The Effectiveness of Robot-Enacted Messages to Reduce the Consumption of High-Sugar Energy Drinks
Abstract
:1. Introduction
2. Relevant Literature
2.1. Social Robots
2.2. Message Appeals
Guilt Appeal vs. Humour Appeal vs. Non-Emotional Appeal
2.3. Key Advertising Metrics
3. Methodology
3.1. Stimuli
Types of Message Appeals
3.2. Procedure
3.3. Measurements
4. Data Analysis and Results
5. Discussion and Conclusions
6. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitt, L.F. Web 2.0, social media and creative consumers—Implications for public policy; introduction to the special edition. J. Public Aff. 2012, 12, 105–108. [Google Scholar] [CrossRef]
- Campbell, C.; Pitt, L.F.; Parent, M.; Berthon, P.R. Understanding consumer conversations around ads in a Web 2.0 world. J. Advert. 2011, 40, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Hartline, M.D.; Jones, K.C. Employee performance cues in a hotel service environment: Influence on perceived service quality, value, and word-of-mouth intentions. J. Bus. Res. 1996, 35, 207–215. [Google Scholar] [CrossRef]
- Cano, C.R.; Boles, J.S.; Bean, C.J. Communication media preferences in business-to-business transactions: An examination of the purchase process. J. Pers. Sell 2005, 25, 283–294. [Google Scholar] [CrossRef]
- Mayer, C.E.; Retailers Return to Basics to Win, Keep Customers. The Washington Post. Available online: https://www.washingtonpost.com/archive/business/1987/10/25/retailers-return-to-basics-to-win-keep-customers/c8f4d6a8-8f17-4403-a735-89f24ae08a91/ (accessed on 15 January 2022).
- Ahearne, M.; Jelinek, R.; Jones, E. Examining the effect of salesperson service behavior in a competitive context. Acad. Mark. Sci. 2007, 35, 603–616. [Google Scholar] [CrossRef]
- Bacharach, S.B.; Bamberger, P.; Conley, S. Work-home conflict among nurses and engineers: Mediating the impact of role stress on burnout and satisfaction at work. J. Organ. Behav. 1991, 12, 39–53. [Google Scholar] [CrossRef]
- Naylor, G.; Kimberly, E.F. The impact of retail sales force responsiveness on consumer’s perceptions of value. J. Serv. Mark. 2000, 14, 310–322. [Google Scholar] [CrossRef]
- Li, J.; Kizilcec, R.; Bailenson, J.; Ju, W. Social robots and virtual agents as lecturers for video instruction. Comput. Hum. Behav. 2016, 55, 1222–1230. [Google Scholar] [CrossRef]
- Fong, T.; Nourbakhsh, I.; Dautenhahn, K. A survey of socially interactive robots. Rob. Auton. Syst. 2003, 42, 143–166. [Google Scholar] [CrossRef] [Green Version]
- Duffy, B.R. Anthropomorphism and the social robot. Robot. Auton. Syst. 2003, 42, 177–190. [Google Scholar] [CrossRef]
- Niculescu, A.; van Djik, B.; Nijholt, A.; Li, H.; See, S.L. Making social robots more attractive: The effects of voice pitch, humor and empathy. Int. J. Soc. Robot. 2013, 5, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Bertacchini, F.; Bilotta, E.; Pantano, P. Shopping with a robotic companion. Comput. Hum. Behav. 2017, 77, 382–395. [Google Scholar] [CrossRef]
- Tonkin, M.; Vitale, J.; Herse, S.; Williams, M.A.; Judge, W.; Wang, X. Design methodology for the ux of hri: A field study of a commercial social robot at an airport. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 407–415. [Google Scholar] [CrossRef]
- Van Pinxteren, M.M.; Wetzels, R.W.; Rüger, J.; Pluymaekers, M.; Wetzels, M. Trust in humanoid robots: Implications for services marketing. J. Serv. Mark. 2019, 33, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Subero-Navarro, Á.; Pelegrín-Borondo, J.; Reinares-Lara, E.; Olarte-Pascual, C. Proposal for modeling social robot acceptance by retail customers: CAN model+ technophobia. J. Retail. Consum. Serv. 2022, 64, 102813. [Google Scholar] [CrossRef]
