The Influence of Sociological Variables on Users’ Feelings about Programmatic Advertising and the Use of Ad-Blockers
Abstract
:1. Introduction
2. Literature Review
2.1. Annoying Advertising
2.2. Programmatic Advertising; What It Is and Why It Appears
2.3. Adblockers: A Response to Annoying Advertising
3. Research Hypotheses
3.1. Research Hypotheses. Sociological Variables
3.1.1. Age
3.1.2. Gender
3.1.3. Education
3.1.4. Occupation
3.1.5. Underage Children and Household Size
4. Materials and Methods
4.1. Variables
4.2. Descriptive Analysis of the Sample
4.3. Normality Tests and Hypothesis Testing
5. Results
5.1. Normality Study
5.2. Hypothesis Testing and Post Hoc Tests: Global Hypothesis Test
5.3. Post Hoc Test and Correlation for the Evaluation of Advertising
5.4. Post Hoc Test and Correlation for Use of Ad-Blockers
6. Discussion
7. Limitations and New Lines of Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrebi, S.; Jallais, J. Explain the intention to use smartphones for mobile shopping. J. Retail. Consum. Serv. 2015, 22, 16–23. [Google Scholar] [CrossRef]
- Malloy, M.; McNamara, M.; Cahn, A.; Barford, P. Ad blockers: Global prevalence and impact. In Proceedings of the 2016 Internet Measurement Conference, Santa Monica, CA, USA, 14–16 November 2016; ACM: New York, NY, USA, 2016; pp. 119–125. [Google Scholar]
- Murphy, M.; Sashi, C.M. Communication, interactivity, and satisfaction in B2B relationships. Ind. Mark. Manag. 2018, 68, 1–12. [Google Scholar] [CrossRef]
- Palos-Sanchez, P.; Saura, J.R.; Martin-Velicia, F. A study of the effects of Programmatic Advertising on users’ Concerns about Privacy overtime. J. Bus. Res. 2019, 96, 61–72. [Google Scholar] [CrossRef]
- Palos-Sanchez, P.R.; Saura, J.R. The effect of internet searches on afforestation: The case of a green search engine. Forest 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Stourm, V.; Bax, E. Incorporating hidden costs of annoying ads in display auctions. Int. J. Res. Mark. 2017, 34, 622–640. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. The female gaze: Content composition and slot position in personalized banner ads, and how they influence visual attention in online shoppers. Comput. Hum. Behav. 2018, 82, 1–15. [Google Scholar] [CrossRef]
- Saura, J.R.; Reyes-Menendez, A.; Palos-Sanchez, P. Are Black Friday Deals Worth It? Mining Twitter Users’ Sentiment and Behavior Response. J. Open Innov. Technol. Mark. Complex. 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Durán, M.V.; Rodríguez-Silgado, A. El ecosistema programático. La nueva publicidad digital que conecta datos con personas. El Prof. Inf. 2018, 27, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Huang, Z. The research of influence factors of online behavioral advertising avoidance. Am. J. Ind. Bus. Manag. 2016, 6, 947. [Google Scholar] [CrossRef]
- Zambrano, A.; Pickard, C. A defense of ad blocking and consumer inattention. Ethics Inf. Technol. 2018, 20, 143–155. [Google Scholar] [CrossRef]
- Newman, N.; Levy, D.A.; Nielsen, R.K. Reuters Institute Digital News Report Trackingthe Future News Reuters Inst. Study Journal. 2015. Available online: https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf (accessed on 28 November 2020).
