Diagnosing Infectious Diseases in Poultry Requires a Holistic Approach: A Review
Abstract
:1. Introduction
2. Diagnostic Activities on Farm
Disease/Pathogen | Method (Variables Measured) | Type of Study * | Reference |
---|---|---|---|
Avian influenza | wearable sensor (body temperature) | experimental setting | [23] |
Avian influenza | wearable sensor (activity, body temperature) | experimental setting | [24] |
Avian influenza + Infectious bronchitis + Newcastle disease | sound analysis (vocalizations) | experimental setting | [25] |
Avian influenza | imaging (posture) | experimental setting | [26] |
Avian influenza | sound analysis (vocalizations) | experimental setting | [27] |
Avian influenza | sound analysis (vocalizations) | experimental setting | [28] |
Avian influenza | Imaging (thermal images) | experimental setting | [29] |
Campylobacter jejuni | imaging (flock movement—optical flow) | dataset from broiler buildings | [30] |
Clostridium perfringens | sound analysis (vocalizations) | experimental setting | [31] |
Coccidiosis | sensor (volatile organic compounds) | experimental setting + broiler building | [32] |
Coccidiosis | sensor (volatile organic compounds) | dataset from broiler buildings | [33] |
Coccidiosis + Salmonella spp. | imaging (feces) | dataset of images | [20] |
Ektoparasites | wearable sensor (activity) | dataset from poultry building | [34] |
Infectious bronchitis | sound analysis (rales) | experimental setting | [35] |
Infectious bronchitis | sound analysis (rales) | experimental setting | [36] |
Infectious bronchitis + Newcastle disease | sound analysis (vocalizations) | experimental setting | [37] |
Newcastle disease | sound analysis (sneezes) | experimental setting | [38] |
Newcastle disease | imaging (posture and mobility) | experimental setting | [39] |
Newcastle disease | sound analysis (vocalizations) | experimental setting | [40] |
Non-specific, clinical signs | imaging (feces) | dataset of images | [41] |
Non-specific, clinical signs | imaging and sound analysis | dataset of audio samples | [42] |
Non-specific, clinical signs | imaging (feces) | dataset from broiler building | [43] |
Non-specific, clinical signs | imaging (head motion, appearance) | experimental setting | [44] |
Non-specific, clinical signs | imaging (posture, appearance) | experimental setting | [45] |
Non-specific, clinical signs | sound analysis (abnormal respiratory sounds) | dataset from broiler building | [46] |
Non-specific, clinical signs | imaging (posture, appearance) | dataset of images | [47] |
Pasteurella spp. | imaging (thermal images) | experimental setting | [48] |
3. Bacteriology
4. Parasitology
5. Virology
6. Molecular Diagnostics
7. Serology
8. Histology
9. Outlook and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schat, K.A.; Nagaraja, K.V.; Saif, Y.M. Pullorum Disease: Evolution of the Eradication Strategy. Avian Dis. 2021, 65, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Wigley, P. Salmonella enterica serovar Gallinarum: Addressing fundamental questions in bacteriology sixty years on from the 9R vaccine. Avian Pathol. 2017, 46, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.N.; Nair, V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012, 41, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Niemi, J.; Christensen, J.-P.; Tranter, R.B.; Bennett, R.M. A review of the financial impact of production diseases in poultry production systems. Anim. Prod. Sci. 2019, 59, 1585. [Google Scholar] [CrossRef]
- Ayala, A.J.; Yabsley, M.J.; Hernandez, S.M. A review of pathogen transmission at the backyard chicken-wild bird interface. Front. Vet. Sci. 2020, 7, 539925. [Google Scholar] [CrossRef]
- Whitehead, M.L.; Roberts, V. Backyard poultry: Legislation, zoonoses and disease prevention. J. Small Anim. Pract. 2014, 55, 487–496. [Google Scholar] [CrossRef]
- National Poultry Improvement Plan. Available online: https://www.poultryimprovement.org/default.cfm (accessed on 9 February 2023).
- EU. Commission Regulation 2019/268 of 15 February 2019 Amending Regulations (EU) No 200/2010, (EU) No 517/2011, (EU) No 200/2012 and (EU) No 1190/2012 as regards Certain Methods for Salmonella Testing and Sampling in Poultry. L46, 18.02.2019, 11-16. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0268&rid=7 (accessed on 21 April 2023).
- Hess, M. Commensal or pathogen—A challenge to fulfil Koch’s Postulates. Br. Poult. Sci. 2017, 58, 1–12. [Google Scholar] [CrossRef]
- Hess, M.; Liebhart, D.; Bilic, I.; Ganas, P. Histomonas meleagridis—New insights into an old pathogen. Vet. Parasitol. 2015, 208, 67–76. [Google Scholar] [CrossRef]
- Liebhart, D.; Hess, M. Spotlight on Histomonosis (blackhead disease): A re-emerging disease in turkeys and chickens. Avian Pathol. 2020, 49, 1–4. [Google Scholar] [CrossRef]
- Collett, S.R.; Smith, J.A.; Boulianne, M.; Owen, R.L.; Gingerich, E.; Singer, R.S.; Johnson, T.J.; Hofacre, C.L.; Berghaus, R.D.; Stewart-Brown, B. Principles of Disease Prevention, Diagnosis, and Control. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–78. ISBN 9781119371168. [Google Scholar]
- Skinner, J.T.; Bauer, S.; Young, V.; Pauling, G.; Wilson, J. An economic analysis of the impact of subclinical (mild) necrotic enteritis in broiler chickens. Avian Dis. 2010, 54, 1237–1240. [Google Scholar] [CrossRef]
- Long, K.E.; Hastie, G.M.; Ojkić, D.; Brash, M.L. Economic impacts of white chick syndrome in Ontario, Canada. Avian Dis. 2017, 61, 402–408. [Google Scholar] [CrossRef]
- Grafl, B.; Aigner, F.; Liebhart, D.; Marek, A.; Prokofieva, I.; Bachmeier, J.; Hess, M. Vertical transmission and clinical signs in broiler breeders and broilers experiencing adenoviral gizzard erosion. Avian Pathol. 2012, 41, 599–604. [Google Scholar] [CrossRef]
- Haug, A.; Gjevre, A.-G.; Skjerve, E.; Kaldhusdal, M. A survey of the economic impact of subclinical Eimeria infections in broiler chickens in Norway. Avian Pathol. 2008, 37, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Neethirajan, S. Automated tracking systems for the assessment of farmed poultry. Animals 2022, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Astill, J.; Dara, R.A.; Fraser, E.D.G.; Sharif, S. Detecting and predicting emerging disease in poultry with the implementation of new technologies and big data: A focus on avian influenza virus. Front. Vet. Sci. 2018, 5, 263. [Google Scholar] [CrossRef]
- Mbelwa, H.; Mbelwa, J.; Machuve, D. Deep convolutional neural network for chicken diseases detection. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 295. [Google Scholar] [CrossRef]
- Guarino, M.; Norton, T.; Berckmans, D.; Vranken, E.; Berckmans, D. A blueprint for developing and applying precision livestock farming tools: A key output of the EU-PLF project. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Okada, H.; Suzuki, K.; Itoh, T.; Tsukamoto, K. Wireless sensor system for detection of avian influenza outbreak farms at an early stage. In Proceedings of the 8th Annual IEEE Conference on Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 1374–1377, ISBN 978-1-5090-4545-7. [Google Scholar]
- Okada, H.; Suzuki, K.; Kenji, T.; Itoh, T. Applicability of wireless activity sensor network to avian influenza monitoring system in poultry farms. J. Sens. Technol. 2014, 4, 18–23. [Google Scholar] [CrossRef]
- Banakar, A.; Sadeghi, M.; Shushtari, A. An intelligent device for diagnosing avian diseases: Newcastle, infectious bronchitis, avian influenza. Comput. Electron. Agric. 2016, 127, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Bi, M.; Guo, J.; Wu, S.; Zhang, T. Development of an early warning algorithm to detect sick broilers. Comput. Electron. Agric. 2018, 144, 102–113. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Zhang, T. Method for detecting avian influenza disease of chickens based on sound analysis. Biosyst. Eng. 2019, 180, 16–24. [Google Scholar] [CrossRef]
- Cuan, K.; Zhang, T.; Huang, J.; Fang, C.; Guan, Y. Detection of avian influenza-infected chickens based on a chicken sound convolutional neural network. Comput. Electron. Agric. 2020, 178, 105688. [Google Scholar] [CrossRef]
- Noh, J.-Y.; Kim, K.-J.; Lee, S.-H.; Kim, J.-B.; Kim, D.-H.; Youk, S.; Song, C.-S.; Nahm, S.-S. Thermal image scanning for the early detection of fever induced by highly pathogenic avian influenza virus infection in chickens and ducks and its application in farms. Front. Vet. Sci. 2021, 8, 616755. [Google Scholar] [CrossRef]
- Colles, F.M.; Cain, R.J.; Nickson, T.; Smith, A.L.; Roberts, S.J.; Maiden, M.C.J.; Lunn, D.; Dawkins, M.S. Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobacter. Proc. Biol. Sci. 2016, 283, 20152323. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Khazaee, M.; Soleimani. An intelligent procedure for the detection and classification of chickens infected by Clostridium perfringens based on their vocalization. Rev. Bras. Cienc. Avic. 2015, 17, 537–544. [Google Scholar] [CrossRef]
- Grilli, G.; Borgonovo, F.; Tullo, E.; Fontana, I.; Guarino, M.; Ferrante, V. A pilot study to detect coccidiosis in poultry farms at early stage from air analysis. Biosyst. Eng. 2018, 173, 64–70. [Google Scholar] [CrossRef]
- Borgonovo, F.; Ferrante, V.; Grilli, G.; Pascuzzo, R.; Vantini, S.; Guarino, M. A data-driven prediction method for an early warning of coccidiosis in intensive livestock systems: A preliminary study. Animals 2020, 10, 747. [Google Scholar] [CrossRef]
- Ahmed, G.; Malick, R.A.S.; Akhunzada, A.; Zahid, S.; Sagri, M.R.; Gani, A. An approach towards IoT-based predictive service for early detection of diseases in poultry chickens. Sustainability 2021, 13, 13396. [Google Scholar] [CrossRef]
- Carroll, B.T.; Anderson, D.; Daley, W.; Harbert, S.; Britton, D.; Jackwood, M. Detecting symptoms of diseases in poultry through audio signal processing. In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP 2014), Atlanta, GA, USA, 3–5 December 2014; pp. 1132–1135, ISBN 978-1-5090-4545-7. [Google Scholar]
- Rizwan, M.; Carroll, B.T.; Anderson, D.V.; Daley, W.; Harbert, S.; Britton, D.F.; Jackwood, M.W. Identifying rale sounds in chickens using audio signals for early disease detection in poultry. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 55–59, ISBN 978-1-5090-4545-7. [Google Scholar]