- Čaić, M.; Mahr, D.; Oderkerken-Schröder, G. Value of social robots in services: Social cognition perspective. J. Serv. Mark. 2019, 3, 463–478. [Google Scholar] [CrossRef]
- Zibafar, A.; Saffari, E.; Alemi, M.; Meghdari, A.; Faryan, L.; Ghorbandaei Pour, A.; RezaSoltani, A.; Taheri, A. State-of-the-art visual merchandising using a fashionable social robot: RoMa. Int. J. Soc. Robot. 2021, 13, 509–523. [Google Scholar] [CrossRef]
- Nakanishi, J.; Kuramoto, I.; Baba, J.; Ogawa, K.; Yoshikawa, Y.; Ishiguro, H. Continuous Hospitality with Social Robots at a hotel. SN Appl. Sci. 2020, 2, 452. [Google Scholar] [CrossRef] [Green Version]
- Becheur, I.; Dib, H.; Merunka, D.; Valette-Florance, P. Emotions of fear, guilt or shame in anti-alcohol messages: Measuring direct effects on persuasion and the moderating role of sensation seeking. ACR Eur. Adv. 2007, 8, 99–106. [Google Scholar]
- de Melo, C.M.; Carnevale, P.; Gratch, J. The Effect of Virtual Agents’ Emotion Displays and Appraisals on People’s Decision Making in Negotiation. In Intelligent Virtual Agents. Lecture Notes in Computer Science; Nakano, Y., Neff, M., Paiva, A., Walker, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7502. [Google Scholar] [CrossRef]
- Demaitre, E. Roybi Develops Educational Robots, Responds to Pricing and Pandemic Pressures. Available online: https://www.therobotreport.com/roybi-develops-educational-robots-responds-pricing-pandemic-pressures/ (accessed on 10 March 2022).
- Graterol, W.; Diaz-Amado, J.; Cardinale, Y.; Dongo, I.; Lopes-Silva, E.; Santos-Libarino, C. Emotion detection for social robots based on NLP transformers and an emotion ontology. Sensors 2021, 21, 1322. [Google Scholar] [CrossRef]
- Belpaeme, T.; Vogt, P.; Van den Berghe, R.; Bergmann, K.; Göksun, T.; De Haas, M.; Kanero, J.; Kennedy, J.; Küntay, A.C.; Oudgenoeg-Paz, O.; et al. Guidelines for designing social robots as second language tutors. Int. J. Soc. Robot. 2018, 10, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, J.; Patterson, P.G.; Kunz, W.H.; Gruber, T.; Lu, V.N.; Paluch, S.; Martins, A. Brave new world: Service robots in the frontline. J. Serv. Manag. 2018, 29, 907–931. [Google Scholar] [CrossRef] [Green Version]
- Softbank Robotics. Pepper. Available online: https://www.softbankrobotics.com/emea/en/pepper (accessed on 1 December 2021).
- Tussyadiah, I.P.; Park, S. Consumer evaluation of hotel service robots. In Information and Communication Technologies in Tourism; Stangl, B., Pesonen, J., Eds.; Springer: Cham, Switzerland, 2018; pp. 308–320. [Google Scholar] [CrossRef]
- Niemelä, M.; Heikkilä, P.; Lammi, H.; Oksman, V. A social robot in a shopping mall: Studies on acceptance and stakeholder expectations. In Social Robots: Technological, Societal and Ethical Aspects of Human-Robot Interaction; Korn, O., Ed.; Springer: Cham, Switzerland, 2019; pp. 119–144. [Google Scholar] [CrossRef]
- Wong, C.J.; Tay, Y.; Lew, L.W.C.; Koh, H.F.; Xiong, Y.; Wu, Y. Advbot: Towards Understanding Human Preference in a Human-Robot Interaction Scenario. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1305–1309. [Google Scholar] [CrossRef]
- Ahmad, M.; Mubin, O.; Orlando, J. A systematic review of adaptivity in human-robot interaction. Multimodal Technol. Interact. 2017, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Mejia, C.; Kajikawa, Y. Bibliometric analysis of social robotics research: Identifying research trends and knowledgebase. Appl. Sci. 2017, 7, 1316. [Google Scholar] [CrossRef] [Green Version]
- Bhaumik, A. From AI to Robotics: Mobile, Social, and Sentient Robots, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Thrun, S. Toward a framework for human-robot interaction. Hum. Comput. Interact. 2004, 19, 9–24. [Google Scholar] [CrossRef]
