Danio rerio: A Sustainable Model for Monitoring Pollutants in Aquatic Environments †
Abstract
:1. Introduction
2. Methodology
3. Advantages and Disadvantages of Zebrafish in Ecotoxicity Tests
4. Development and Distribution of Zebrafish
5. Zebrafish-Based Experimental Applications
6. Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canedo, A.; Rocha, T.L. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. Sci. Total Environ. 2021, 762, 144084. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Khan, M.D.Z.A.; Shahane, S.; Rai, D.; Chauhan, D.; Kant, C.; Chaudhary, V.K. Emerging pollutants in aquatic environment: Source, effect, and challenges in biomonitoring and bioremediation—A review. Pollution 2020, 6, 99–113. [Google Scholar]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Kelly, J.R.; Shelton, S.G.; Daniel, D.K.; Bhat, A.; Mondal, R.; Nipple, F.; Amro, H.; Bower, M.E.; Isaac, G.; McHaney, G.; et al. Wild zebrafish sentinels: Biological monitoring of site differences using behavior and morphology. Toxics 2021, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Beffagna, G. Zebrafish as a smart model to understand regeneration after heart injury: How fish could help humans. Front. Cardiovasc. Med. 2019, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strungaru, S.A.; Plavan, G.; Ciobica, A.; Nicoara, M.; Robea, M.A.; Solcan, C.; Petrovici, A. Toxicity and chronic effects of deltamethrin exposure on zebrafish (Danio rerio) as a reference model for freshwater fish community. Ecotoxicol. Environ. Saf. 2019, 171, 854–862. [Google Scholar] [CrossRef]
- Shen, Q.; Truong, L.; Simonich, M.T.; Huang, C.; Tanguay, R.L.; Dong, Q. Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav. Brain Res. 2020, 391, 112625. [Google Scholar] [CrossRef]
- Russo, I.; Sartor, E.; Fagotto, L.; Colombo, A.; Tiso, N.; Alaibac, M. The Zebrafish model in dermatology: An update for clinicians. Discov. Oncol. 2022, 13, 48. [Google Scholar] [CrossRef]
- Chatterjee, N.; Lee, H.; Kim, J.; Kim, D.; Lee, S.; Choi, J. Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: Multi-level endpoint and proteomics analysis. Environ. Pollut. 2021, 268, 115784. [Google Scholar] [CrossRef]
- Kelly, J.R.; Benson, S.A. Inconsistent ethical regulation of larval zebrafish in research. J. Fish Biol. 2020, 97, 324–327. [Google Scholar] [CrossRef]
- Saiki, P.; Mello-Andrade, F.; Gomes, T.; Tocha, T.L. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. Sci. Total Environ. 2021, 793, 148633. [Google Scholar] [CrossRef]
- Canedo, A.; de Jesus, L.W.O.; Bailao, E.F.L.C.; Rocha, T.L. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. Environ. Pollut. 2021, 290, 118019. [Google Scholar] [CrossRef]
- Sieber, S.; Grossen, P.; Bussmann, J.; Campbell, F.; Kros, A.; Witzigmann, D.; Huwyler, J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv. Drug Deliv. Ver. 2019, 151–152, 152–168. [Google Scholar] [CrossRef] [PubMed]
- Bambino, K.; Chu, J. Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol. 2017, 124, 331–367. [Google Scholar]
- Li, X.; Xiong, D.; Ju, Z.; Xiong, Y.; Ding, G.; Liao, G. Phenotypic and transcriptomic consequences in zebrafish early-life stages following exposure to crude oil and chemical dispersant at sublethal concentrations. Sci. Total Environ. 2021, 763, 143053. [Google Scholar] [CrossRef] [PubMed]
- Vaz, R.; Hofmeister, W.; Lindstrand, A. Zebrafish models of neurodevelopmental disorders: Limitations and benefits of current tools and techniques. Int. J. Mol. Sci. 2019, 20, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Pabic, P.; Dranow, D.B.; Hoyle, D.J.; Schilling, T.F. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front. Endocrinol. 2022, 13, 1060187. [Google Scholar] [CrossRef]
- Chien, L.C.; Wu, Y.H.; Ho, T.N.; Huang, Y.Y.; Hsu, T. Heat stress modulates nucleotide excision repair capacity in zebrafish (Danio rerio) early and mid-early embryos via distinct mechanisms. Chemosphere 2020, 238, 124653. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, Q.; Di Paolo, C.; Shao, Y.; Hollert, H.; Seiler, T.B. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. Sci. Total Environ. 2019, 664, 89–98. [Google Scholar] [CrossRef]
- Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yeo, K.S.; Levee, T.M.; Howe, C.J.; Her, Z.P.; Zhu, S. Zebrafish as a neuroblastoma model: Progress made, promise for the future. Cells 2021, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, L.; de Girolamo, P. Fish as model systems. In Laboratory Fish in Biomedical Research Biology, Husbandry and Research Applications for Zebrafish, Medaka, Killifish, Cavefish, Stickleback, Goldfish and Danionella Translucida, 1st ed.; D’Angelo, L., de Girolamo, P., Eds.; Andre Gerhard Wolff: London, UK, 2022; pp. xix–xxiv. [Google Scholar]
