Signal Processing, Singapore, 21–24 July 2015; pp. 1098–1101. [Google Scholar]
Factor | Variable | Number of Trials Run |
---|---|---|
Auditory Stimulus | No sound | 60 |
Auditory Stimulus | Drill sound | 60 |
Auditory Stimulus | White noise | 60 |
Auditory Stimulus | Classical music | 60 |
Device | Falcon | 120 |
Device | Stylus | 120 |
Depth | 2 cm | 120 |
Depth | 5 cm | 120 |
Auditory Stimulus | Depth Assigned (cm) | Mean Average Depth Drilled (cm) | Std. Deviation |
---|---|---|---|
No sound | 2 | 5.74 | 2.33 |
No sound | 5 | 5.93 | 2.17 |
Drill sound | 2 | 5.57 | 2.06 |
Drill sound | 5 | 6.15 | 2.02 |
White noise | 2 | 5.63 | 2.18 |
White noise | 5 | 6.12 | 2.36 |
Classical Music | 2 | 5.48 | 2.01 |
Classical Music | 5 | 5.82 | 1.97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melaisi, M.; Rojas, D.; Kapralos, B.; Uribe-Quevedo, A.; Collins, K. Multimodal Interaction of Contextual and Non-Contextual Sound and Haptics in Virtual Simulations. Informatics 2018, 5, 43. https://doi.org/10.3390/informatics5040043
Melaisi M, Rojas D, Kapralos B, Uribe-Quevedo A, Collins K. Multimodal Interaction of Contextual and Non-Contextual Sound and Haptics in Virtual Simulations. Informatics. 2018; 5(4):43. https://doi.org/10.3390/informatics5040043
Chicago/Turabian StyleMelaisi, Mohammed, David Rojas, Bill Kapralos, Alvaro Uribe-Quevedo, and Karen Collins. 2018. "Multimodal Interaction of Contextual and Non-Contextual Sound and Haptics in Virtual Simulations" Informatics 5, no. 4: 43. https://doi.org/10.3390/informatics5040043
APA StyleMelaisi, M., Rojas, D., Kapralos, B., Uribe-Quevedo, A., & Collins, K. (2018). Multimodal Interaction of Contextual and Non-Contextual Sound and Haptics in Virtual Simulations. Informatics, 5(4), 43. https://doi.org/10.3390/informatics5040043