- Kanda, T.; Shiomi, M.; Miyashita, Z.; Ishiguro, H.; Hagita, N. An affective guide robot in a shopping mall. In Proceedings of the 4th ACM/IEEE International Conference on Human-Robot Interaction-HRI, La Jolla, CA, USA, 9–13 March 2009; pp. 173–180. [Google Scholar] [CrossRef] [Green Version]
- Shiomi, M.; Shinozawa, K.; Nakagawa, Y.; Miyashita, T.; Sakamoto, T.; Terakubo, T.; Ishiguro, H.; Hagita, N. Recommendation effects of a social robot for advertisement-use context in a shopping mall. Int. J. Soc. Robot. 2013, 5, 251–262. [Google Scholar] [CrossRef]
- Okafuji, Y.; Ozaki, Y.; Baba, J.; Kitahara, A.; Nakanishi, J.; Ogawa, K.; Yoshikawa, Y.; Ishiguro, H. Please listen to me: How to make passersby stop by a humanoid robot in a shopping mall. In Proceedings of the Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26 March 2020; pp. 381–383. [Google Scholar] [CrossRef] [Green Version]
- Young, J. Danger! This robot may be trying to manipulate you. Sci. Robot. 2021, 6, eabk3479. [Google Scholar] [CrossRef]
- Saunderson, S.; Nejat, G. Investigating Strategies for Robot Persuasion in Social Human-Robot Interaction. IEEE Trans. Cybern. 2020, 52, 641–653. [Google Scholar] [CrossRef]
- Ham, J.; Midden, C.J. A persuasive robot to stimulate energy conservation: The influence of positive and negative social feedback and task similarity on energy-consumption behavior. Int. J. Soc. Robot. 2014, 6, 163–171. [Google Scholar] [CrossRef]
- Mubin, O.; Cappuccio, M.; Alnajjar, F.; Ahmad, M.I.; Shahid, S. Can a robot invigilator prevent cheating? AI Soc. 2020, 35, 981–989. [Google Scholar] [CrossRef]
- Manrai, L.A.; Broach, V.C., Jr.; Manrai, A.K. Advertising appeal and tone: Implications for creative strategy in television commercials. J. Bus. Res. 1992, 25, 43–58. [Google Scholar] [CrossRef]
- Kotler, P. Kotler on Marketing; Simon and Schuster: New York, NY, USA, 2012; ISBN 0-684-84498-2. [Google Scholar]
- Armstrong, G.; Adam, S.; Denize, S.; Kotler, P. Principles of Marketing, 6th ed.; Pearson Education: Melbourne, Australia, 2020; ISBN 9781486002696. [Google Scholar]
- Albers-Miller, N.D.; Stafford, M.R. An international analysis of emotional and rational appeals in services vs goods advertisin. J. Consum. Mark. 1999, 16, 42–57. [Google Scholar] [CrossRef]
- Gelb, B.D.; Hong, J.W.; Zinkhan, G.M. Communications effects of specific advertising elements: An update. J. Curr. Issues Res. Advert. 1985, 8, 75–98. [Google Scholar] [CrossRef]
- Keltner, D. Evidence for the distinctness of embarrassment, shame, and guilt: A study of recalled antecedents and facial expressions of emotion. Cognit. Emot. 1996, 10, 155–172. [Google Scholar] [CrossRef]
- Olney, T.J.; Holbrook, M.B.; Batra, R. Consumer responses to advertising: The effects of ad content, emotions, and attitude toward the ad on viewing time. J. Consum. Res. 1991, 17, 440–453. [Google Scholar] [CrossRef]
- Aaker, D.A.; Stayman, D.M.; Hagerty, M.R. Warmth in advertising: Measurement, impact, and sequence effects. J. Consum. Res. 1986, 12, 365–381. [Google Scholar] [CrossRef]
- Lewis, M. Self-conscious emotions: Embarrassment, pride, shame, and guilt. In Handbook of Emotions; Lewis, M., Haviland-Jones, J.M., Barrett, L.F., Eds.; The Guilford Press: New York, NY, USA, 2008. [Google Scholar]
- Cialdini, R.B.; Kenrick, D.T. Altruism as hedonism: A social development perspective on the relationship of negative mood state and helping. J. Pers. Soc. Psychol. 1976, 34, 907–914. [Google Scholar] [CrossRef]
- Bozinoff, L.; Ghingold, M. Evaluating guilt arousing marketing communications. J. Bus. Res. 1983, 11, 243–255. [Google Scholar] [CrossRef]
- O’Keefe, D.J. Guilt and social influence. Ann. Int. Commun. Assoc. 2000, 23, 67–101. [Google Scholar] [CrossRef]