- Lee, C.J.; Paull, G.C.; Tyler, C.R. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol. Rev. 2022, 97, 1038–1056. [Google Scholar] [CrossRef] [PubMed]
- Trigueiro, N.; Canedo, A.; Braga, D.; Luchiari, A.C.; Rocha, T.L. Zebrafish as an emerging model system in the global South: Two decades of research in Brazil. Zebrafish 2020, 17, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Penagos, C.D.; Zamora-Briseno, J.A.; Amendola-Pimenta, M.; Elizalde-Contreras, J.M.; Arcega-Cabrera, F.; Cruz-Quintana, Y.; Santana-Pineros, A.M.; Canizarez-Martinez, M.A.; Perez-Vega, J.A.; Ruiz-May, E.; et al. Pollution and children’s health. Toxicol. Appl. Pharmacol. 2022, 445, 116033. [Google Scholar]
- Barros, S.; Ribeiro, M.; Coimbra, A.M.; Pinheiro, M.; Morais, H.; Alves, N.; Montes, R.; Rodil, R.; Quintana, J.B.; Santos, M.M.; et al. Metformin disrupts Danio rerio metabolism at environmentally relevant concentrations: A full life-cycle study. Sci. Total Environ. 2022, 846, 157361. [Google Scholar] [CrossRef] [PubMed]
- Jijie, R.; Solcan, G.; Nicoara, M.; Micu, D.; Strungaru, S.A. Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure. Sci. Total Environ. 2020, 698, 134299. [Google Scholar] [CrossRef]
- Licitra, R.; Marchese, M.; Naef, V.; Ogi, A.; Martinelli, M.; Kiferle, C.; Fronte, B.; Santorelli, F.M. A review on the bioactivity of cannabinoids on zebrafish models: Emphasis on neurodevelopment. Biomedicines 2022, 10, 1820. [Google Scholar] [CrossRef]
- Boulanger, E.; Barst, B.D.; Alloy, M.M.; Blais, S.; Houde, M.; Head, J.A. Assessment of environmentally contaminated sediment using a contact assay with early life stage zebrafish (Danio rerio). Sci. Total Environ. 2019, 659, 950–962. [Google Scholar] [CrossRef]
- Kataba, A.; Botha, T.L.; Nakayama, S.M.M.; Yohannes, Y.B.; Ikenaka, Y.; Wepener, V.; Ishizuka, M. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae. Comp. Biochem. Physiol. 2022, 252, 109215. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, Y.; Ramesh, M.; Li, B.; Poopal, R.K. Assessment of eco-toxic effects of commonly used water disinfectant on zebrafish (Danio rerio) swimming behaviour and recovery responses: An early-warning biomarker approach. Environ. Sci. Pollut. Res. 2022, 29, 41849–41862. [Google Scholar] [CrossRef]
- Hu, G.; Wang, H.; Wan, Y.; Zhou, L.; Wang, Q.; Wang, M. Combined toxicities of cadmium and five agrochemicals to the larval zebrafish (Danio rerio). Sci. Rep. 2022, 12, 16045. [Google Scholar] [CrossRef] [PubMed]
- Çelebi, H.; Gök, O. Effect of triclosan exposure on mortality and behavioral changes of Poecilia reticulata and Danio rerio. Hum. Ecol. Risk Assess. 2018, 24, 1327–1341. [Google Scholar] [CrossRef]
Parameters | Unit | Permissible Limits | Optimum Limits |
---|---|---|---|
Temperature | °C | 6.5–42 | 26 |
Hardness | mg/L | 72–198 | 100 |
pH | - | 5.5–9.0 | 7.7 |
NaCl | ppt | 0.1–14 | 0.65 |
Ammonia (NH4+) | mg/L | 0–0.05 | 0.02 |
Nitrite (NO2−) | mg/L | 0–0.5 | 0.2 |
Nitrate (NO3−) | mg/L | 15–200 | 50 |
Phosphate (PO43−) | mg/L | 150–300 | 250 |
Dissolved Oxygen | mg/L | 5.5–8.0 | 7.5 |
Conductivity | µS | 200–4000 | 1250 |
Test Type | Exposure-Pollutant | References |
---|---|---|
Zebrafish embryo test | Crude oil component | [25] |
Danio rerio long-term exposure | Metformin | [26] |
Zebrafish antagonistic test | Deltamethrin | [27] |
Adult zebrafish behavioral test | Cannabinoids | [28] |
Early life stage zebrafish assay | Sediment | [29] |
Acute-Chronic test | Lead | [30] |
Early life stage zebrafish assay | Sodium Hypochloride | [31] |
Combined toxicity test | Agrochemicals | [32] |
Adult zebrafish behavioral test | Triclosan | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelebi, H.; Bahadır, T.; Şimşek, İ.; Tulun, Ş. Danio rerio: A Sustainable Model for Monitoring Pollutants in Aquatic Environments. Environ. Sci. Proc. 2023, 25, 69. https://doi.org/10.3390/ECWS-7-14310
Çelebi H, Bahadır T, Şimşek İ, Tulun Ş. Danio rerio: A Sustainable Model for Monitoring Pollutants in Aquatic Environments. Environmental Sciences Proceedings. 2023; 25(1):69. https://doi.org/10.3390/ECWS-7-14310
Chicago/Turabian StyleÇelebi, Hakan, Tolga Bahadır, İsmail Şimşek, and Şevket Tulun. 2023. "Danio rerio: A Sustainable Model for Monitoring Pollutants in Aquatic Environments" Environmental Sciences Proceedings 25, no. 1: 69. https://doi.org/10.3390/ECWS-7-14310
APA StyleÇelebi, H., Bahadır, T., Şimşek, İ., & Tulun, Ş. (2023). Danio rerio: A Sustainable Model for Monitoring Pollutants in Aquatic Environments. Environmental Sciences Proceedings, 25(1), 69. https://doi.org/10.3390/ECWS-7-14310