- Mahdavian, A.; Minaei, S.; Marchetto, P.M.; Almasganj, F.; Rahimi, S.; Yang, C. Acoustic features of vocalization signal in poultry health monitoring. Appl. Acoust. 2021, 175, 107756. [Google Scholar] [CrossRef]
- Carpentier, L.; Vranken, E.; Berckmans, D.; Paeshuyse, J.; Norton, T. Development of sound-based poultry health monitoring tool for automated sneeze detection. Comput. Electron. Agric. 2019, 162, 573–581. [Google Scholar] [CrossRef]
- Okinda, C.; Lu, M.; Liu, L.; Nyalala, I.; Muneri, C.; Wang, J.; Zhang, H.; Shen, M. A machine vision system for early detection and prediction of sick birds: A broiler chicken model. Biosyst. Eng. 2019, 188, 229–242. [Google Scholar] [CrossRef]
- Cuan, K.; Zhang, T.; Li, Z.; Huang, J.; Ding, Y.; Fang, C. Automatic Newcastle disease detection using sound technology and deep learning method. Comput. Electron. Agric. 2022, 194, 106740. [Google Scholar] [CrossRef]
- Aziz, N.A.; Bin Othman, M.F. Binary classification using SVM for sick and healthy chicken based on chicken’s excrement Image. Pertanika J. Sci. Technol. 2017, 25, 315–324. [Google Scholar]
- Alex, A.G.R.; Joseph, G.J. Real-time poultry health identification using IoT test setup, optimization and results. In Advances in Signal Processing and Intelligent Recognition Systems; Thampi, S.M., Marques, O., Krishnan, S., Li, K.-C., Ciuonzo, D., Kolekar, M.H., Eds.; Springer: Singapore, 2019; pp. 30–40. ISBN 978-981-13-5757-2. [Google Scholar]
- Wang, J.; Shen, M.; Liu, L.; Xu, Y.; Okinda, C. Recognition and classification of broiler droppings based on deep convolutional neural network. J. Sens. 2019, 2019, 3823515. [Google Scholar] [CrossRef]
- Xiao, L.; Ding, K.; Gao, Y.; Rao, X. Behavior-induced health condition monitoring of caged chickens using binocular vision. Comput. Electron. Agric. 2019, 156, 254–262. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, T. Detection of sick broilers by digital image processing and deep learning. Biosyst. Eng. 2019, 179, 106–116. [Google Scholar] [CrossRef]
- Liu, L.; Li, B.; Zhao, R.; Yao, W.; Shen, M.; Yang, J. A novel method for broiler abnormal sound detection using WMFCC and HMM. J. Sens. 2020, 2020, 2985478. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C. Design of sick chicken automatic detection system based on improved residual network. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2020), Chongqing, China, 12–14 June 2020. [Google Scholar]
- Xiong, X.; Lu, M.; Yang, W.; Duan, G.; Yuan, Q.; Shen, M.; Norton, T.; Berckmans, D. An automatic head surface temperature extraction method for top-view thermal image with individual broiler. Sensors 2019, 19, 5286. [Google Scholar] [CrossRef]
- Hrabak, J.; Bitar, I.; Papagiannitsis, C.C. Combination of mass spectrometry and DNA sequencing for detection of antibiotic resistance in diagnostic laboratories. Folia Microbiol. 2020, 65, 233–243. [Google Scholar] [CrossRef]
- OIE Terrestrial Manual. 2. Fowl Typhoid and Pullorum Disease. Chapter 2.3.11. 2018. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/2.03.11_FOWL_TYPHOID.pdf (accessed on 21 April 2023).
- ISO 6579-1:2017/AMD 1:2020; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.—Amendment 1: Broader Range of Incubation Temperatures, Amendment to the Status of Annex D, and Correction of the Composition of MSRV and SC. ISO: Geneva, Switzerland, 2020.
- Valentin-Weigand, P. Teil II Allgemeine Bakteriologie. In Tiermedizinische Mikrobiologie, Infektions- und Seuchenlehre; Selbitz, H.J., Truyen, U., Valentin-Weigand, P., Eds.; Enke Verlag: Erlangen, Germany, 2015; pp. 96–136. ISBN 978-3-8304-1262-5. [Google Scholar]
- Buxton, R. Blood Agar Plates and Hemolysis Protocol. American Society for Microbiology. 2005. Available online: https://asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-28 (accessed on 21 April 2022).
- Jung, B.; Hoilat, G.J. MacConkey Medium. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- ISO 10272-1:2017; Microbiology of the Food Chain—Horizontal Method for Detection and Enumeration of Campylobacter spp. ISO: Geneva, Switzerland, 2017.
- Odds, F.C. Sabouraud(’s) agar. J. Med. Vet. Mycol. 1991, 29, 355–359. [Google Scholar] [CrossRef]
- Blackall, P.J.; Soriano-Vargas, E. Infectious Coryza and related bacterial infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Bouillane, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 890–906. [Google Scholar]
- Mappley, L.J.; La Ragione, R.M.; Woodward, M.J. Brachyspira and its role in avian intestinal spirochaetosis. Vet. Microbiol. 2014, 168, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Liu, L.; Miao, Z.; Huo, Y.; Zhong, Z. Prevalence and characterization of Clostridium perfringens isolated from different chicken farms in China. Anaerobe 2021, 72, 102467. [Google Scholar] [CrossRef]
- Feberwee, A.; Mekkes, D.R.; de Wit, J.J.; Hartman, E.G.; Pijpers, A. Comparison of culture, PCR, and different serologic tests for detection of Mycoplasma gallisepticum and Mycoplasma synoviae infections. Avian Dis. 2005, 49, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Crawshaw, T. A review of the novel thermophilic Campylobacter, Campylobacter hepaticus, a pathogen of poultry. Transbound. Emerg. Dis. 2019, 66, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.; Zakaria, Z.; Abu, J.; Aziz, S.A.; Rojas-Ponce, G. Isolation of Mycobacterium avium and other nontuberculous mycobacteria in chickens and captive birds in peninsular Malaysia. BMC Vet. Res. 2021, 17, 13. [Google Scholar] [CrossRef]
- Ding, T.; Suo, Y.; Xiang, Q.; Zhao, X.; Chen, S.; Ye, X.; Liu, D. Significance of viable but nonculturable Escherichia coli: Induction, detection, and control. J. Microbiol. Biotechnol. 2017, 27, 417–428. [Google Scholar] [CrossRef]
- Jackson, D.N.; Davis, B.; Tirado, S.M.; Duggal, M.; van Frankenhuyzen, J.K.; Deaville, D.; Wijesinghe, M.A.K.; Tessaro, M.; Trevors, J.T. Survival mechanisms and culturability of Campylobacter jejuni under stress conditions. Antonie Van Leeuwenhoek 2009, 96, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Zahra, M.; Ferreri, M.; Alkasir, R.; Yin, J.; Han, B.; Su, J. Isolation and characterization of small-colony variants of Ornithobacterium rhinotracheale. J. Clin. Microbiol. 2013, 51, 3228–3236. [Google Scholar] [CrossRef]
- Falconi-Agapito, F.; Saravia, L.E.; Flores-Pérez, A.; Fernández-Díaz, M. Naturally occurring β-nicotinamide adenine dinucleotide-independent Avibacterium paragallinarum isolate in Peru. Avian Dis. 2015, 59, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Dousse, F.; Thomann, A.; Brodard, I.; Korczak, B.M.; Schlatter, Y.; Kuhnert, P.; Miserez, R.; Frey, J. Routine phenotypic identification of bacterial species of the family Pasteurellaceae isolated from animals. J. Vet. Diagn. Investig. 2008, 20, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Hunt Gerardo, S.; Citron, D.M.; Claros, M.C.; Fernandez, H.T.; Goldstein, E.J. Pasteurella multocida subsp. multocida and P. multocida subsp. septica differentiation by PCR fingerprinting and alpha-glucosidase activity. J. Clin. Microbiol. 2001, 39, 2558–2564. [Google Scholar] [CrossRef]
- Bisgaard, M.; Korczak, B.M.; Busse, H.-J.; Kuhnert, P.; Bojesen, A.M.; Christensen, H. Classification of the taxon 2 and taxon 3 complex of Bisgaard within Gallibacterium and description of Gallibacterium melopsittaci sp. nov., Gallibacterium trehalosifermentans sp. nov. and Gallibacterium salpingitidis sp. nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Bisgaard, M. Phylogenetic relationships of Riemerella anatipestifer serovars and related taxa and an evaluation of specific PCR tests reported for R. anatipestifer. J. Appl. Microbiol. 2010, 108, 1612–1619. [Google Scholar] [CrossRef]
- van Empel, P.C.; Hafez, H.M. Ornithobacterium rhinotracheale: A review. Avian Pathol. 1999, 28, 217–227. [Google Scholar] [CrossRef]
- Paudel, S.; Stessl, B.; Hess, C.; Zloch, A.; Hess, M. High genetic diversity among extraintestinal Escherichia coli isolates in pullets and layers revealed by a longitudinal study. BMC Vet. Res. 2016, 12, 221. [Google Scholar] [CrossRef]
- Smith, E.; Miller, E.; Aguayo, J.M.; Figueroa, C.F.; Nezworski, J.; Studniski, M.; Wileman, B.; Johnson, T. Genomic diversity and molecular epidemiology of Pasteurella multocida. PLoS ONE 2021, 16, e0249138. [Google Scholar] [CrossRef]
- Omaleki, L.; Blackall, P.J.; Bisgaard, M.; Turni, C. Molecular and serological characterization of Riemerella isolates associated with poultry in Australia. Avian Pathol. 2021, 50, 31–40. [Google Scholar] [CrossRef]
- Peña-Vargas, E.R.; Vega-Sánchez, V.; Morales-Erasto, V.; Trujillo-Ruíz, H.H.; Talavera-Rojas, M.; Soriano-Vargas, E. Serotyping, genotyping, and antimicrobial susceptibility of Ornithobacterium rhinotracheale isolates from Mexico. Avian Dis. 2016, 60, 669–672. [Google Scholar] [CrossRef]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Hess, C.; Grafl, B.; Bagheri, S.; Kaesbohrer, A.; Zloch, A.; Hess, M. Antimicrobial resistance profiling of Gallibacterium anatis from layers reveals high number of multiresistant strains and substantial variability even between isolates from the same organ. Microb. Drug Resist. 2020, 26, 169–177. [Google Scholar] [CrossRef]
- Oikarainen, P.E.; Pohjola, L.K.; Pietola, E.S.; Heikinheimo, A. Direct vertical transmission of ESBL/pAmpC-producing Escherichia coli limited in poultry production pyramid. Vet. Microbiol. 2019, 231, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Benrabia, I.; Hamdi, T.M.; Shehata, A.A.; Neubauer, H.; Wareth, G. Methicillin-resistant Staphylococcus aureus (MRSA) in poultry species in Algeria: Long-term study on prevalence and antimicrobial resistance. Vet. Sci. 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Benkova, M.; Soukup, O.; Marek, J. Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice. J. Appl. Microbiol. 2020, 129, 806–822. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0. 2023. Available online: http://www.eucast.org (accessed on 21 April 2023).