- Eayrs, C.B.; Ellis, N. Charity advertising: For or against people with a mental handicap? Br. J. Soc. Psychol. 1990, 29, 349–366. [Google Scholar] [CrossRef]
- Hibbert, S.; Smith, A.; Davies, A.; Ireland, F. Guilt appeals: Persuasion knowledge and charitable giving. Psychol. Mark. 2007, 24, 723–742. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, H. A meta-analysis of the effectiveness of guilt on health-related attitudes and intentions. Health Commun. 2018, 33, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Huhmann, B.A.; Brotherton, T.P. A content analysis of guilt appeals in popular magazine advertisements. J. Advert. 1997, 26, 35–45. [Google Scholar] [CrossRef]
- Atkinson, R.K.; Mayer, R.E.; Merrill, M.M. Fostering social agency in multimedia learning: Examining the impact of an animated agent’s voice. Contemp. Educ. Psychol. 2005, 30, 117–139. [Google Scholar] [CrossRef]
- Coulter, R.H.; Cotte, J.; Moore, M.L. Believe it or not: Persuasion, manipulation and credibility of guilt appeals. Adv. Consum. Res. 1999, 26, 288–294. [Google Scholar]
- Izard, C.E. Human Emotions; Springer Science & Business Media: New York, NY, USA, 2013; ISBN 978-1-4899-2211-3. [Google Scholar]
- Cotte, J.; Coulter, R.A.; Moore, M. Enhancing or disrupting guilt: The role of ad credibility and perceived manipulative intent. J. Bus. Res. 2005, 58, 361–368. [Google Scholar] [CrossRef]
- Dearing, R.L.; Stuewig, J.; Tangney, J.P. On the importance of distinguishing shame from guilt: Relations to problematic alcohol and drug use. Addict. Behav. 2005, 30, 1392–1404. [Google Scholar] [CrossRef] [Green Version]
- Bleakley, A.; Jordan, A.B.; Hennessey, M.; Glanz, K.; Strasser, A.; Vaala, S. Do emotional appeals in public service advertisements influence adolescents’ intention to reduce consumption of sugar-sweetened beverages? J. Health Commun. 2015, 20, 938–948. [Google Scholar] [CrossRef]
- Sternthal, B.; Craig, C.S. Humor in advertising. J. Mark. 1973, 37, 12–18. [Google Scholar] [CrossRef]
- Voss, K.E. Using humor in conjunction with negative consequences in advertising. J. Curr. Issues Res. Advert. 2009, 31, 25–39. [Google Scholar] [CrossRef]
- Smith, S.M. Does humor in advertising enhance systematic processing. Adv. Consum. Res. 1993, 20, 155–158. [Google Scholar]
- Moyer-Gusé, E.; Mahood, C.; Brookes, S. Entertainment-education in the context of humor: Effects on safer sex intentions and risk perceptions. Health Commun. 2011, 26, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Mirnig, N.; Stollnberger, G.; Miksch, M.; Stadler, S.; Giuliani, M.; Tscheligi, M. To Err Is Robot: How Humans Assess and Act toward an Erroneous Social Robot. Front. Robot. AI 2017, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Hutson, S.; Lim, S.L.; Bentley, P.J.; Bianchi-Berthouze, N.; Bowling, A. Investigating the suitability of social robots for the wellbeing of the elderly. In Affective Computing and Intelligent Interaction. Lecture Notes in Computer Science; D’Mello, S., Graesser, A., Schuller, B., Martin, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6974. [Google Scholar] [CrossRef]
- Moussawi, S.; Benbunan-Fich, R. The effect of voice and humour on users’ perceptions of personal intelligent agents. Behav. Inf. Technol. 2020, 40, 1603–1626. [Google Scholar] [CrossRef]
- Zinkhan, G.M.; Johnson, M.; Zinkhan, F.C. Differences between product and services television commercials. J. Serv. Mark. 1992, 6, 59–66. [Google Scholar] [CrossRef]
- Aaker, D.A.; Stayman, D.M. Implementing the concept of transformational advertising. Psychol. Mark. 1992, 9, 237–253. [Google Scholar] [CrossRef]