- Pujol, E.; Hohlfeld, O.; Feldmann, A. Annoyed users: Ads and ad-block usage in the wild. In Proceedings of the 2015 Internet Measurement Conference, Tokyo, Japan, 28–30 October 2015; pp. 93–106. [Google Scholar]
- Iqbal, U.; Shafiq, Z.; Qian, Z. The ad wars: Retrospective measurement and analysis of anti-adblock filter lists. In Proceedings of the 2017 Internet Measurement Conference, London, UK, 1–3 November 2017; ACM: London, UK, 2017; pp. 171–183. [Google Scholar]
- dos Santos Rocha, R.; Fantinato, M. The use of software product lines for business process management: A systematic literature review. Inf. Softw. Technol. 2013, 55, 1355–1373. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Hussain, R.; Ferdous, A.S.; Mort, G.S. Impact of web banner advertising frequency on attitude. Asia Pac. J. Mark. Logist. 2018, 30, 380–399. [Google Scholar] [CrossRef]
- Wicker, S.B.; Karlsson, K. Internet advertising: Technology, ethics, and a serious difference of opinion. Commun. ACM 2017, 60, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.; Buchner, A. Positive effects of disruptive advertising on consumer preferences. J. Interact. Mark. 2018, 41, 1–13. [Google Scholar] [CrossRef]
- Braun, J.A.; Eklund, J.L. Fake News, Real Money: Ad Tech Platforms, Profit-Driven Hoaxes. Bus. J. Digit. J. 2019, 7, 1–21. [Google Scholar]
- Misugi, G.; Almendra Freitas, C.O.; Efing, A.C. Releitura da Privacidade Diante das Novas Tecnologias: Realidade Aumentada, Reconhecimento Facial e Internet das Coisas. Rev. Juríd. Cesumar-Mestr. 2016, 16, 427–453. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Menendez, A.; Saura, J.R.; Martinez-Navalon, J.G. The Impact of e-WOM on Hotels Management Reputation: Exploring TripAdvisor Review Credibility with the ELM Model; IEEE Access: Piscataeay, NJ, USA, 2019. [Google Scholar]
- Tucker, C.E. Social networks, personalized advertising, and privacy controls. J. Mark. Res. 2013, 51, 546–562. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, E.; Mahr, D.; Grewal, D.; Ruyter, K.; Wetzels, M. Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. J. Retail. 2015, 91, 34–49. [Google Scholar] [CrossRef]
- Reyes-Menendez, A.; Saura, J.R.; Filipe, F. The importance of behavioral data to identify online fake reviews for tourism businesses: A systematic review. PeerJ Comput. Sci. 2019, 5, 219. [Google Scholar] [CrossRef] [Green Version]
- Alaimo, C.; Kallinikos, J. Objects, Metrics and Practices: An Inquiry into the Programmatic Advertising Ecosystem. In Proceedings of the Working Conference on Information Systems and Organizations, San Francisco, CA, USA, 10–11 December 2018; Springer: Cham, Switzerland, 2018; pp. 110–123. [Google Scholar]
- Costa-Pérez, M.; Serrano-Puche, J.; Portilla-Manjón, I.; Sánchez-Blanco, M. Interacción de jóvenes adultos con noticias y publicidad online. Rev. Científ. Iberoam. Comun. Educ. 2019, 59, 19–28. [Google Scholar]
- Wills, C.E.; Uzunoglu, D.C. What ad blockers are (and are not) doing. In Proceedings of the 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies HotWeb, Washington, DC, USA, 24–25 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 72–77. [Google Scholar]
- Gugelmann, D.; Happe, M.; Ager, B.; Lenders, V. An automated approach for complementing ad blockers’ blacklists. Proc. Priv. Enhancing Technol. 2015, 2015, 282–298. [Google Scholar] [CrossRef] [Green Version]