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2020. [Google Scholar]
- Hess, C.; Alispahic, M.; Hess, M. Application of MALDI-TOF MS in Veterinary and Food Microbiology. In MALDI-TOF Mass Spectrometry in Microbiology; Caister Academic Press: Poole, UK, 2016; pp. 109–126. ISBN 9781910190418. [Google Scholar]
- Austin, B. The value of cultures to modern microbiology. Antonie Van Leeuwenhoek 2017, 110, 1247–1256. [Google Scholar] [CrossRef]
- OIE Terrestrial Manual. Avian Mycoplasmosis (Mycoplasma gallisepticum, M. synoviae) Chapter 3.3.5. 2018. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.05_%20AVIAN_MYCO.pdf (accessed on 8 March 2022).
- OIE Terrestrial Manual. Avian Chlamydiosis. Chapter 2.3.1. 2018. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.01_AVIAN_CHLAMYD.pdf (accessed on 8 March 2022).
- Wang, C.; Robles, F.; Ramirez, S.; Riber, A.B.; Bojesen, A.M. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR. Avian Pathol. 2016, 45, 538–544. [Google Scholar] [CrossRef]
- Kuchipudi, S.V.; Yon, M.; Surendran Nair, M.; Byukusenge, M.; Barry, R.M.; Nissly, R.H.; Williams, J.; Pierre, T.; Mathews, T.; Walner-Pendleton, E.; et al. A highly sensitive and specific probe-based real-time PCR for the detection of Avibacterium paragallinarum in clinical samples from poultry. Front. Vet. Sci. 2021, 8, 609126. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Patel, V.; Hickey, T.; Maguire, C.; Greig, D.R.; Lee, W.; Godbole, G.; Grant, K.; Chattaway, M.A. Real-time PCR assay for differentiation of typhoidal and nontyphoidal Salmonella. J. Clin. Microbiol. 2019, 57, e00167-19. [Google Scholar] [CrossRef]
- Ewers, C.; Janssen, T.; Kiessling, S.; Philipp, H.-C.; Wieler, L.H. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis. 2005, 49, 269–273. [Google Scholar] [CrossRef]
- Lindberg, A.; Skarin, H.; Knutsson, R.; Blomqvist, G.; Båverud, V. Real-time PCR for Clostridium botulinum type C neurotoxin (BoNTC) gene, also covering a chimeric C/D sequence--application on outbreaks of botulism in poultry. Vet. Microbiol. 2010, 146, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, I.M.; Hsieh, Y.-H.; Simpson, S. Species identification of Campylobacter jejuni and Campylobacter coli isolates from raw poultry products by MALDI-TOF MS and rRNA sequence analysis. J. AOAC Int. 2020, 103, 197–204. [Google Scholar] [CrossRef]
- Luna-Castrejón, L.P.; Buter, R.; Pantoja-Nuñez, G.I.; Acuña-Yanes, M.; Ceballos-Valenzuela, K.; Talavera-Rojas, M.; Salgado-Miranda, C.; Heuvelink, A.; de Wit, S.; Soriano-Vargas, E.; et al. Identification, HPG2 sequence analysis, and antimicrobial susceptibility of Avibacterium paragallinarum isolates obtained from outbreaks of infectious coryza in commercial layers in Sonora State, Mexico. Avian Dis. 2021, 65, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, N.; Hess, C.; Hess, M.; Alispahic, M. Sequencing of five poultry strains elucidates phylogenetic relationships and divergence in virulence genes in Morganella morganii. BMC Genom. 2020, 21, 579. [Google Scholar] [CrossRef] [PubMed]
- Alispahic, M.; Endler, L.; Hess, M.; Hess, C. Ornithobacterium rhinotracheale: MALDI-TOF MS and whole genome sequencing confirm that serotypes K, L and M deviate from well-known reference strains and numerous field isolates. Microorganisms 2021, 9, 1006. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Li, H.; Yan, S.; Jiang, F.; Cai, W.; Li, G. Whole genome sequencing analysis of avian pathogenic Escherichia coli from China. Vet. Microbiol. 2021, 259, 109158. [Google Scholar] [CrossRef]
- Kürekci, C.; Sahin, S.; Iwan, E.; Kwit, R.; Bomba, A.; Wasyl, D. Whole-genome sequence analysis of Salmonella Infantis isolated from raw chicken meat samples and insights into pESI-like megaplasmid. Int. J. Food Microbiol. 2021, 337, 108956. [Google Scholar] [CrossRef] [PubMed]
- Kunert-Filho, H.C.; Furian, T.Q.; Sesterhenn, R.; Chitolina, G.Z.; Willsmann, D.E.; Borges, K.A.; Salle, C.T.P.; Moraes, H.L.d.S.; do Nascimento, V.P. Bacterial community identification in poultry carcasses using high-throughput next generation sequencing. Int. J. Food Microbiol. 2022, 364, 109533. [Google Scholar] [CrossRef]
- Di Francesco, C.E.; Smoglica, C.; Profeta, F.; Farooq, M.; Di Giannatale, E.; Toscani, T.; Marsilio, F. Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Poult. Sci. 2021, 100, 101084. [Google Scholar] [CrossRef]
- Juricova, H.; Matiasovicova, J.; Kubasova, T.; Cejkova, D.; Rychlik, I. The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Sci. Rep. 2021, 11, 3290. [Google Scholar] [CrossRef]
- Savin, M.; Alexander, J.; Bierbaum, G.; Hammerl, J.A.; Hembach, N.; Schwartz, T.; Schmithausen, R.M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Sci. Rep. 2021, 11, 16622. [Google Scholar] [CrossRef]
- Wang, X.-R.; Lian, X.-L.; Su, T.-T.; Long, T.-F.; Li, M.-Y.; Feng, X.-Y.; Sun, R.-Y.; Cui, Z.-H.; Tang, T.; Xia, J.; et al. Duck wastes as a potential reservoir of novel antibiotic resistance genes. Sci. Total Environ. 2021, 771, 144828. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, T.; Cao, Z.; Zhong, S.; Wen, X.; Mi, J.; Ma, B.; Zou, Y.; Zhang, N.; Liao, X.; et al. Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poult. Sci. 2021, 100, 101485. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Rolain, J.-M. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J. Microbiol. Methods 2013, 92, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Alispahic, M.; Christensen, H.; Hess, C.; Razzazi-Fazeli, E.; Bisgaard, M.; Hess, M. Identification of Gallibacterium species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry evaluated by multilocus sequence analysis. Int. J. Med. Microbiol. 2011, 301, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Rubbenstroth, D.; Ryll, M.; Hotzel, H.; Christensen, H.; Knobloch, J.K.-M.; Rautenschlein, S.; Bisgaard, M. Description of Riemerella columbipharyngis sp. nov., isolated from the pharynx of healthy domestic pigeons (Columba livia f. domestica), and emended descriptions of the genus Riemerella, Riemerella anatipestifer and Riemerella columbina. Int. J. Syst. Evol. Microbiol. 2013, 63, 280–287. [Google Scholar] [CrossRef]
- Spergser, J.; Hess, C.; Loncaric, I.; Ramírez, A.S. Matrix-assisted laser desorption ionization-time of flight mass spectrometry is a superior diagnostic tool for the identification and differentiation of Mycoplasmas isolated from animals. J. Clin. Microbiol. 2019, 57, e00316-19. [Google Scholar] [CrossRef]
- Salah, H.; Kolecka, A.; Rozaliyani, A.; Wahyuningsih, R.; Taj-Aldeen, S.J.; Boekhout, T.; Houbraken, J. A new filter based cultivation approach for improving Aspergillus identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Mycopathologia 2022, 187, 39–52. [Google Scholar] [CrossRef]
- Panda, A.; Ghosh, A.K.; Mirdha, B.R.; Xess, I.; Paul, S.; Samantaray, J.C.; Srinivasan, A.; Khalil, S.; Rastogi, N.; Dabas, Y. MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J. Microbiol. Methods 2015, 109, 93–105. [Google Scholar] [CrossRef]
- Alispahic, M.; Christensen, H.; Bisgaard, M.; Hess, M.; Hess, C. MALDI-TOF mass spectrometry confirms difficulties in separating species of the Avibacterium genus. Avian Pathol. 2014, 43, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Alispahic, M.; Christensen, H.; Hess, C.; Razzazi-Fazeli, E.; Bisgaard, M.; Hess, M. MALDI-TOF mass spectrometry confirms clonal lineages of Gallibacterium anatis between chicken flocks. Vet. Microbiol. 2012, 160, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, T.J.; Anderson, P.D.; Huen, W.H.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R. Discrimination and characterization of environmental strains of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). J. Microbiol. Methods 2007, 68, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Hrabák, J.; Chudácková, E.; Walková, R. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: From research to routine diagnosis. Clin. Microbiol. Rev. 2013, 26, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Lozica, L.; Kazazić, S.P.; Gottstein, Ž. High phylogenetic diversity of Gallibacterium anatis is correlated with low biosecurity measures and management practices on poultry farms. Avian Pathol. 2020, 49, 467–475. [Google Scholar] [CrossRef]
- Jung, A.; Metzner, M.; Ryll, M. Comparison of pathogenic and non-pathogenic Enterococcus cecorum strains from different animal species. BMC Microbiol. 2017, 17, 33. [Google Scholar] [CrossRef]
- Oakeson, K.F.; Wagner, J.M.; Rohrwasser, A.; Atkinson-Dunn, R. Whole-genome sequencing and bioinformatic analysis of isolates from foodborne illness outbreaks of Campylobacter jejuni and Salmonella enterica. J. Clin. Microbiol. 2018, 56, e00161-18. [Google Scholar] [CrossRef]
- Whitehouse, C.A.; Young, S.; Li, C.; Hsu, C.-H.; Martin, G.; Zhao, S. Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiol. 2018, 73, 122–128. [Google Scholar] [CrossRef]