- Berry, L.L.; Conant, J.S.; Parasuraman, A. A framework for conducting a services marketing audit. Acad. Mark. Sci. 1991, 19, 255–268. [Google Scholar] [CrossRef]
- Chrysochou, P.; Grunert, K.G. Health-related ad information and health motivation effects on product evaluations. J. Bus. Res. 2014, 67, 1209–1217. [Google Scholar] [CrossRef]
- Nguyen, H.S.; Laufer, D.; Krisjanous, J. The effectiveness of guilt and shame appeals on health communications: The moderating role of self-construal and personal cultural orientation. Australas. Mark. J. (AMJ) 2020, 4, 310–324. [Google Scholar] [CrossRef]
- Lewis, I.; Watson, B.; White, K.M. An examination of message-relevant affect in road safety messages: Should road safety advertisements aim to make us feel good or bad? Transp. Res. F Traffic Psychol. Behav. 2008, 11, 403–417. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, S.B.; Lutz, R.J.; Belch, G.E. The role of attitude toward the ad as a mediator of advertising effectiveness: A test of competing explanations. J. Mark. Res. 1986, 23, 130–143. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. Communication and Persuasion: Central and Peripheral Routes to Attitude Change; Springer: New York, NY, USA, 1986. [Google Scholar]
- Campbell, M.C. When attention-getting advertising tactics elicit consumer inferences of manipulative intent: The importance of balancing benefits and investments. J. Consum. Psychol. 1995, 4, 225–254. [Google Scholar] [CrossRef]
- Lutz, R.J. Affective and Cognitive Antecedents of Attitude towards the Ad: A conceptual framework. In Psychological Processes and Advertising Effects: Theory, Research, and Applications; Alwitt, L.F., Mitchell, A.A., Eds.; Routledge: London, UK, 1985; pp. 45–63. ISBN1 1000549151. ISBN2 9781000549157. [Google Scholar]
- Lwin, M.; Phau, I. Exploring existential guilt appeals in the context of charitable advertisements. In Proceedings of the Australian and New Zealand Marketing Academy Conference, Olympic Park, Sydney, Australia, 1 December 2008. [Google Scholar]
- Lwin, M.; Phau, I. The role of guilt appeals on donation behavior. In Proceedings of the 20th Annual World Business Congress, Poznan, Poland, 3–7 July 2011; Harcar, K.E., Ed.; International Management Development Association: Jyvaskyla, Finland, 2011; pp. 299–303. [Google Scholar]
- Moore, D.J.; Harris, W.D. Affect intensity and the consumer’s attitude toward high impact emotional advertising appeals. J. Advert. 1996, 25, 37–50. [Google Scholar] [CrossRef]
- Lu, B.; Fan, W.; Zhou, M. Social presence, trust, and social commerce purchase intention: An empirical research. Comput. Hum. Behav. 2016, 56, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.E.; Howard, D.J. A review and critique of the hierarchy of effects in advertising. Int. J. Advert. 1990, 9, 121–135. [Google Scholar] [CrossRef]
- Sharif, M.A.; Ahmad, W.; Ahmad, A. Electronic word of mouth: Investigating the influence of electronic message source credibility, message appeal and brand equity on consumer purchase intention. City Univ. Res. J. 2016, 6, 151–165. [Google Scholar]
- Wang, J.; Bao, J.; Wang, C.; Wu, L. The impact of different emotional appeals on the purchase intention for green products: The moderating effects of green involvement and Confucian cultures. Sustain. Cities Soc. 2017, 34, 32–42. [Google Scholar] [CrossRef]
- Coulter, R.H.; Pinto, M.B. Guilt appeals in advertising: What are their effects? J. Appl. Psychol. 1995, 80, 697–705. [Google Scholar] [CrossRef]
- Yan, R.-N.; Ogle, J.P.; Hyllegard, K.H. The impact of message appeal and message source on Gen Y consumers’ attitudes and purchase intentions toward American Apparel. J. Mark. Commun. 2010, 16, 203–224. [Google Scholar] [CrossRef]