- Antunes, D.C.; Maia, A.F. Big Data, ubiquitous exploitation, and targeted advertising: New facets of the cultural industry. Psicol. USP 2018, 29, 189–199. [Google Scholar] [CrossRef]
- Redondo, I.; Aznar, G. To use or not to use ad blockers? The roles of knowledge of ad blockers and attitude toward online advertising. Telemat. Inform. 2018, 35, 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- Palos-Sanchez, P.; Martin-Velicia, F.; Saura, J.R. Complexity in the Acceptance of Sustainable Search Engines on the Internet: An Analysis of Unobserved Heterogeneity with FIMIX-PLS. Complexity 2018, 1–19. [Google Scholar] [CrossRef]
- Hough, M.; Bae, Y.H.; Jun, J.W. Investigating consumer behavioural intention to utilise digital signage. Int. J. Internet Mark. Advert. 2016, 10, 255–269. [Google Scholar] [CrossRef]
- Nhedzi, A. The relationship between traditional and digital media as an influence on generational consumer preference. Communitas 2018, 23, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Bačík, R.; Fedorko, R.; Rigelský, M.; Sroka, M.; Turáková, A. Perceiving the advertising in gender-generational characteristics. Pol. J. Manag. Stud. 2018, 18, 44–57. [Google Scholar] [CrossRef]
- Punj, G. The relationship between consumer characteristics and willingness to pay for general online content: Implications for content providers considering subscription-based business models. Mark. Lett. 2015, 26, 175–186. [Google Scholar] [CrossRef]
- Giovanis, A.N.; Binioris, S.; Polychronopoulos, G. An extension of TAM model with IDT and security/privacy risk in the adoption of internet banking services in Greece. EuroMed J. Bus. 2012, 7, 24–53. [Google Scholar] [CrossRef]
- Roca, J.C.; García, J.J.; Vega, J.J. La importancia de la confianza percibida, la seguridad y la privacidad en los sistemas de comercio en línea. Gest. Inf. Segur. Inform. 2009, 17, 96–113. [Google Scholar]
- Cho, Y.C.; Sagynov, E. Exploring factors that affect usefulness, ease of use, trust, and purchase intention in the online environment. Int. J. Manag. Inf. Syst. Online 2015, 19, 21. [Google Scholar] [CrossRef]
- AIMC. Navegantes en Red; Survey; AIMC: Madrid, Spain, February 2020; Available online: https://www.aimc.es/otros-estudios-trabajos/navegantes-la-red/ (accessed on 28 November 2020).
- Ibujes, M.O.; Tapia Zambrano, F.A. Interaprendizaje de Estadística Básica; Universidad Técnica del Norte: Ibarra, Ecuador, 2013. [Google Scholar]
- Pedrosa, I.; Juarros-Basterretxea, J.; Robles-Fernández, A.; Basteiro, J.; García-Cueto, E. Pruebas de bondad de ajuste en distribuciones simétricas, ¿qué estadístico utilizar? Univ. Psychol. 2015, 14, 245–254. [Google Scholar] [CrossRef]
- Camuffo, A.; Gerli, F. Modeling management behaviors in lean production environments. Int. J. Oper. Prod. Manag. 2018, 38, 403–423. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, W.; Liu, X.; Pedrycz, W.; Zhong, C. Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values. Knowl. Based Syst. 2016, 99, 51–70. [Google Scholar] [CrossRef]
- Remenova, K.; Skorkova, Z.; Jankelova, N. Span of Control in Teamwork and Organization Structure. Montenegrin J. Econ. 2018, 14, 155–165. [Google Scholar] [CrossRef]