- Chukiatsiri, K.; Sasipreeyajan, J.; Neramitmansuk, W.; Chansiripornchai, N. Efficacy of autogenous killed vaccine of Avibacterium paragallinarum. Avian Dis. 2009, 53, 382–386. [Google Scholar] [CrossRef]
- Li, L.; Thøfner, I.; Christensen, J.P.; Ronco, T.; Pedersen, K.; Olsen, R.H. Evaluation of the efficacy of an autogenous Escherichia coli vaccine in broiler breeders. Avian Pathol. 2017, 46, 300–308. [Google Scholar] [CrossRef]
- Gallardo, R.A.; Da Silva, A.P.; Egaña-Labrin, S.; Stoute, S.; Kern, C.; Zhou, H.; Cutler, G.; Corsiglia, C. Infectious Coryza: Persistence, Genotyping, and Vaccine Testing. Avian Dis. 2020, 64, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Lozica, L.; Kabalin, A.E.; Dolenčić, N.; Vlahek, M.; Gottstein, Ž. Phylogenetic characterization of avian pathogenic Escherichia coli strains longitudinally isolated from broiler breeder flocks vaccinated with autogenous vaccine. alispahic. Poult. Sci. 2021, 100, 101079. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, J. Parasites of poultry. In Parasitic Infections of Domestic Animals; Softcover Reprint of the Original 1st Edition 1996; Springer: Basel, Switzerland, 2012; pp. 337–393. ISBN 9783034876681. [Google Scholar]
- Hinkle, N.C.; Corrigan, R.M. External Parasites and Poultry Pests. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 1137–1156. [Google Scholar]
- Decru, E.; Mul, M.; Nisbet, A.J.; Vargas Navarro, A.H.; Chiron, G.; Walton, J.; Norton, T.; Roy, L.; Sleeckx, N. Possibilities for IPM strategies in European laying hen farms for improved control of the poultry red mite (Dermanyssus gallinae): Details and state of affairs. Front. Vet. Sci. 2020, 7, 565866. [Google Scholar] [CrossRef] [PubMed]
- McDougald, L.R. Internal parasites. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 1157–1191. [Google Scholar]
- Hess, M.; McDougald, L.R. Histomoniasis (histomonosis, blackhead disease). In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 1223–1230. [Google Scholar]
- Shifaw, A.; Feyera, T.; Walkden-Brown, S.W.; Sharpe, B.; Elliott, T.; Ruhnke, I. Global and regional prevalence of helminth infection in chickens over time: A systematic review and meta-analysis. Poult. Sci. 2021, 100, 101082. [Google Scholar] [CrossRef]
- Zloch, A.; Kuchling, S.; Hess, M.; Hess, C. Influence of alternative husbandry systems on postmortem findings and prevalence of important bacteria and parasites in layers monitored from end of rearing until slaughter. Vet. Rec. 2018, 182, 350. [Google Scholar] [CrossRef]
- Jung, L.; Brenninkmeyer, C.; Niebuhr, K.; Bestman, M.; Tuyttens, F.A.M.; Gunnarsson, S.; Sørensen, J.T.; Ferrari, P.; Knierim, U. Husbandry conditions and welfare outcomes in organic egg production in eight European countries. Animals 2020, 10, 2102. [Google Scholar] [CrossRef]
- Taylor, M.A.; Coop, R.L.; Wall, R.L. Laboratory diagnosis of parasitism. In Veterinary Parasitology; Taylor, M.A., Coop, R.L., Wall, R.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 259–312. ISBN 9781119073680. [Google Scholar]
- Zloch, A.; Kuchling, S.; Hess, M.; Hess, C. In addition to birds’ age and outdoor access, the detection method is of high importance to determine the prevalence of gastrointestinal helminths in laying hens kept in alternative husbandry systems. Vet. Parasitol. 2021, 299, 109559. [Google Scholar] [CrossRef]
- Daş, G.; Klauser, S.; Stehr, M.; Tuchscherer, A.; Metges, C.C. Accuracy and precision of McMaster and Mini-FLOTAC egg counting techniques using egg-spiked faeces of chickens and two different flotation fluids. Vet. Parasitol. 2020, 283, 109158. [Google Scholar] [CrossRef]
- Blake, D.; Liebhart, D. Advances in understanding parasite infections of poultry: Focus on protozoa and the red mite. In Optimising Poultry Flock Health; de Witt, S., Ed.; In Press; Burleigh Dodds Science Publishing: London, UK, 2022. [Google Scholar]
- Carvalho, F.S.; Wenceslau, A.A.; Teixeira, M.; Matos Carneiro, J.A.; Melo, A.D.B.; Albuquerque, G.R. Diagnosis of Eimeria species using traditional and molecular methods in field studies. Vet. Parasitol. 2011, 176, 95–100. [Google Scholar] [CrossRef]
- Cantacessi, C.; Riddell, S.; Morris, G.M.; Doran, T.; Woods, W.G.; Otranto, D.; Gasser, R.B. Genetic characterization of three unique operational taxonomic units of Eimeria from chickens in Australia based on nuclear spacer ribosomal DNA. Vet. Parasitol. 2008, 152, 226–234. [Google Scholar] [CrossRef]
- Cupo, K.L.; Beckstead, R.B. PCR detection of Heterakis gallinarum in environmental samples. Vet. Parasitol. 2019, 271, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sulejmanovic, T.; Turblin, V.; Bilic, I.; Jaskulska, B.; Hess, M. Detection of Histomonas meleagridis DNA in dust samples obtained from apparently healthy meat turkey flocks without effect on performance. Avian Pathol. 2019, 48, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Ahaduzzaman, M.; Keerqin, C.; Kumar, A.; Musigwa, S.; Morgan, N.; Kheravii, S.K.; Sharpe, S.; Williamson, S.; Wu, S.-B.; Walkden-Brown, S.W.; et al. Detection and Quantification of Clostridium perfringens and Eimeria spp. in Poultry Dust Using Real-Time PCR Under Experimental and Field Conditions. Avian Dis. 2021, 65, 77–85. [Google Scholar] [CrossRef]
- Grafl, B.; Liebhart, D.; Windisch, M.; Ibesich, C.; Hess, M. Seroprevalence of Histomonas meleagridis in pullets and laying hens determined by ELISA. Vet. Rec. 2011, 168, 160. [Google Scholar] [CrossRef]
- van der Heijden, H.M.J.F.; Stegeman, A.; Landman, W.J.M. Development of a blocking-ELISA for the detection of antibodies against Histomonas meleagridis in chickens and turkeys. Vet. Parasitol. 2010, 171, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pacho, J.R.; Montoya, M.N.; Arangüena, T.; Toro, C.; Morchón, R.; Marcos-Atxutegi, C.; Simón, F. A coprological and serological survey for the prevalence of Ascaridia spp. in laying hens. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 238–242. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Nomura, K.; Hirayama, Y.; Kitagawa, T. Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Res. 1987, 47, 4460–4464. [Google Scholar]
- Schnitzlein, W.M.; Tripathy, D.N. Replication of infectious laryngotracheitis virus in a quail cell line, QT-35. Avian Dis. 1995, 39, 528–531. [Google Scholar] [CrossRef]
- Baxendale, W.; Mebatsion, T. The isolation and characterisation of astroviruses from chickens. Avian Pathol. 2004, 33, 364–370. [Google Scholar] [CrossRef]
- Kang, K.-I.; Linnemann, E.; Icard, A.H.; Durairaj, V.; Mundt, E.; Sellers, H.S. Chicken astrovirus as an aetiological agent of runting-stunting syndrome in broiler chickens. J. Gen. Virol. 2018, 99, 512–524. [Google Scholar] [CrossRef]
- Yin, L.; Zhou, Q.; Mai, K.; Huang, J.; Yan, Z.; Wei, X.; Shen, H.; Li, Q.; Chen, L.; Zhou, Q. Isolation and characterization of a novel chicken astrovirus in China. Poult. Sci. 2021, 100, 101363. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Yang, J.; Wang, Y.; Chen, H.; Diao, Y.; Tang, Y. Isolation and characterization of a duck-origin goose astrovirus in China. Emerg. Microbes Infect. 2020, 9, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Wang, Y.; Wang, Q.; Yang, J.; Jiang, X.; He, D.; Diao, Y.; Tang, Y. The isolation and characterization of Duck astrovirus type-1 remerging in China. Transbound. Emerg. Dis. 2021, 69, 2890–2897. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, L.; Gao, Y.; Liu, C.; Qi, X.; Zhang, Y.; Wang, Y.; Li, K.; Gao, L.; Wang, X.; et al. Characterization of a hypervirulent fowl adenovirus 4 with the novel genotype newly prevalent in China and establishment of reproduction infection model of hydropericardium syndrome in chickens. Poult. Sci. 2017, 96, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Feng, J.; Duan, B.; Shi, Q.; Li, Y.; Chen, Z.; Ma, L.; Liu, H.; Wang, Y. Epidemiological survey of avian adenovirus in China from 2015 to 2021 and the genetic variability of highly pathogenic Fadv-4 isolates. Infect. Genet. Evol. 2022, 101, 105277. [Google Scholar] [CrossRef]
- Alexander, H.; Huber, P.; Cao, J.; Krell, P.; Nagy, É. Growth characteristics of fowl adenovirus type 8 in a chicken hepatoma cell line. J. Virol. Methods 1998, 74, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, J. Pathogenesis of Hypervirulent Fowl Adenovirus Serotype 4: The Contributions of Viral and Host Factors. Viruses 2019, 11, 741. [Google Scholar] [CrossRef]
- Lu, H.; Tang, Y.; Dunn, P.A.; Wallner-Pendleton, E.A.; Lin, L.; Knoll, E.A. Isolation and molecular characterization of newly emerging avian reovirus variants and novel strains in Pennsylvania, USA, 2011–2014. Sci. Rep. 2015, 5, 14727. [Google Scholar] [CrossRef]
- Yang, J.; Tian, J.; Chen, L.; Tang, Y.; Diao, Y. Isolation and genomic characterization of a novel chicken-orign orthoreovirus causing goslings hepatitis. Vet. Microbiol. 2018, 227, 69–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Chi, Z.; Cui, Z.; Chang, S.; Wang, Y.; Zhao, P. Isolation, identification and genome analysis of an avian hepatitis E virus from white-feathered broilers in China. Poult. Sci. 2022, 101, 101633. [Google Scholar] [CrossRef]
- Huang, F.F.; Pierson, F.W.; Toth, T.E.; Meng, X.J. Construction and characterization of infectious cDNA clones of a chicken strain of hepatitis E virus (HEV), avian HEV. J. Gen. Virol. 2005, 86, 2585–2593. [Google Scholar] [CrossRef]
- Moscovici, C.; Moscovici, M.; Jimenez, H.; Lai, M.M.; Hayman, M.J.; Vogt, P.K. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 1977, 11, 95–103. [Google Scholar] [CrossRef]
- Cowen, B.S.; Braune, M.O. The propagation of avian viruses in a continuous cell line (QT35) of Japanese quail origin. Avian Dis. 1988, 32, 282. [Google Scholar] [CrossRef]
- Schonewille, E.; Singh, A.; Göbel, T.W.; Gerner, W.; Saalmüller, A.; Hess, M. Fowl adenovirus (FAdV) serotype 4 causes depletion of B and T cells in lymphoid organs in specific pathogen-free chickens following experimental infection. Vet. Immunol. Immunopathol. 2008, 121, 130–139. [Google Scholar] [CrossRef]
- Cho, B.R. Cytopathic effects and focus formation by reticuloendotheliosis viruses in a quail fibroblast cell line. Avian Dis. 1983, 27, 261. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Jung, K.; Jadhao, S.J.; Suarez, D.L. Evaluation of chicken-origin (DF-1) and quail-origin (QT-6) fibroblast cell lines for replication of avian influenza viruses. J. Virol. Methods 2008, 153, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.K.; Sharafeldin, T.A.; Porter, R.E.; Ziegler, A.; Patnayak, D.P.; Goyal, S.M. Isolation and characterization of a turkey arthritis reovirus. Avian Dis. 2013, 57, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.M.; Chiang, S.J.; Dar, A.M.; Nagaraja, K.V.; Shaw, D.P.; Halvorson, D.A.; Kapur, V. Isolation of avian pneumovirus from an outbreak of respiratory illness in Minnesota turkeys. J. Vet. Diagn. Investig. 2000, 12, 166–168. [Google Scholar] [CrossRef]
- Bennett, R.S.; McComb, B.; Shin, H.-J.; Njenga, M.K.; Nagaraja, K.V.; Halvorson, D.A. Detection of avian pneumovirus in wild canada geese (Branta canadensis) and blue-winged teal (Anas discors). Avian Dis. 2002, 46, 1025–1029. [Google Scholar] [CrossRef]
- Chiang, S.J.; Dar, A.; Goyal, S.M.; Nagaraja, K.V.; Halvorson, D.; Kapur, V. Isolation of avian pneumovirus in QT-35 cells. Vet. Rec. 1998, 143, 596. [Google Scholar]
- Sabara, M.I.; Larence, J.E. Evaluation of a Japanese quail fibrosarcoma cell line (QT-35) for use in the propagation and detection of metapneumovirus. J. Virol. Methods 2002, 102, 73–81. [Google Scholar] [CrossRef]
- Smith, A.L.; Tignor, G.H.; Mifune, K.; Motohashi, T. Isolation and assay of rabies serogroup viruses in CER cells. Intervirology 1977, 8, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.M.; Weiland, F. Isolierung des Virus der Rhinotracheitis der Puten (TRT). Tierärztliche Umsch. 1990, 45, 103–111. [Google Scholar]
- Cardoso, T.C.; Rahal, P.; Pilz, D.; Teixeira, M.C.; Arns, C.W. Replication of classical infectious bursal disease virus in the chicken embryo related cell line. Avian Pathol. 2000, 29, 213–217. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Pilz, D.; Mesquita, L.G.; Cardoso, T. Infectious bronchitis virus replication in the chicken embryo related cell line. Avian Pathol. 2003, 32, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Himly, M.; Foster, D.N.; Bottoli, I.; Iacovoni, J.S.; Vogt, P.K. The DF-1 chicken fibroblast cell line: Transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 1998, 248, 295–304. [Google Scholar] [CrossRef]
- Schaefer-Klein, J.; Givol, I.; Barsov, E.V.; Whitcomb, J.M.; VanBrocklin, M.; Foster, D.N.; Federspiel, M.J.; Hughes, S.H. The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology 1998, 248, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Liu, Y.; Zou, C.; Tan, Y.; Han, Z.; Xue, C.; Cao, Y. A highly pathogenic recombinant infectious bronchitis virus with adaptability in cultured cells. Virus Res. 2021, 292, 198229. [Google Scholar] [CrossRef] [PubMed]
- Anam, S.; Rahman, S.U.; Ali, S.; Saeed, M.; Goyal, S.M. Comparative growth kinetic study of Newcastle disease virus, infectious bursal disease virus and avian influenza virus in chicken embryo fibroblast and DF-1 cell lines. Pol. J. Vet. Sci. 2021, 24, 287–292. [Google Scholar] [CrossRef]
- Buys, S.B.; Du Preez, J.H.; Els, H.J. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort J. Vet. Res. 1989, 56, 87–98. [Google Scholar]
- Cook, J.K.A.; Cavanagh, D. Detection and differentiation of avian pneumoviruses (metapneumoviruses). Avian Pathol. 2002, 31, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Patnayak, D.P.; Tiwari, A.; Goyal, S.M. Growth of vaccine strains of avian pneumovirus in different cell lines. Avian Pathol. 2005, 34, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-S.; Lee, H.-J.; Jeong, S.-H.; Park, J.-Y.; Hong, Y.-H.; Lee, Y.-J.; Youn, H.-S.; Lee, D.-W.; Do, S.-H.; Park, S.-Y.; et al. Isolation and characterization of avian metapneumovirus from chickens in Korea. J. Vet. Sci. 2010, 11, 59–66. [Google Scholar] [CrossRef]
- Alonso-Caplen, F.V.; Matsuoka, Y.; Wilcox, G.E.; Compans, R.W. Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin. Virus Res. 1984, 1, 153–167. [Google Scholar] [CrossRef]
- Kang, S.Y.; Nagaraja, K.V.; Newman, J.A. Primary isolation and identification of avian rotaviruses from turkeys exhibiting signs of clinical enteritis in a continuous MA 104 cell line. Avian Dis. 1986, 30, 494–499. [Google Scholar] [CrossRef]
- Reina, J.; Fernandez-Baca, V.; Blanco, I.; Munar, M. Comparison of Madin-Darby canine kidney cells (MDCK) with a green monkey continuous cell line (Vero) and human lung embryonated cells (MRC-5) in the isolation of influenza A virus from nasopharyngeal aspirates by shell vial culture. J. Clin. Microbiol. 1997, 35, 1900–1901. [Google Scholar] [CrossRef]
- OIE World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals Chapter 3.3.4: Chapter 3.3.4 Avian Influenza (Including Infection with High Pathogencity Avian Infleunza Viruses); OIE World Organisation for Animal Health: Paris, France, 2021. [Google Scholar]
- Davidson, I.; Grinberg, R.; Malkinson, M.; Mechani, S.; Pokamunski, S.; Weisman, Y. Diagnosis of turkey meningoencephalitis virus infection in field cases by RT-PCR compared to virus isolation in embryonated eggs and suckling mice. Avian Pathol. 2000, 29, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Nazerian, K.; Fadly, A.M. Propagation of virulent and avirulent turkey hemorrhagic enteritis virus in cell culture. Avian Dis. 1982, 26, 816–827. [Google Scholar] [CrossRef]
- Yuasa, N. Propagation and infectivity titration of the Gifu-1 strain of chicken anemia agent in a cell line (MDCC-MSB1) derived from Marek’s disease lymphoma. Natl. Inst. Anim. Health Q. 1983, 23, 13–20. [Google Scholar]
- Kong, B.-W.; Foster, L.K.; Foster, D.N. Establishment of an immortal turkey turbinate cell line suitable for avian metapneumovirus propagation. Virus Res. 2007, 127, 106–115. [Google Scholar] [CrossRef]
- Kisary, J. Experimental infection of chicken embryos and day-old chickens with parvovirus of chicken origin. Avian Pathol. 1985, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.S.; Barnes, H.J.; Smith, L.; Owen, R.; Fuller, F.J. Partial characterization of an adenovirus-like virus isolated from broiler chickens with transmissible viral proventriculitis. Avian Dis. 2005, 49, 344–351. [Google Scholar] [CrossRef] [PubMed]
- McNulty, M.S.; Allan, G.M.; Todd, D.; McFerran, J.B.; McCracken, R.M. Isolation from chickens of a rotavirus lacking the rotavirus group antigen. J. Gen. Virol. 1981, 55, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Takase, K.; Nonaka, F.; Sakaguchi, M.; Yamada, S. Cytopathic avian rotavirus isolated from duck faeces in chicken kidney cell cultures. Avian Pathol. 1986, 15, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wu, Y.; Zhang, W.; Merits, A.; Simmonds, P.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Zhao, X.; et al. The first nonmammalian pegivirus demonstrates efficient in vitro replication and high lymphotropism. J. Virol. 2020, 94, e01150-20. [Google Scholar] [CrossRef]
- Wannaratana, S.; Thontiravong, A.; Pakpinyo, S. Comparison of three filter paper-based devices for safety and stability of viral sample collection in poultry. Avian Pathol. 2021, 50, 78–84. [Google Scholar] [CrossRef]
- Maw, M.T.; Yamaguchi, T.; Kasanga, C.J.; Terasaki, K.; Fukushi, H. A practical tissue sampling method using ordinary paper for molecular detection of infectious bursal disease virus RNA by RT-PCR. Avian Dis. 2006, 50, 556–560. [Google Scholar] [CrossRef]
- Rajendram, D.; Ayenza, R.; Holder, F.M.; Moran, B.; Long, T.; Shah, H.N. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards. J. Microbiol. Methods 2006, 67, 582–592. [Google Scholar] [CrossRef]
- OIE Terrestrial Manual. Manual for Diagnostic Tests and Vaccines for Terrestrial Animals 2021, Section 3.3. 2021. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/A_summry.htm (accessed on 21 April 2023).
- Ferguson-Noel. Mycoplasmosis. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 907–965. [Google Scholar]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Patrick, K.; Li, M.; Gong, J.; Xu, B.; Shen, Q.; Yang, Y.; Wei, L.; Zhang, Y.; et al. Hydroxymethylbilane synthase (HMBS) gene-based endogenous internal control for avian species. AMB Express 2020, 10, 181. [Google Scholar] [CrossRef]
- Hoffmann, B.; Depner, K.; Schirrmeier, H.; Beer, M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J. Virol. Methods 2006, 136, 200–209. [Google Scholar] [CrossRef] [PubMed]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Matos, M.; Bilic, I.; Palmieri, N.; Mitsch, P.; Sommer, F.; Tvarogová, J.; Liebhart, D.; Hess, M. Epidemic of cutaneous fowlpox in a naïve population of chickens and turkeys in Austria: Detailed phylogenetic analysis indicates co-evolution of fowlpox virus with reticuloendotheliosis virus. Transbound. Emerg. Dis. 2022, 69, 2913–2923. [Google Scholar] [CrossRef]
- Hauck, R.; Prusas, C.; Hafez, H.M.; Lüschow, D. Quantitative PCR as a tool to determine the reticuloendotheliosis virus-proviral load of fowl poxvirus. Avian Dis. 2009, 53, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Sprygin, A.V.; Andreychuk, D.B.; Kolotilov, A.N.; Volkov, M.S.; Runina, I.A.; Mudrak, N.S.; Borisov, A.V.; Irza, V.N.; Drygin, V.V.; Perevozchikova, N.A. Development of a duplex real-time TaqMan PCR assay with an internal control for the detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from commercial and backyard poultry. Avian Pathol. 2010, 39, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Kwon, Y.-K.; Jang, I.; Bae, Y.-C. Viral metagenomic analysis of chickens with runting-stunting syndrome in the Republic of Korea. Virol. J. 2020, 17, 53. [Google Scholar] [CrossRef]
- Neubauer, C.; Hess, M. Detection and identification of food-borne pathogens of the genera Campylobacter, Arcobacter and Helicobacter by multiplex PCR in poultry and poultry products. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Qin, T.; Meng, F.; Chen, S.; Peng, D.; Liu, X. Development of a multiplex probe combination-based one-step real-time reverse transcription-PCR for NA subtype typing of avian influenza virus. Sci. Rep. 2017, 7, 13455. [Google Scholar] [CrossRef]
- Yang, F.; Dong, D.; Wu, D.; Zhu, L.; Liu, F.; Yao, H.; Wu, N.; Ye, C.; Wu, H. A multiplex real-time RT-PCR method for detecting H5, H7 and H9 subtype avian influenza viruses in field and clinical samples. Virus Res. 2022, 309, 198669. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, K.; Ogawa, Y.; Nishikawa, S.; Eguchi, M.; Shimoji, Y. Identification of serovar 1a, 1b, 2, and 5 strains of Erysipelothrix rhusiopathiae by a conventional gel-based PCR. Vet. Microbiol. 2018, 225, 101–104. [Google Scholar] [CrossRef]
- Shimoji, Y.; Shiraiwa, K.; Tominaga, H.; Nishikawa, S.; Eguchi, M.; Hikono, H.; Ogawa, Y. Development of a multiplex PCR-based assay for rapid serotyping of Erysipelothrix species. J. Clin. Microbiol. 2020, 58, e00315-20. [Google Scholar] [CrossRef]
- SCIEX. Available online: www.sciex.com/products/capillary-electrophoresis/genomelab-gexp-genetic-analysis-system (accessed on 26 January 2023).
- Xie, Z.; Luo, S.; Xie, L.; Liu, J.; Pang, Y.; Deng, X.; Xie, Z.; Fan, Q.; Khan, M.I. Simultaneous typing of nine avian respiratory pathogens using a novel GeXP analyzer-based multiplex PCR assay. J. Virol. Methods 2014, 207, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Xie, Z.; Xie, L.; Deng, X.; Xie, Z.; Luo, S.; Huang, L.; Huang, J. Simultaneous detection of eight immunosuppressive chicken viruses using a GeXP analyser-based multiplex PCR assay. Virol. J. 2015, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-F.; Xie, Z.-X.; Xie, L.-J.; Deng, X.-W.; Xie, Z.-Q.; Luo, S.-S.; Huang, L.; Huang, J.-L.; Zeng, T.-T. GeXP analyzer-based multiplex reverse-transcription PCR assay for the simultaneous detection and differentiation of eleven duck viruses. BMC Microbiol. 2015, 15, 247. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xie, Z.; Xie, Z.; Liu, J.; Xie, L.; Deng, X.; Luo, S.; Fan, Q.; Huang, L.; Huang, J.; et al. Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser. Sci. Rep. 2018, 8, 6183. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Xie, Z.; Huang, J.; Xie, Z.; Xie, L.; Zhang, M.; Li, M.; Wang, S.; Li, D.; Zeng, T.; et al. Simultaneous differentiation of the N1 to N9 neuraminidase subtypes of avian influenza virus by a GeXP analyzer-based multiplex reverse transcription PCR assay. Front. Microbiol. 2019, 10, 1271. [Google Scholar] [CrossRef]
- Christopher-Hennings, J.; Araujo, K.P.C.; Souza, C.J.H.; Fang, Y.; Lawson, S.; Nelson, E.A.; Clement, T.; Dunn, M.; Lunney, J.K. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2013, 25, 671–691. [Google Scholar] [CrossRef]
- Laamiri, N.; Fällgren, P.; Zohari, S.; Ben Ali, J.; Ghram, A.; Leijon, M.; Hmila, I. Accurate detection of avian respiratory viruses by use of multiplex PCR-based luminex suspension microarray assay. J. Clin. Microbiol. 2016, 54, 2716–2725. [Google Scholar] [CrossRef]
- Periyannan Rajeswari, P.K.; Soderberg, L.M.; Yacoub, A.; Leijon, M.; Andersson Svahn, H.; Joensson, H.N. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR. J. Microbiol. Methods 2017, 139, 22–28. [Google Scholar] [CrossRef]
- Cong, F.; Zhu, Y.; Liu, X.; Li, X.; Chen, M.; Huang, R.; Guo, P. Development of an xTAG-multiplex PCR array for the detection of four avian respiratory viruses. Mol. Cell. Probes 2018, 37, 1–5. [Google Scholar] [CrossRef]
- Gand, M.; Mattheus, W.; Roosens, N.; Dierick, K.; Marchal, K.; Bertrand, S.; de Keersmaecker, S.C.J. A genoserotyping system for a fast and objective identification of Salmonella serotypes commonly isolated from poultry and pork food sectors in Belgium. Food Microbiol. 2020, 91, 103534. [Google Scholar] [CrossRef]
- Gand, M.; Mattheus, W.; Roosens, N.H.C.; Dierick, K.; Marchal, K.; de Keersmaecker, S.C.J.; Bertrand, S. A multiplex oligonucleotide ligation-PCR method for the genoserotyping of common Salmonella using a liquid bead suspension assay. Food Microbiol. 2020, 87, 103394. [Google Scholar] [CrossRef]
- Baigent, S.J.; Nair, V.K.; Le Galludec, H. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. J. Virol. Methods 2016, 233, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Raviv, Z.; Callison, S.A.; Ferguson-Noel, N.; Kleven, S.H. Strain differentiating real-time PCR for Mycoplasma gallisepticum live vaccine evaluation studies. Vet. Microbiol. 2008, 129, 179–187. [Google Scholar] [CrossRef]
- Dijkman, R.; Feberwee, A.; Landman, W.J.M. Development, validation and field evaluation of a quantitative real-time PCR able to differentiate between field Mycoplasma synoviae and the MS-H-live vaccine strain. Avian Pathol. 2017, 46, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Davidson, I.; Raibstein, I.; Altory-Natour, A.; Simanov, M.; Khinich, Y. Development of duplex dual-gene and DIVA real-time RT-PCR assays and use of feathers as a non-invasive sampling method for diagnosis of Turkey Meningoencephalitis Virus. Avian Pathol. 2017, 46, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, I.M.; Dunn, J.R.; Cortes, A.L.; El-Gohary, A.E.-G.; Silva, R.F. Detection and differentiation of CVI988 (Rispens vaccine) from other serotype 1 Marek’s disease viruses. Avian Dis. 2014, 58, 232–243. [Google Scholar] [CrossRef]
- Sulyok, K.M.; Kreizinger, Z.; Bekő, K.; Forró, B.; Marton, S.; Bányai, K.; Catania, S.; Ellis, C.; Bradbury, J.; Olaogun, O.M.; et al. Development of molecular methods for rapid differentiation of Mycoplasma gallisepticum vaccine strains from field isolates. J. Clin. Microbiol. 2019, 57, e01084-18. [Google Scholar] [CrossRef]
- Kreizinger, Z.; Sulyok, K.M.; Pásztor, A.; Erdélyi, K.; Felde, O.; Povazsán, J.; Kőrösi, L.; Gyuranecz, M. Rapid, simple and cost-effective molecular method to differentiate the temperature sensitive (ts+) MS-H vaccine strain and wild-type Mycoplasma synoviae isolates. PLoS ONE 2015, 10, e0133554. [Google Scholar] [CrossRef]
- Hess, M. Detection and differentiation of avian adenoviruses: A review. Avian Pathol. 2000, 29, 195–206. [Google Scholar] [CrossRef]
- Meulemans, G.; Couvreur, B.; Decaesstecker, M.; Boschmans, M.; van den Berg, T.P. Phylogenetic analysis of fowl adenoviruses. Avian Pathol. 2004, 33, 164–170. [Google Scholar] [CrossRef]
- Marek, A.; Günes, A.; Schulz, E.; Hess, M. Classification of fowl adenoviruses by use of phylogenetic analysis and high-resolution melting-curve analysis of the hexon L1 gene region. J. Virol. Methods 2010, 170, 147–154. [Google Scholar] [CrossRef]
- de Wit, J.J. Detection of infectious bronchitis virus. Avian Pathol. 2000, 29, 71–93. [Google Scholar] [CrossRef]
- Valastro, V.; Holmes, E.C.; Britton, P.; Fusaro, A.; Jackwood, M.W.; Cattoli, G.; Monne, I. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infect. Genet. Evol. 2016, 39, 349–364. [Google Scholar] [CrossRef]
- Tucciarone, C.M.; Franzo, G.; Legnardi, M.; Fortin, A.; Valastro, V.; Lazzaro, E.; Terregino, C.; Cecchinato, M. Effect of assay choice, viral concentration and operator interpretation on infectious bronchitis virus detection and characterization. Avian Pathol. 2021, 50, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Jackwood, D.J.; Schat, K.A.; Michel, L.O.; de Wit, S. A proposed nomenclature for infectious bursal disease virus isolates. Avian Pathol. 2018, 47, 576–584. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.-X.; Brown, I.H.; Choi, K.-S.; Chvala, I.; et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-generation sequencing: The spearhead towards the radical transformation of modern genomics. Life 2021, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.T.T.; Nieuwenhuijse, D.F.; Phan, M.V.T.; Koopmans, M.P.G. Virus metagenomics in farm animals: A systematic review. Viruses 2020, 12, 107. [Google Scholar] [CrossRef]
- Liais, E.; Croville, G.; Mariette, J.; Delverdier, M.; Lucas, M.-N.; Klopp, C.; Lluch, J.; Donnadieu, C.; Guy, J.S.; Corrand, L.; et al. Novel avian coronavirus and fulminating disease in guinea fowl, France. Emerg. Infect. Dis. 2014, 20, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Bilic, I.; Tvarogová, J.; Palmieri, N.; Furmanek, D.; Gotowiecka, M.; Liebhart, D.; Hess, M. A novel genotype of avian hepatitis E virus identified in chickens and common pheasants (Phasianus colchicus), extending its host range. Sci. Rep. 2022, 12, 21743. [Google Scholar] [CrossRef]
- Lagan Tregaskis, P.; Devaney, R.; Smyth, V.J. The first whole genome sequence and characterisation of avian nephritis virus genotype 3. Viruses 2021, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Flint, J. Synthesis of RNA from RNA templates. In Principles of Virology, 4th ed.; Volume 1: Molecular Biology; ASM Press: Washington, DC, USA, 2015; pp. 157–184. [Google Scholar]
- Asif, K.; O’Rourke, D.; Sabir, A.J.; Shil, P.; Noormohammadi, A.H.; Marenda, M.S. Characterisation of the whole genome sequence of an avian hepatitis E virus directly from clinical specimens reveals possible recombination events between European and USA strains. Infect. Genet. Evol. 2021, 96, 105095. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.L.; Taylor, T.L.; Volkening, J.D.; Dimitrov, K.M.; Williams-Coplin, D.; Lahmers, K.K.; Miller, P.J.; Rana, A.M.; Suarez, D.L.; Afonso, C.L.; et al. Rapid virulence prediction and identification of Newcastle disease virus genotypes using third-generation sequencing. Virol. J. 2018, 15, 179. [Google Scholar] [CrossRef] [PubMed]
- Read, S.J.; Burnett, D.; Fink, C.G. Molecular techniques for clinical diagnostic virology. J. Clin. Pathol. 2000, 53, 502–506. [Google Scholar] [CrossRef]
- Ibrahim, B.; McMahon, D.P.; Hufsky, F.; Beer, M.; Deng, L.; Le Mercier, P.; Palmarini, M.; Thiel, V.; Marz, M. A new era of virus bioinformatics. Virus Res. 2018, 251, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Briand, F.-X.; Schmitz, A.; Ogor, K.; Le Prioux, A.; Guillou-Cloarec, C.; Guillemoto, C.; Allée, C.; Le Bras, M.-O.; Hirchaud, E.; Quenault, H.; et al. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: Phylogenetic analyses and markers for zoonotic potential. Euro. Surveill. 2017, 22, 30473. [Google Scholar] [CrossRef]
- Reddy, V.R.A.P.; Theuns, S.; Roukaerts, I.D.M.; Zeller, M.; Matthijnssens, J.; Nauwynck, H.J. Genetic characterization of the Belgian nephropathogenic infectious bronchitis virus (NIBV) reference strain B1648. Viruses 2015, 7, 4488–4506. [Google Scholar] [CrossRef]
- Djikeng, A.; Halpin, R.; Kuzmickas, R.; Depasse, J.; Feldblyum, J.; Sengamalay, N.; Afonso, C.; Zhang, X.; Anderson, N.G.; Ghedin, E.; et al. Viral genome sequencing by random priming methods. BMC Genom. 2008, 9, 5. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Sharma, P.; Volkening, J.D.; Goraichuk, I.V.; Wajid, A.; Rehmani, S.F.; Basharat, A.; Shittu, I.; Joannis, T.M.; Miller, P.J.; et al. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses. Virol. J. 2017, 14, 72. [Google Scholar] [CrossRef]
- Flageul, A.; Courtillon, C.; Allée, C.; Leroux, A.; Blanchard, Y.; Deleforterie, Y.; Grasland, B.; Brown, P.A. Extracting turkey coronaviruses from the intestinal lumen of infected turkey embryos yields full genome data with good coverage by NGS. Avian Pathol. 2022, 51, 291–294. [Google Scholar] [CrossRef]
- Kubacki, J.; Fraefel, C.; Bachofen, C. Implementation of next-generation sequencing for virus identification in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2021, 33, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.B. Specific antibody production against a soluble antigen in the Harderian gland of the domestic fowl. Clin. Exp. Immunol. 1976, 26, 371–374. [Google Scholar]
- Aitken, I.D.; Parry, S.H. Local immunity in the respiratory tract of the chicken: I. Transudation of circulationg antibody in normal and virus-infected birds. Immunology 1976, 31, 33. [Google Scholar]
- EFSA. Assessment of listing and categorization of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Avian mycoplasmosis (Mycoplasma gallisepticum, M. meleagridis). Sci. Opin. 2017, 15, e04953. [Google Scholar] [CrossRef]
- EU. Commission Implementing Regulation (EU) 2018/1882 of 3 December 2018 on the Application of Certain Disease Prevention and Control Rules to Categories of Listed Diseases and Establishing a List of Species and Groups of Species Posing a Considerable Risk for the Spread of Those Listed Diseases; Official Journal of the European Union; European Union: Brussels, Belgium, 2018. [Google Scholar]
- EU. Commission Decision 2011/214/EU of 1 April 2011 Amending Annexes II to IV to Council Directive 2009/158/EC on Animal Health Conditions Governing Intra-Community Trade in, and Imports from Third Countries of, Poultry and Hatching Eggs; Official Journal of the European Communities, L90, 06.04.2011, 27–49; European Union: Brussels, Belgium, 2011. [Google Scholar]
- EU. Commission Decision 2010/367/EU of 25 June 2010 on the Implementation by Member States of Surveillance Programmes for Avian Influenza in Poultry and Wild Birds; Official Journal of the European Union, L 166, 01.07.2010, 22–32; European Union: Brussels, Belgium, 2010. [Google Scholar]
- Glisson, J.R.; Dawe, J.F.; Kleven, S.H. The effect of oil-emulsion vaccines on the occurrence of nonspecific plate agglutination reactions for Mycoplasma gallisepticum and M. synoviae. Avian Dis. 1984, 28, 397–405. [Google Scholar] [CrossRef]
- Yoder, H.W. Nonspecific reactions to Mycoplasma serum plate antigens induced by inactivated poultry disease vaccines. Avian Dis. 1989, 33, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Cummins, D.R.; Reynolds, D.L. Use of an avidin-biotin enhanced dot-immunobinding assay to detect antibodies for avian mycoplasma in sera from Iowa market turkeys. Avian Dis. 1990, 34, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdelmoumen, B.; Roy, R.S. Antigenic relatedness between seven avian mycoplasma species as revealed by western blot analysis. Avian Dis. 1995, 39, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Ewing, M.L.; Lauerman, L.H.; Kleven, S.H.; Brown, M.B. Evaluation of diagnostic procedures to detect Mycoplasma synoviae in commercial multiplier-breeder farms and commercial hatcheries in Florida. Avian Dis. 1996, 40, 798–806. [Google Scholar] [CrossRef]
- Barrow, P.A.; Freitas Neto, O.C. Pullorum disease and fowl typhoid--new thoughts on old diseases: A review. Avian Pathol. 2011, 40, 1–13. [Google Scholar] [CrossRef]
- ter Veen, C.; Feberwee, A.; Augustijn, M.; de Wit, S. High specificity of the Salmonella Pullorum/Gallinarum rapid plate agglutination test despite vaccinations against Salmonella Enteritidis and Salmonella Typhimurium. Avian Pathol. 2022, 51, 19–25. [Google Scholar] [CrossRef]
- de Wit, J.J. Gumboro disease: Estimation of optimal time of vacination by the Deventer formula. Pol. Vet. J. 1998, 3, 19–22. [Google Scholar]
- de Wit, J.J.; Heijmans, J.F.; Mekkes, D.R.; van Loon, A.A. Validation of five commercially available ELISAs for the detection of antibodies against infectious bursal disease virus (serotype 1). Avian Pathol. 2001, 30, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.; Icard, A.; Martinez, M.; Mashchenko, A.; García, M.; El-Attrachea, J. Detection of infectious laryngotracheitis virus antibodies by glycoprotein-specific ELISAs in chickens vaccinated with viral vector vaccines. Avian Dis. 2013, 57, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Luo, S.; Fan, Q.; Xie, L.; Liu, J.; Xie, Z.; Pang, Y.; Deng, X.; Wang, X. Detection of antibodies specific to the non-structural proteins of fowl adenoviruses in infected chickens but not in vaccinated chickens. Avian Pathol. 2013, 42, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhang, E.; Li, Q.; Xu, Q.; Ou, J.; Yin, H.; Li, K.; Wang, L.; Zhao, X.; Niu, X.; et al. A plant-produced recombinant fusion protein-based Newcastle disease subunit vaccine and rapid differential diagnosis platform. Vaccines 2020, 8, 122. [Google Scholar] [CrossRef]
- Bortolami, A.; Donini, M.; Marusic, C.; Lico, C.; Drissi Touzani, C.; Gobbo, F.; Mazzacan, E.; Fortin, A.; Panzarin, V.M.; Bonfante, F.; et al. Development of a novel assay based on plant-produced infectious bursal disease virus VP3 for the differentiation of infected from vaccinated animals. Front. Plant Sci. 2021, 12, 786871. [Google Scholar] [CrossRef]
- Watson, D.S.; Reddy, S.M.; Brahmakshatriya, V.; Lupiani, B. A multiplexed immunoassay for detection of antibodies against avian influenza virus. J. Immunol. Methods 2009, 340, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Lupiani, B.; Mozisek, B.; Mason, P.W.; Lamichhane, C.; Reddy, S.M. Simultaneous detection of avian influenza virus NP and H5 antibodies in chicken sera using a fluorescence microsphere immunoassay. Avian Dis. 2010, 54, 668–672. [Google Scholar] [CrossRef]
- Pinette, M.M.; Rodriguez-Lecompte, J.C.; Pasick, J.; Ojkic, D.; Leith, M.; Suderman, M.; Berhane, Y. Development of a duplex Fluorescent Microsphere Immunoassay (FMIA) for the detection of antibody responses to influenza A and newcastle disease viruses. J. Immunol. Methods 2014, 405, 167–177. [Google Scholar] [CrossRef]
- Gerber, P.F.; Trampel, D.W.; Willinghan, E.M.; Billam, P.; Meng, X.-J.; Opriessnig, T. Subclinical avian hepatitis E virus infection in layer flocks in the United States. Vet. J. 2015, 206, 304–311. [Google Scholar] [CrossRef]
- Feichtner, F.; Schachner, A.; Berger, E.; Hess, M. Fiber-based fluorescent microsphere immunoassay (FMIA) as a novel multiplex serodiagnostic tool for simultaneous detection and differentiation of all clinically relevant fowl adenovirus (FAdV) serotypes. J. Immunol. Methods 2018, 458, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Grund, C.; Beer, M.; Wang, G.; Harder, T.C. Tetraplex fluorescent microbead-based immunoassay for the serodiagnosis of Newcastle disease virus and avian influenza viruses in poultry sera. Pathogens 2022, 11, 1059. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Xie, K.; Dong, X.; Wang, L.; Huang, C.; Xu, F.; Xiao, W.; Jin, M.; Huang, B.; Tang, Y. Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Anal. Chim. Acta 2019, 1053, 139–147. [Google Scholar] [CrossRef]
- Randall, C.J.; Reece, R.L. Color Atlas of Avian Histopathology; Mosby-Wolfe: London, UK, 1996; ISBN 0723420874. [Google Scholar]
- Alturkistani, H.A.; Tashkandi, F.M.; Mohammedsaleh, Z.M. Histological stains: A literature review and case study. Glob. J. Health Sci. 2015, 8, 72–79. [Google Scholar] [CrossRef]
- Titford, M.; Bowman, B. What may the future hold for histotechnologists? Lab. Med. 2012, 43, e5–e10. [Google Scholar] [CrossRef]
- Neumann, U.; Witter, R.L. Differential diagnosis of lymphoid leukosis and Marek’s disease by tumor-associated criteria I. Studies on experimentally infected chickens. Avian Dis. 1979, 23, 417. [Google Scholar] [CrossRef]
- Witter, R.L.; Purchase, H.G.; Burgoyne, G.H. Peripheral nerve lesions similar to those of Marek’s disease in chickens inoculated with reticuloendotheliosis virus. J. Natl. Cancer Inst. 1970, 45, 567–577. [Google Scholar] [CrossRef]
- Herzog, N.K.; Bose, H.R. Expression of the oncogene of avian reticuloendotheliosis virus in Escherichia coli and identification of the transforming protein in reticuloendotheliosis virus T-transformed cells. Proc. Natl. Acad. Sci. USA 1986, 83, 812–816. [Google Scholar] [CrossRef]
- Payne, L.N.; Biggs, P.M. Studies on Marek’s disease. II. Pathogenesis. J. Natl. Cancer Inst. 1967, 39, 281–302. [Google Scholar]
- Gimeno, I.M.; Witter, R.L.; Fadly, A.M.; Silva, R.F. Novel criteria for the diagnosis of Marek’s disease virus-induced lymphomas. Avian Pathol. 2005, 34, 332–340. [Google Scholar] [CrossRef]
- Kurokawa, A.; Yamamoto, Y. Development of monoclonal antibodies specific to Marek disease virus-EcoRI-Q (Meq) for the immunohistochemical diagnosis of Marek disease using formalin-fixed, paraffin-embedded samples. J. Vet. Diagn. Investig. 2022, 34, 10406387221080444. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Mays, J.; Kiupel, M.; Dunn, J.R. Development of reliable techniques for the differential diagnosis of avian tumour viruses by immunohistochemistry and polymerase chain reaction from formalin-fixed paraffin-embedded tissue sections. Avian Pathol. 2018, 47, 364–374. [Google Scholar] [CrossRef]
- Kato, S.; Takahashi, M.; Kameyama, S.; Kamahora, J. A study of new inclusion bodies of cowpox virus. Bikens J. J. Res. 1959, 2, 93–96. [Google Scholar]
- Abdul-Aziz, T.; Fletcher, O.J.; Barnes, H.J.; Shivaprasad, H.L.; Swayne, D.E. Avian Histopathology, 4th ed.; The American Association of Avian Pathologists: Jacksonville, FL, USA, 2016; ISBN 9780978916367. [Google Scholar]
- Hess, M. Aviadenovirus Infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 322–332. [Google Scholar]
- Rautenschlein, S.; Mahsoub, H.M.; Fitzgerald, S.D.; Pierson, F.W. Hemorrhagic enteritis and related infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 339–347. [Google Scholar]
- Kemp, R.L.; Reid, W.M. Staining techniques for differential diagnosis of histomoniasis and mycosis in domestic poultry. Avian Dis. 1966, 10, 357. [Google Scholar] [CrossRef]
- Tyzzer, E.E. Developmental phases of the protozoon of “blackhead” in turkeys. J. Med. Res. 1919, 40, 1–30.3. [Google Scholar]
- Liebhart, D.; Weissenböck, H.; Hess, M. In-situ hybridization for the detection and identification of Histomonas meleagridis in tissues. J. Comp. Pathol. 2006, 135, 237–242. [Google Scholar] [CrossRef]
- Singh, A.; Weissenböck, H.; Hess, M. Histomonas meleagridis: Immunohistochemical localization of parasitic cells in formalin-fixed, paraffin-embedded tissue sections of experimentally infected turkeys demonstrates the wide spread of the parasite in its host. Exp. Parasitol. 2008, 118, 505–513. [Google Scholar] [CrossRef]
- Allen, E.A. A pentatrichomonas associated with certain cases of enterohepatitis or “blackhead” of poultry. Trans. Am. Microsc. Soc. 1936, 55, 315. [Google Scholar] [CrossRef]
- Liebhart, D.; Neale, S.; Garcia-Rueda, C.; Wood, A.M.; Bilic, I.; Wernsdorf, P.; Jaskulska, B.; Hess, M. A single strain of Tetratrichomonas gallinarum causes fatal typhlohepatitis in red-legged partridges (Alectoris rufa) to be distinguished from histomonosis. Avian Pathol. 2014, 43, 473–480. [Google Scholar] [CrossRef]
- Paudel, S.; Ruhnau, D.; Wernsdorf, P.; Liebhart, D.; Hess, M.; Hess, C. Presence of Avibacterium paragallinarum and histopathologic lesions corresponds with clinical signs in a co-infection model with Gallibacterium anatis. Avian Dis. 2017, 61, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.; Lucas, M.; Savci-Heijink, C.D.; Meijer, S.L.; Marquering, H.A.; de Bruin, D.M.; Zondervan, P.J. Histopathology: Ditch the slides, because digital and 3D are on show. World J. Urol. 2018, 36, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; Hess, C.; Wernsdorf, P.; Käser, T.; Meitz, S.; Jensen-Jarolim, E.; Hess, M.; Liebhart, D. The systemic multiplication of Gallibacterium anatis in experimentally infected chickens is promoted by immunosuppressive drugs which have a less specific effect on the depletion of leukocytes. Vet. Immunol. Immunopathol. 2015, 166, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kidane, F.A.; Mitra, T.; Wernsdorf, P.; Hess, M.; Liebhart, D. Allocation of interferon gamma mRNA positive cells in caecum hallmarks a protective trait against histomonosis. Front. Immunol. 2018, 9, 1164. [Google Scholar] [CrossRef] [PubMed]
- Agrebi, S.; Larbi, A. Use of artificial intelligence in infectious diseases. In Artificial Intelligence in Precision Health: From Concept to Applications; Barh, D., Ed.; Elsevier: London, UK; Academic Press: San Diego, CA, USA, 2020; pp. 415–438. ISBN 9780128171332. [Google Scholar]
- Nam, S.; Chong, Y.; Jung, C.K.; Kwak, T.-Y.; Lee, J.Y.; Park, J.; Rho, M.J.; Go, H. Introduction to digital pathology and computer-aided pathology. J. Pathol. Transl. Med. 2020, 54, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Neubauer, C.; Hackl, R. Interlaboratory comparison of ability to detect nucleic acid of Mycoplasma gallisepticum and Mycoplasma synoviae by polymerase chain reaction. Avian Pathol. 2007, 36, 127–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liebhart, D.; Bilic, I.; Grafl, B.; Hess, C.; Hess, M. Diagnosing Infectious Diseases in Poultry Requires a Holistic Approach: A Review. Poultry 2023, 2, 252-280. https://doi.org/10.3390/poultry2020020
Liebhart D, Bilic I, Grafl B, Hess C, Hess M. Diagnosing Infectious Diseases in Poultry Requires a Holistic Approach: A Review. Poultry. 2023; 2(2):252-280. https://doi.org/10.3390/poultry2020020
Chicago/Turabian StyleLiebhart, Dieter, Ivana Bilic, Beatrice Grafl, Claudia Hess, and Michael Hess. 2023. "Diagnosing Infectious Diseases in Poultry Requires a Holistic Approach: A Review" Poultry 2, no. 2: 252-280. https://doi.org/10.3390/poultry2020020
APA StyleLiebhart, D., Bilic, I., Grafl, B., Hess, C., & Hess, M. (2023). Diagnosing Infectious Diseases in Poultry Requires a Holistic Approach: A Review. Poultry, 2(2), 252-280. https://doi.org/10.3390/poultry2020020