- Heath, R.; Brandt, D.; Nairn, A. Brand relationships: Strengthened by emotion, weakened by attention. J. Advert. Res. 2006, 46, 410–419. [Google Scholar] [CrossRef]
- Mathur, A.; Moschis, G.P.; Lee, E. Life events and brand preference changes. J. Consum. Behav. 2003, 3, 129–141. [Google Scholar] [CrossRef]
- De Graaf, M.M.; Allouch, S.B. Exploring influencing variables for the acceptance of social robots. Robot. Auton. Syst. 2013, 61, 1476–1486. [Google Scholar] [CrossRef]
- DelVecchio, D. Moving beyond fit: The role of brand portfolio characteristics in consumer evaluations of brand reliability. J. Prod. Brand Manag. 2000, 9, 457–471. [Google Scholar] [CrossRef]
- Silfver, M.; Helkama, K.; Lonnqvist, J.-E.; Verkasalo, M. The relation between value priorities and proneness to guilt, shame, and empathy. Motiv. Emot. 2008, 32, 69–80. [Google Scholar] [CrossRef]
- Siemens, J.C.; Raymond, M.A.; Choi, Y.; Choi, J. The influence of message appeal, social norms and donation social context on charitable giving: Investigating the role of cultural tightness-looseness. J. Mark. Theory Pract. 2020, 28, 187–195. [Google Scholar] [CrossRef]
- Perse, E.M.; Nathanson, A.I.; McLeod, D.M. Effects of spokesperson sex, public service announcement appeal, and involvement on evaluations of safe-sex PSAs. Health Commun. 1996, 8, 171–189. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. National Health Survey: First Results; 2017–18; Australian Bureau of Statistics: Canberra, Australian, 2018. [Google Scholar]
- Isaacs, R. Western Sydney Teens Being Educated on Drinking Too Many Sugar-Packed Drinks. 2016. Available online: https://www.dailytelegraph.com.au/newslocal/west/western-sydney-teens-being-educated-on-drinking-too-many-sugarpacked-drinks/news-story/33553426ff4a26c3798536ee2bd27587 (accessed on 15 January 2022).
- Peacock, A.; Droste, N.; Miller, P. Alert and Ready for Action: Why It’s Time to Ban Energy Drinks for Under-18s. 2015. Available online: https://theconversation.com/alert-and-ready-for-action-why-its-time-to-ban-energy-drinks-for-under-18s-44765#:~:text=Energy%20drinks%20may%20pose%20serious,to%20the%20primary%20ingredient%2C%20caffeine (accessed on 15 January 2022).
- Effertz, T.; Franke, M.-K.; Teichert, T. Adolescents’ assessments of advertisements for unhealthy food: An example of warning labels for soft drinks. J. Consum. Policy 2014, 37, 279–299. [Google Scholar] [CrossRef]
- Sheffet, M.J. An experimental investigation of the documentation of advertising claims. J. Advert. 1983, 12, 19–29. [Google Scholar] [CrossRef]
- Dholakia, R.R.; Zhao, M. Retail web site interactivity. Int. J. Retail. Distrib. 2009, 37, 821–838. [Google Scholar] [CrossRef]
- Lazarus, R.S. Emotion and Adaptation; Oxford University Press: New York, NY, USA, 1991; ISBN 0-19-506994-3. [Google Scholar]
- Schrum, M.L.; Johnson, M.; Ghuy, M.; Gombolay, M.C. Four Years in Review: Statistical Practices of Likert Scales in Human-Robot Interaction Studies. In Proceedings of the Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26 March 2020; pp. 43–52. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.M.; Li, H.; Lee, J.-H. Forced exposure and psychological reactance: Antecedents and consequences of the perceived intrusiveness of pop-up ads. J. Advert. 2002, 31, 83–95. [Google Scholar] [CrossRef]
- Obermiller, C.; Spangenberg, E.; MacLachlan, D.L. Ad skepticism: The consequences of disbelief. J. Advert. 2005, 34, 7–17. [Google Scholar] [CrossRef]
- De Beir, A.; Cao, H.-L.; Esteban, P.G.; Perre, G.V.D.; Leferber, D.; Vanderborght, B. Enhancing emotional facial expressiveness on NAO. Int. J. Soc. Robot. 2016, 8, 513–521. [Google Scholar] [CrossRef]
- Saunderson, S.; Nejat, G. How robots influence humans: A survey of nonverbal communication in social human–robot interaction. Int. J. Soc. Robot. 2019, 11, 575–608. [Google Scholar] [CrossRef]
- Oliver, R.L. Effect of expectation and disconfirmation on postexposure product evaluations: An alternative interpretation. J. Appl. Psychol. 1977, 62, 480–486. [Google Scholar] [CrossRef]
- Ahtinen, A.; Kaipainen, K. Learning and Teaching Experiences with a Persuasive Social Robot in Primary School–Findings and Implications from a 4-Month Field Study. In Persuasive Technology. Designing for Future Change. Persuasive 2020. Lecture Notes in Computer Science; Gram-Hansen, S., Jonasen, T., Midden, C., Eds.; Springer: Cham, Switzerland, 2020; Volume 12064, pp. 73–84. [Google Scholar] [CrossRef]
Age | Gender | Education |
---|---|---|
18–24—90% | Males—55% Females—45% | Undergraduate Business students—100% |
Guilt Messages | ENERGISE (High Caffeine): “Studies show high level of caffeine intake can lead to anxiety and higher blood pressure which can cause stroke” |
Hyped-Up (High Sugar): “Studies show high level of sugar intake can lead to type 2 diabetes and weight gain” | |
Humour Messages | ENERGISE (High Caffeine): “What do you call a robot high on caffeine? The Caffeinator…hahahahaha” |
Hyped-Up (High Sugar): “What do you call a band with high levels of sugar? The Diabeatles…hahahahaha” (a play on word with diabetic and The Beatles) | |
Non-Emotional Messages (for Control Group) | ENERGISE Brand (High Caffeine): “ENERGISE has only 10 g of caffeine and 50 g of sugar” |
Hyped-Up Brand (High Sugar): “Hyped-Up has only 10 g of sugar and 50 g of caffeine” |
ENERGISE | 10 g of sugar and 50 g of caffeine. One drink can increase your attention and reaction speed by 20% |
HYPED-UP | 50 g of sugar and 10 g of caffeine. One drink can increase your attention and reaction speed by 20% |
Information Sheet and consent |
Scenario (Hot afternoon) |
Initial Brand Selection (ENERGISE or Hyped-Up) |
Message (Humour, Guilt, Non-emotional) |
Consumer response (Measures: Message Credibility, Inferences of Manipulative Intent, Attitude, Purchase Intention) |
Post-Message Change in Brand Selection (ENERGISE or Hyped-Up) |
Demographics (Age, gender, income) |
Scale | Scale Reliability (α) |
Message credibility [56] This robot’s message is believable This robot’s message is truthful This robot’s message is realistic | 0.772–0.89 |
Inferences of manipulative intent [71] The way this robot tries to persuade people seems acceptable to me The robot tried to manipulate the audience in ways I do not like I was annoyed by this robot because it was trying to inappropriately manage or control the audience The robot tried to be persuasive without being excessively manipulative The robot was fair in what was said and shown I think that this robot provided an unfair perspective (reverse coded) | 0.610–0.720 |
Attitude towards the robot [69] “I have good attitude towards the robot” “My attitude towards the robot is favourable” “My attitude towards the robot is positive” “I dislike this robot” | 0.780–0.810 |
Purchase intention [80] “It is very likely that I will buy this product” “I will purchase this product the next time I need it” “I will definitely try this product” | 0.860–0.890 |
Guilt Mean | Guilt Std. Deviation | Humour Mean | Humour Std. Deviation | Control Group Mean (Non-emotional) | Control Group Std. Deviation (Non-Emotional) | |
---|---|---|---|---|---|---|
Message Credibility (H1) | 4.93 | 0.915 | 4.94 | 1.08 | 4.86 | 1.25 |
Manipulative Intent (recoded to manipulation is acceptable) (H2) | 4.67 | 0.952 | 5.05 | 0.906 | 4.98 | 0.754 |
Attitude towards the robot (H3) | 5.16 | 0.975 | 5.45 | 1.04 | 5.30 | 1.01 |
Purchase Intentions (H4) | 3.72 | 1.35 | 4.48 | 1.46 | 4.13 | 1.41 |
