A Natural Monoterpene Enol for Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplets for Determination of Benzophenone Compounds in Water Samples
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. SFO-DLLME Procedure
3. Results and Discussion
3.1. Characterization of α−Terpineol
3.2. Optimization of Extraction Conditions
3.2.1. Volume of the Extractant
3.2.2. Extraction Time
3.2.3. pH
3.2.4. Salt Concentration
3.2.5. Temperature and Time of Solidification Process
3.3. Method Performance of SFO-DLLME-HPLC
3.4. Determination of Real Water Samples
3.5. Method Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asensio-Ramos, M.; Hernández-Borges, J.; Rocco, A.; Fanali, S. Food analysis: A continuous challenge for miniaturized separation techniques. J. Sep. Sci. 2009, 32, 3764–3800. [Google Scholar] [CrossRef] [PubMed]
- Soares Da Silva Burato, J.; Vargas Medina, D.A.; De Toffoli, A.L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci. 2020, 43, 202–225. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaalan, N.H.; Ali, I.; Alothman, Z.A.; Al-Wahaibi, L.H.; Alabdulmonem, H. Application of Composite NanoMaterial to Determine Phenols in Wastewater by Solid Phase Micro Membrane Tip Extraction and Capillary Electrophoresis. Molecules 2019, 24, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Wang, X.; Feng, Q. Determination of Benzimidazole Residues in Edible Animal Food by Polymer Monolith Microextraction Combined with Liquid Chromatography-mass Spectrometry. J. Agric. Food Chem. 2009, 58, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Ziemblinska-Bernart, J.; Nowak, I.; Rykowska, I. Fast dispersive liquid-liquid microextraction based on magnetic retrieval of in situ formed an ionic liquid for the preconcentration and determination of benzophenone-type UV filters from environmental water samples. J. Iran Chem. Soc. 2019, 16, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Abril, C.; