Internet Risk Perception: Development and Validation of a Scale for Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedure for Developing the IRP Scale
2.2. Content Validity of the Instrument
2.3. Pilot Application
2.4. Data Analysis
3. Results
4. Discussion and Conclusions
Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. English Version of the Validated Instrument
- -
- Not at all risky
- -
- Slightly risky
- -
- Fairly risky
- -
- Very risky
- -
- Too risky
- Accessing personal or professional websites.
- Accessing matchmaking sites.
- Easily accessing sexual or pornographic websites.
- Arranging a date with people you know.
- Gambling on the Internet.
- Keeping in contact with unknown people through social networks (Facebook, Instagram, or others).
- Posting personal information on the Internet that could be used to harm me.
- Accessing interactive online entertainment (videos, chats, series, films, etc.).
- Sharing photographs or videos of minors.
- Sharing sexually provocative images.
- Downloading images or photographs.
- Sharing photos on the Internet.
- Using information, photographs, or videos without permission.
- Giving my bank or credit card details on gambling or gaming sites.
- Shopping on websites such as Amazon.
- Searching for consumer or user reviews of products and being asked for personal details.
- Accepting cookies to continue browsing the Internet.
- Receiving advertising via e-mail or social networks.
- Making transactions on the bank’s website.
- Making online transfers through entities such as Western Union.
- Accepting privacy policies when registering on social networks or apps.
- Sharing personal information or data (name, age, telephone number, location, etc.).
- Sharing login passwords with other people.
- Misplacing a pen (pen drive) containing personal information.
- Not knowing what personal data are managed and shared by companies.
- Not changing my passwords from time to time.
- Using public Wi-Fi networks.
- Seeing personal information published without my consent.
- Having my webcam uncovered.
- Accessing health, food, and consumer information without being sure of its veracity.
- Not logging out when I finish using accounts or profiles.
- Communicating via WhatsApp.
- Sharing and disseminating private messages to contacts or groups on social networks.
- Making private information public on profiles created on the Internet.
- Creating a fake profile on a social network.
- Inducing others to perform embarrassing or indecent acts in front of a webcam and then publishing it.
- Sharing personal information with my contacts instead of face-to-face.
- Using social networking sites to spread rumors, insult, or threaten others.
- Not knowing how to manage my passwords securely and appropriately.
- Opening junk e-mail (spam).
- Failing to acknowledge authorship of something copied.
- Downloading unlicensed tools, programs, or applications.
- Downloading music or games without verifying their origin or authorship.
- Not knowing what to do when pop-up windows or advertisements appear on the Internet.
- Exchanging files between work, school, or home computers.
- Downloading apps, programs, or materials that have viruses.
- Giving permission to make changes to the computer when using a program.
- Clicking on links without knowing if they are safe.
- Not knowing how to recover information in the event of theft or loss.
- In general, I perceive the Internet to be (not at all–a little–quite a lot–very–extremely) risky.
References
- Lašek, J.; Kalibová, P.; Andršová, J. Adolescents and information and communication technologies: Use and a risk of addiction. Adolescents and information and communication technologies. New Educa. Rev. 2016, 44, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Unión Internacional de Telecomunicaciones [ITU]. Tendencias Digitales en Europa 2021. Tendencias y Evoluciones de las TIC en Europa, 2017–2020; ITU Publicaciones: Geneva, Switzerland, 2021; Available online: https://bit.ly/3I87RVc (accessed on 10 May 2022).
- Spanish Institute of Statistics. Science and technology, information society. Population using the Internet (in the last three months). In Type of Activities Carried out via the Internet. Tipo de Actividades Realizadas por Internet; Spanish Institute of Statistics: Madrid, Spain, 2021. Available online: https://bit.ly/3C6b46x (accessed on 17 September 2022).
- National Technology and Society Observatory [ONTSI] Technology + Society in Spain 2021; Ministry of Economic Affairs and Digital Transformation, General Technical Secretariat: Madrid, Spain, 2021. Available online: https://bit.ly/35JKIeR (accessed on 11 June 2022).
- Byrne, J.; Burton, P. Children as Internet users: How can evidence better inform policy debate? J. Cyber Policy 2017, 2, 39–52. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Unesco ICT Competency Framework for Teachers; Nations Educational, Scientific and Cultural Organization: Paris, France, 2018; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000265721 (accessed on 28 April 2022).
- Tynes, B.M. Internet safety gone wild?: Sacrificing the educational and psychosocial benefits of online social environments. J. Adolesc. Res. 2007, 22, 575–584. [Google Scholar] [CrossRef]
- Thomée, S. Mobile phone use and mental health: A review of the research that takes a psychological perspective on exposure. Int. J. Environ. Res. Public Health 2018, 15, 2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.W.; Kim, D.J.; Choi, J.S.; Ahn, H.; Choi, E.J.; Song, W.Y.; Youn, H. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction. J. Behav. Addict. 2015, 4, 308–314. [Google Scholar] [CrossRef]
- Chang, C. Internet safety survey: Who will protect the children? Berkeley Technol. Law J. 2010, 25, 501–527. [Google Scholar]
- Gasser, U.; Maclay, C.M.; Palfrey, J.G. Working towards a deeper understanding of digital safety for children and young people in developing nations. In Berkman Center Research Publication No. 2010-7; Harvard Public Law Working Paper: Cambridge, MA, USA, 2010; pp. 10–36. Available online: https://ssrn.com/abstract=1628276 (accessed on 30 May 2022).
- Kaşıkçı, D.N.; Çağıltay, K.; Karakuş, T.; Kurşun, A.; Ogan, C. Türkiye ve Avrupa’daki çocukların internet alışkanlıkları ve güvenli internet kullanımı [Internet habits and safe Internet use of children in Turkey and Europe]. Eğitim Ve Bilim 2014, 39, 230–243. [Google Scholar]
- Smahel, D.; Helsper, E.; Green, L.; Kalmus, V.; Blinka, L.; Ólafsson, K. Excessive Internet Use among European Children; EU Kids Online, LSE: London, UK, 2012. [Google Scholar]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Kasperson, R.; Renn, O.; Slovic, P.; Brown, H.; Emel, J.; Goble, R.; Kasperson, J.; Ratick, S. The Social Amplification of Risk A Conceptual Framework. Risk Anal. 1999, 8, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Weber, E. Experience-based and description-based perceptions of long-term risk: Why global warming does not care about us (yet). Clim. Change 2006, 77, 103–120. [Google Scholar] [CrossRef]
- Purkait, S.; Kumar, S.; Suar, D. An empirical investigation of the factors that influence Internet user‘s ability to correct identify a phishing website. Inf. Manag. Comput. Secur. 2014, 22, 194–234. [Google Scholar] [CrossRef]
- Wood, A.; Wheatcroft, J. Young Adult Perceptions of Internet Communications and the Grooming Concept. Sage Open 2020, 10, 2158244020914573. [Google Scholar] [CrossRef]
- Smahel, D.; Machackova, H.; Mascheroni, G.; Dedkova, L.; Staksrud, E.; Ólafsson, K.; Livingstone, S.; Hasebrink, U. EU Kids Online 2020: Survey Results from 19 Countries; EU Kids Online: London, UK, 2020; Available online: https://doi.org/10.21953/lse.47fdeqj01ofo (accessed on 1 July 2022).
- Qian, B.; Huang, M.; Xu, M.; Hong, Y. Internet Use and Quality of Life: The Multiple Mediating Effects of Risk Perception and Internet Addiction. Int. J. Environ. Res. Public Health 2022, 19, 1795. [Google Scholar] [CrossRef] [PubMed]
- Blais, A.; Weber, E. A Domain-specific Risk-taking (DOSPERT) scale for adult populations. Judgement Decis. Mak. 2006, 1, 33–47. Available online: https://journal.sjdm.org/jdm06005.pdf (accessed on 17 September 2022).
- Martínez, E.; García, A.; Sendín, J. Perception of Risk in the Network by Adolescents in Spain: Problematic uses and ways of control. Anal. Monográfico 2013, 48, 111–130. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.M.; Mitchell, K.J.; Finkelhor, D. Trends in youth internet victimization: Findings from three youth internet safety surveys 2000–2010. J. Adolesc. Health 2012, 50, 179–186. [Google Scholar] [CrossRef]
- Livingstone, S.; Davidson, J.; Bryce, J.; Hargrave, A.M.; Grove-Hills, J. Children’s Online Activities: Risks and Safety: The UK Evidence Base; UK Council for Child Internet Safety: London, UK, 2012.
- Valcke, M.; De Wever, B.; Van Keer, H.; Schellens, T. Long-term study of safe internet use of young children. Comput. Educ. 2011, 57, 1292–1305. [Google Scholar] [CrossRef]
- Burger, C.; Strohmeier, D.; Spröber, N.; Bauman, S.; Rigby, K. How teachers respond to school bullying: An examination of self-reported intervention strategy use, moderator effects, and concurrent use of multiple strategies. Teach. Teach. Educ. 2015, 51, 191–202. [Google Scholar] [CrossRef]
- Byrne, Z.S.; Dvorak, K.J.; Peters, J.M.; Ray, I.; Howe, A.; Sanchez, D. From the user’s perspective: Perceptions of risk relative to benefit associated with using the Internet. Comput. Hum. Behav. 2016, 59, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The three-factor model of Internet addiction: The development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Dönmez, O.; Odabaşı, H.F.; Kabakçı Yurdakul, I.; Kuzu, A.; Girgin, Ü. Development of a scale to address perceptions of pre-service teachers regarding online risks for children. Educ. Sci. Theory Pract. 2017, 17, 923–943. [Google Scholar] [CrossRef] [Green Version]
- Montiel, I.; Molina, N.; Escalona, Y.; Riquelme, J.; Rojas, L.; Guerra, C. Analysis of a brief scale of Internet risk behavior in Chilean youth. Anu. De Psicol./UB J. Psychol. 2019, 49, 32–39. [Google Scholar]
- Jelenchick, L.A.; Eickhoff, J.; Zhang, C.; Kraninger, K.; Christakis, D.A.; Moreno, M.A. Screening for adolescent problematic internet use: Validation of the problematic and risky internet use screening scale (PRIUSS). Acad. Pediatr. 2015, 15, 658–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, K.J.; Gruber, E.M. Problematic Internet use and physical health. J. Behav. Addict. 2013, 2, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Milková, E.; Ambrožová, P. Internet Use and Abuse: Connection with Internet Addiction. J. Effic. Respons. Educ. Sci. 2018, 11, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Bağatarhan, T.; Müge, D. Programs for Preventing Internet Addiction during Adolescence: A Systematic Review. Addicta Turk. J. Addict. 2017, 4, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Soto, A.; Miguel, N.; Pérez, V. Approaching addictions to New Technologies: A proposal for prevention in the school context and rehabilitation treatment. Pap. Del Psicólogo 2018, 39, 120–126. [Google Scholar] [CrossRef]
- Fink-Hafner, D.; Dagen, T.; Doušak, M.; Novak, M.; Hafner-Fink, M. Delphi method: Strengths and weaknesses. Adv. Methodol. Stat. 2019, 16, 1–19. [Google Scholar] [CrossRef]
- Rittmannsberger, D.; Kocman, A.; Weber, G.; Lueger-Schuster, B. Trauma exposure and post-traumatic stress disorder in people with intellectual disabilities: A Delphi expert rating. J. Appl. Res. Intellect. Disab. 2019, 32, 558–567. [Google Scholar] [CrossRef]
- Zartha Sossa, J.W.; Halal, W.; Hernandez Zarta, R. Delphi method: Analysis of rounds, stakeholder and statistical indicators. Foresight 2019, 21, 525–544. [Google Scholar] [CrossRef]
- Al-Motlaq, M.A.; Carter, B.; Neill, S.; Hallstrom, I.K.; Foster, M.; Coyne, I.; Arabiat, D.; Darbyshire, P.; Feeg, V.D.; Shields, L. Toward developing consensus on family-centred care: An international descriptive study and discussion. J. Child Health Care 2019, 23, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Cronbach, L.J. Essentials of Psychological Testing; Harper and Row: San Francisco, CA, USA, 1990. [Google Scholar]
- Urbina, S. Essentials of Psychological Testing; John Wiley & Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Crocker, L.; Algina, J. Introduction to Classical and Modern Theory; Holt, Rinehart and Winston: New York, NY, USA, 1986. [Google Scholar]
- Pozo, M.T.; Gutiérrez, J.; Rodríguez, C. The use of the Delphi method in the definition of criteria for quality training in socio-cultural and leisure time activities. Rev. De Investig. Educ. 2007, 25, 351–366. [Google Scholar]
- Keegan, R.J.; Barnett, L.M.; Dudley, D.A.; Telford, R.D.; Lubans, D.R.; Bryant, A.S.; Roberts, W.M.; Morgan, P.J.; Schranz, N.K.; Weissensteiner, J.R.; et al. Defining physical literacy for application in Australia: A modified Delphi method. J. Teach. Phys. Educ. 2019, 38, 105–118. [Google Scholar] [CrossRef]
- Brill, J.M.; Bishop, M.J.; Walker, A.E. The competencies and characteristics required of an effective project manager: A web-based Delphi study. Educa. Technol. Res. Develop. 2006, 54, 115–140. [Google Scholar] [CrossRef] [Green Version]
- Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 2010, 6, 147–151. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U.; Ferrando, P.J. MSA: The Forgotten Index for Identifying Inappropriate Items Before Computing Exploratory Item Factor Analysis. Methodology 2021, 17, 296–306. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U.; Ferrando, P.J. FACTOR: A computer program to fit the exploratory factor analysis model. Behav. Res. Methods Instrum. Comput. 2006, 38, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Schomakers, E.; Lidynia, C.; Müllmann, D.; Ziefle, M. Internet users’ perceptions of information sensitivity–insights from Germany. Int. J. Inf. Manag. 2019, 46, 142–150. [Google Scholar] [CrossRef]
- Zarouali, B.; Strycharz, J.; Helberger, N.; de Vreese, C. Exploring people’s perceptions and support of data-driven technology in times of COVID-19: The role of trust, risk, and privacy concerns. Behav. Inf. Technol. 2022, 41, 1–12. [Google Scholar] [CrossRef]
- Jantz, G.; McMurray, A. Hidden Dangers of the Internet: Using It without Abusing It; H. Shaw Publishers: Wheaton, IL, USA, 1998. [Google Scholar]
- Livingstone, S.; Stoilova, M. The 4Cs: Classifying Online Risk to Children. 2021. Available online: https://doi.org/10.21241/ssoar.71817 (accessed on 22 June 2022).
Author | Title | Instrument | Variables | Population |
---|---|---|---|---|
Byrne et al. [27] | From the user’s perspective: Perceptions of risk relative to benefit associated with using the Internet | Interviews, 35 items | (1) Preparation of a list of 35 Internet activities; (2) users’ perception of risk associated with each action; (3) users’ evaluation of the frequency with which they performed the action; (4) benefits that users believed they obtained from the action; and (5) the quantity of personal information users were willing to share to obtain a benefit | 261 adults aged 50–64 |
Demetrovics et al. [28] | The three-factor model of Internet addiction: the development of the Problematic Internet Use Questionnaire | Problematic Internet Use Questionnaire (PIUQ), 30 items | Obsession, negligence, and control disorder | 1.037 persons (54.1% men; average age, 23.3) |