Dependent Variable | Types of III Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
AdCr | 0.309 | 2 | 0.154 | 0.129 | 0.879 |
IMI | 5.611 | 2 | 2.805 | 3.665 | 0.027 |
AdRo | 2.937 | 2 | 1.468 | 1.437 | 0.240 |
PI | 19.616 | 2 | 9.808 | 4.920 | 0.008 |
Dependent Variable | (I) Control, Guilt, Humour | (J) Control, Guilt, Humour | Mean Difference (I − J) | Std Error | Sig |
---|---|---|---|---|---|
AdCr | Control | Guilt | −0.0773 | 0.18657 | 1.000 |
Humour | −0.0861 | 0.18725 | 1.000 | ||
Guilt | Control | 0.0773 | 0.18657 | 1.000 | |
Humour | −0.0088 | 0.18725 | 1.000 | ||
Humour | Control | 0.0861 | 0.18725 | 1.000 | |
Guilt | 0.0088 | 0.18725 | 1.000 | ||
IMI | Control | Guilt | 0.3043 | 0.14895 | 0.127 |
Humour | −0.0781 | 0.14949 | 1.000 | ||
Guilt | Control | −0.3043 | 0.14895 | 0.127 | |
Humour | −0.3824 * | 0.14949 | 0.034 | ||
Humour | Control | 0.0781 | 0.14949 | 1.000 | |
Guilt | 0.3824 * | 0.14949 | 0.034 | ||
AdRo | Control | Guilt | 0.1413 | 0.17207 | 1.000 |
Humour | 0.1515 | 0.17270 | 1.000 | ||
Guilt | Control | −0.1413 | 0.17207 | 1.000 | |
Humour | −0.2928 | 0.17270 | 0.275 | ||
Humour | Control | 0.1515 | 0.17270 | 1.000 | |
Guilt | 0.2928 | 0.17270 | 0.275 | ||
PI | Control | Guilt | 0.4106 | 0.24039 | 0.267 |
Humour | −0.3451 | 0.24127 | 0.463 | ||
Guilt | Control | −0.4106 | 0.24039 | 0.267 | |
Humour | −0.7557 * | 0.24127 | 0.006 | ||
Humour | Control | 0.3451 | 0.24127 | 0.463 | |
Guilt | 0.7557 * | 0.24127 | 0.006 |
Brand Selection | Humour Appeal | Guilt Appeal | Control |
---|---|---|---|
Changed from initial decision | 20.6% (14) | 24.60% (17) | 17.40% (12) |
Did not change from initial decision | 79.40% (54) | 75.35% (52) | 82.60% (57) |
Total | 100% (68) | 100% (69) | 100% (69) |
Value | df | Asymptotic Significance (2-Sided) | |
---|---|---|---|
Pearson Chi-Square | 1.102 a | 2 | 0.576 |
Likelihood Ratio | 1.101 | 2 | 0.577 |
Linear-by-Linear Association | 1.092 | 1 | 0.296 |
N of Valid Cases | 206 |
Hypothesis | Proposed Statement | Decision |
---|---|---|
H1 | Significant differences in participants’ rating for credibility for each type of advertising message | Not Supported |
H2 | Significant differences in participants’ inferences of manipulative intent (of the robot) for each type of advertising message | Partially supported for Guilt Appeal |
H3 | Significant differences in participants’ rating of attitude (towards the robot) for each type of advertising message | Not supported |
H4 | Significant differences in participants’ purchase intentions for each type of advertising message | Partially supported for Guilt Appeal |
H5 | Significant differences in participants’ brand selection for each type of advertising message | Not Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharub, I.; Lwin, M.; Khan, A.; Mubin, O.; Shahid, S. The Effectiveness of Robot-Enacted Messages to Reduce the Consumption of High-Sugar Energy Drinks. Informatics 2022, 9, 49. https://doi.org/10.3390/informatics9020049
Kharub I, Lwin M, Khan A, Mubin O, Shahid S. The Effectiveness of Robot-Enacted Messages to Reduce the Consumption of High-Sugar Energy Drinks. Informatics. 2022; 9(2):49. https://doi.org/10.3390/informatics9020049
Chicago/Turabian StyleKharub, Isha, Michael Lwin, Aila Khan, Omar Mubin, and Suleman Shahid. 2022. "The Effectiveness of Robot-Enacted Messages to Reduce the Consumption of High-Sugar Energy Drinks" Informatics 9, no. 2: 49. https://doi.org/10.3390/informatics9020049
APA StyleKharub, I., Lwin, M., Khan, A., Mubin, O., & Shahid, S. (2022). The Effectiveness of Robot-Enacted Messages to Reduce the Consumption of High-Sugar Energy Drinks. Informatics, 9(2), 49. https://doi.org/10.3390/informatics9020049