- Rivera-Trigueros, I.; Gutiérrez-Artacho, J.; Olvera-Lobo, M.D. Websites and Social Networks. A Study of Healthcare SMEs in Andalusia. In Proceedings of the International Conference on Information Technology & Systems, Bogots, Colombia, 5–7 February 2020; Springer: Cham, Switzerland, 2020; pp. 297–306. [Google Scholar]
- Roy-García, I.; Rivas-Ruiz, R.; Pérez-Rodríguez, M.; Palacios-Cruz, L. Correlación: No toda correlación implica causalidad. Rev. Alerg. Méx. 2019, 66, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, L.; Toorn, C.V.; Lai, Y.; Seo, C. Promoting online learners’ continuance intention: An integrated flow framework. Inf. Manag. 2016, 53, 279–295. [Google Scholar] [CrossRef]
- Liu, Z.; Min, Q.; Zhai, Q.; Smyth, R. Self-disclosure in Chinese micro-blogging: A social exchange theory perspective. Inf. Manag. 2016, 53, 53–63. [Google Scholar] [CrossRef]
Fact Sheet | |
---|---|
Target audience | Internet users using Spanish websites |
Collection dates | From 15 October to 9 December 2019 |
Sample size | 21,003 questionnaires, 19,973 final questionnaires |
Confidence level | 95% |
Sample error | ±3% |
Items | Frequency | % |
---|---|---|
Age | ||
14–19 | 2733 | 13.68% |
20–24 | 3176 | 15.90% |
25–34 | 4937 | 24.72% |
35–44 | 5067 | 25.37% |
45–54 | 2812 | 14.08% |
55–64 | 1248 | 6.25% |
65 or more | ||
Sex | ||
Male | 13,541 | 67.80% |
Female | 6432 | 32.20% |
Education | ||
No education | 122 | 0.61% |
Primary | 1220 | 6.11% |
Secondary | 8644 | 43.28% |
University | 9956 | 49.85% |
n.a. | 31 | 0.16% |
Occupation | ||
Self employed | 2454 | 12.29% |
Employed | 10,978 | 54.96% |
Student | 2355 | 11.79% |
Housework | 553 | 2.77% |
Unemployed | 1386 | 6.94% |
Retired and others | 2211 | 11.07% |
n.a. | 36 | 0.18% |
Underage children | ||
None | 13,772 | 68.95% |
One | 3470 | 17.37% |
Two | 2251 | 11.27% |
Three | 370 | 1.85% |
Four or more | 84 | 0.42% |
n.a. | 26 | 0.13% |
Household size | ||
None | 2044 | 10.23% |
One | 5489 | 27.48% |
Two | 5274 | 26.41% |
Four | 5099 | 25.53% |
Five | 1329 | 6.65% |
Six or more | 721 | 3.61% |
n.a. | 17 | 0.09% |
Statistics | Age |
---|---|
Number of readings | 19,973 |
Average | 43 |
Median | 43 |
Standard deviation (n − 1) | 13 |
Coeff. Var. | 29.74% |
N. of observations | 19,973 |
Coeff. of Asymmetry | 0.14 |
Coeff. of Kurtosis | −0.35 |
Shapiro–Wilk | 0.000 < 0.05 |
Indep.V./Dep.V. | Back Testing | Sig. Annoying ads | Interpretation | Sig.Ad Blockers Use | Interpretation |
---|---|---|---|---|---|
Age | Kruskal–Wallis | 0.000 | Reject Ho | 0.00% | |
Education | Kruskal–Wallis | 0.846 | Support Ho | 0.00% | Reject Ho |
Gender | U-Mann–Whitney | 0.000 | Reject Ho | 0.00% | Reject Ho |
Underage children | Kruskal–Wallis | 0.000 | Reject Ho | 0.00% | Reject Ho |
Occupation | Kruskal–Wallis | 0.000 | Reject Ho | 0.00% | Reject Ho |
Household size | Kruskal–Wallis | 0.000 | Reject Ho | 0.00% | Reject Ho |
Variable | Very Negative | Negative | Middle Value | Positive | Very Positive | KW Post Hoc | Value | Correlation | Value | Sig. |
---|---|---|---|---|---|---|---|---|---|---|
Age | ||||||||||
14–24 | 20.34% | 26.05% | 35.53% | 11.38% | 6.70% | 25–34 y 35–44 | 0.289 | Tau-b Kendall | −0.102 | 0.000 |
55–64 | 33.39% | 31.29% | 30.30% | 3.27% | 1.71% | 55–64 y más 65 | 0.583 | Rho Spearman | −0.139 | 0.000 |