Dönmez et al. [29] | Development of a Scale to Address Perceptions of Pre-service Teachers Regarding Online Risks for Children | Questionnaire on problematic Internet use developed by Demetrovics et al. (2008), 25 items | Sexuality, online account, cyberbullying, inappropriate content, dangerous communications, and revelation of confidential information | Turkish education students; no information on age |
Montiel et al. [30] | Analysis of a brief scale of Internet risk behavior in Chilean youth | Questionnaire on the online victimization of minors (i.e., the JOVQ), 13 items | Bold contact with strangers and indirect risk | Persons aged 15–19 |
Jelenchick et al. [31] | Screening for Adolescent Problematic Internet Use: Validation of the Problematic and Risky Internet Use Screening Scale (PRIUSS) | Problematic and Risky Internet Use Screening Scale (PRIUSS), 18 items | Social deterioration, emotional deterioration, and risky/impulsive Internet use | University students aged 18–25 |
Kelley and Gruber [32] | Problematic Internet Use Questionnaire | Adaptation of Demetrovics et al. (2008), 18 items | Obsession, negligence, and control disorder | 278 students aged 18–37 |
Milková and Ambrožov [33] | Internet Use and Abuse: Connection with Internet Addiction | Learning Combination Inventory from Internet Risks Questionnaire (IRQ) (Kalibova, 2017), 28 items | The Sequential Processor The Precise ProcessorThe Technical Processor learning pattern student The Confluent Processor learning pattern student | 1542 students aged 15–23 |
Variable | M | CI (95%) | V | S | K | Variable | M | CI (95%) | V | S | K |
---|---|---|---|---|---|---|---|---|---|---|---|
V1 | 2.273 | (2.19–2.36) | 0.570 | 0.665 | 1.166 | V26 | 3.524 | (3.41–3.64) | 1.031 | −0.121 | −0.697 |
V2 | 3.615 | (3.50–3.73) | 1.111 | −0.424 | −0.271 | V27 | 3.551 | (3.43–3.68) | 1.249 | −0.216 | −0.997 |
V3 | 4.182 | (4.07–4.29) | 1.008 | −1.198 | 0.942 | V28 | 4.453 | (4.36–4.54) | 0.635 | −1.455 | 1.851 |
V4 | 2.497 | (2.36–2.64) | 1.538 | 0.741 | −0482 | V29 | 3.801 | (3.68–3.93) | 1.227 | −0.524 | −0.661 |
V5 | 3.021 | (2.90–3.15) | 1.228 | 0.266 | −0.694 | V30 | 3.509 | (3.40–3.62) | 0.981 | −0.186 | −0.495 |
V6 | 3.729 | (3.61–3.85) | 1.196 | −0.364 | −0810 | V31 | 3.725 | (3.61–3.84) | 1.101 | −0.310 | −0.906 |
V7 | 4.416 | (4.32–4.51) | 0.757 | −1549 | 1.268 | V32 | 2.226 | (2.14–2.32) | 0.635 | 0.926 | 1.481 |
V8 | 2.638 | (2.53–2.75) | 0.927 | 0.607 | −0.019 | V33 | 3.406 | (3.29–3.53) | 1.139 | −0.022 | −0.949 |
V9 | 4.576 | (4.49–4.66) | 0.604 | −1.077 | 1.482 | V34 | 3.975 | (3.87–4.08) | 0.883 | −0.566 | −0.320 |
V10 | 4.634 | (4.55–4.72) | 0.599 | −1.371 | 1.602 | V35 | 3.574 | (3.44–3.71) | 1.386 | −0.297 | −0.992 |
V11 | 2.849 | (2.73–2.97) | 1.072 | 0.452 | −0.453 | V36 | 4.617 | (4.53–4.70) | 0.546 | −1.782 | 1.909 |
V12 | 3.389 | (3.27–3.50) | 1.023 | −0.027 | −0.789 | V37 | 3.627 | (3.51–3.75) | 1.159 | −0.344 | −0.630 |
V13 | 4.271 | (4.17–4.38) | 0.871 | −1.164 | 0.681 | V38 | 4.518 | (4.42–4.61) | 0.691 | −1.922 | 1.612 |
V14 | 4.619 | (4.53–4.70) | 0.576 | −1.241 | 1.074 | V39 | 4.112 | (4.01–4.21) | 0.800 | −0.693 | −0.129 |
V15 | 2.199 | (2.11–2.29) | 0.597 | 1.129 | 1.990 | V40 | 3.861 | (3.74–3.98) | 1.122 | −0.483 | −0.824 |
V16 | 3.675 | (3.55–3.80) | 1.202 | −0.407 | −0.696 | V41 | 3.714 | (3.60–3.82) | 0.966 | −0.295 | −0.620 |
V17 | 2.816 | (2.71–2.93) | 0.966 | 0.546 | −0.235 | V42 | 3.727 | (3.62–3.84) | 0.964 | −0.230 | −0.731 |
V18 | 2.868 | (2.76–2.98) | 0.996 | 0.663 | −0.279 | V43 | 3.652 | (3.54–3.76) | 0.977 | −0.185 | −0.655 |
V19 | 2.364 | (2.26–2.47) | 0.920 | 1.024 | 0.891 | V44 | 3.706 | (3.60–3.81) | 0.881 | −0.270 | −0.440 |
V20 | 2.843 | (2.72–2.97) | 1.192 | 0.555 | −0.524 | V45 | 2.928 | (2.81–3.05) | 1.192 | 0.366 | −0.662 |
V21 | 2.855 | (2.74–2.97) | 1.033 | 0.437 | −0.337 | V46 | 4.563 | (4.48–4.65) | 0.575 | −1.801 | 1.912 |
V22 | 3.838 | (3.72–3.95) | 1.006 | −0.373 | −0.702 | V47 | 3.526 | (3.41–3.64) | 1.038 | −0.071 | −0.804 |
V23 | 4.441 | (4.35–4.54) | 0.699 | −1.394 | 1.308 | V48 | 4.062 | (3.96–4.17) | 0.839 | −0.667 | −0.130 |
V24 | 4.377 | (4.28–4.47) | 0.734 | −1.307 | 1.153 | V49 | 4.104 | (4.00–4.20) | 0.790 | −0.653 | −0.260 |
V25 | 4.000 | (3.90–4.10) | 0.832 | −0.567 | −0.215 | V50 | 3.251 | (3.16–3.34) | 0.625 | 0.227 | 0.593 |
Variables | F1 | F2 | F3 |
---|---|---|---|
V 01 | 0.460 | ||
V 02 | 0.569 | ||
V 03 | 0.678 | ||
V 04 | 0.413 | ||
V 05 | 0.438 | ||
V 06 | 0.543 | ||
V 07 | 0.689 | ||
V 08 | 0.524 | ||
V 09 | 0.726 | ||
V 10 | 0.718 | ||
V 11 | 0.492 | ||
V 12 | 0.409 | ||
V 13 | 0.409 | ||
V 14 | 0.533 | ||
V 15 | 0.691 | ||
V 16 | 0.578 | ||
V 17 | 0.546 | ||
V 18 | 0.514 | ||
V 19 | 0.669 | ||
V 20 | 0.508 | ||
V 21 | 0.596 | ||
V 22 | 0.364 | ||
V 23 | 0.474 | ||
V 24 | 0.575 | ||
V 25 | 0.550 | ||
V 26 | 0.461 | ||
V 27 | 0.432 | ||
V 28 | 0.609 | ||
V 29 | 0.490 | ||
V 30 | 0.633 | ||
V 31 | 0.583 | ||
V 32 | 0.688 | ||
V 33 | 0.390 | ||
V 34 | 0.603 | ||
V 35 | 0.416 | ||
V 36 | 0.612 | ||
V 37 | 0.421 | ||
V 38 | 0.608 | ||
V 39 | 0.651 | ||
V 40 | 0.634 | ||
V 41 | 0.708 | ||
V 42 | 0.747 | ||
V 43 | 0.710 | ||
V 44 | 0.800 | ||
V 45 | 0.405 | ||
V 46 | 0.702 | ||
V 47 | 0.622 | ||
V 48 | 0.734 | ||
V 49 | 0.686 | ||
V 50 | 0.485 |
Privacy and Data Protection | Communication Risks with People and Entities | Behavioral Risks | |
---|---|---|---|
Privacy and data protection | 1 | 0.892 ** | 0.737 ** |
Communication risks with people and entities | 1 | 0.858 ** | |
Behavioral risks | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Hernández, N.; García-Martínez, I.; Gallego-Arrufat, M.-J. Internet Risk Perception: Development and Validation of a Scale for Adults. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 1581-1593. https://doi.org/10.3390/ejihpe12110111
Torres-Hernández N, García-Martínez I, Gallego-Arrufat M-J. Internet Risk Perception: Development and Validation of a Scale for Adults. European Journal of Investigation in Health, Psychology and Education. 2022; 12(11):1581-1593. https://doi.org/10.3390/ejihpe12110111
Chicago/Turabian StyleTorres-Hernández, Norma, Inmaculada García-Martínez, and María-Jesús Gallego-Arrufat. 2022. "Internet Risk Perception: Development and Validation of a Scale for Adults" European Journal of Investigation in Health, Psychology and Education 12, no. 11: 1581-1593. https://doi.org/10.3390/ejihpe12110111
APA StyleTorres-Hernández, N., García-Martínez, I., & Gallego-Arrufat, M.-J. (2022). Internet Risk Perception: Development and Validation of a Scale for Adults. European Journal of Investigation in Health, Psychology and Education, 12(11), 1581-1593. https://doi.org/10.3390/ejihpe12110111