More than 65 | 32.61% | 34.38% | 28.29% | 3.37% | 1.28% | |||||
Sex | ||||||||||
Male | 30.63% | 31.99% | 29.55% | 5.12% | 2.68% | No post hoc | No correlation | |||
Female | 27.53% | 28.98% | 31.47% | 7.82% | 4.18% | |||||
No. of children | ||||||||||
None | 30.49% | 31.38% | 29.94% | 5.56% | 2.59% | None- Four or + | 0.205 | Tau-b Kendall | 0.042 | 0.000 |
Four or more | 35.71% | 14.29% | 32.14% | 13.10% | 4.76% | One-Four or + | 0.535 | Rho Spearman | 0.048 | 0.000 |
Two-Four or + | 0.617 | |||||||||
Three-Four or + | 0.117 | |||||||||
Occupation | ||||||||||
Student | 21.74% | 27.64% | 34.73% | 10.11% | 5.77% | Self empl.-Hou. | 0.281 | No correlation | ||
Unemployed | 31.10% | 29.00% | 30.09% | 6.20% | 3.61% | Empl.-Unempl. | 0.065 | |||
Retired and others | 33.60% | 32.47% | 28.31% | 3.44% | 2.13% | |||||
Household size | ||||||||||
One | 32.78% | 32.44% | 28.28% | 4.31% | 2.20% | One-Two | 0.337 | Tau-b Kendall | 0.074 | 0.000 |
Two | 32.03% | 32.39% | 27.89% | 5.30% | 2.35% | Rho Spearman | 0.102 | 0.000 | ||
Six or more | 22.05% | 21.36% | 35.37% | 11.37% | 9.85% |
Variable | Frequently | Occasionally | KW Post Hoc | Does Not Use | Value |
---|---|---|---|---|---|
Age | |||||
14–24 | 51.58% | 19.05% | 29.38% | 14–24 y 45–54 | 0.315 |
25–34 | 39.80% | 19.55% | 40.65% | 14–24 y 55–64 | 0.184 |
More than 65 | 66.45% | 13.96% | 19.58% | 45–54 y 55–64 | 0.606 |
Gender | |||||
Male | 45.49% | 19.61% | 34.89% | ||
Female | 59.08% | 19.18% | 21.74% | ||
No children | |||||
None | 48.80% | 18.43% | 32.77% | None-Four or + | 0.840 |
Two | 53.60% | 21.60% | 24.80% | ||
Four or more | 46.43% | 26.19% | 27.38% | ||
Education | |||||
First grade | 59.23% | 18.13% | 22.64% | ||
University | 47.66% | 20.74% | 31.60% | ||
Ocupation | |||||
Self employed | 48.63% | 20.95% | 30.41% | Selfempl.-Empl. | 0.194 |
Employed | 47.51% | 20.59% | 31.90% | Selfempl.-Unempl. | 0.399 |
Housework | 61.89% | 19.42% | 18.69% | Empl.-Unempl. | 0.997 |
Retired and others | 60.28% | 14.18% | 25.54% | ||
Household size | |||||
One | 48.14% | 18.10% | 33.76% | One-Two | 0.542 |
Five | 52.64% | 21.76% | 25.60% | One-Three | 0.265 |
Six or more (6) | 57.00% | 18.86% | 24.13% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rus-Arias, E.; Palos-Sanchez, P.R.; Reyes-Menendez, A. The Influence of Sociological Variables on Users’ Feelings about Programmatic Advertising and the Use of Ad-Blockers. Informatics 2021, 8, 5. https://doi.org/10.3390/informatics8010005
Rus-Arias E, Palos-Sanchez PR, Reyes-Menendez A. The Influence of Sociological Variables on Users’ Feelings about Programmatic Advertising and the Use of Ad-Blockers. Informatics. 2021; 8(1):5. https://doi.org/10.3390/informatics8010005
Chicago/Turabian StyleRus-Arias, Enrique, Pedro R. Palos-Sanchez, and Ana Reyes-Menendez. 2021. "The Influence of Sociological Variables on Users’ Feelings about Programmatic Advertising and the Use of Ad-Blockers" Informatics 8, no. 1: 5. https://doi.org/10.3390/informatics8010005
APA StyleRus-Arias, E., Palos-Sanchez, P. R., & Reyes-Menendez, A. (2021). The Influence of Sociological Variables on Users’ Feelings about Programmatic Advertising and the Use of Ad-Blockers. Informatics, 8(1), 5. https://doi.org/10.3390/informatics8010005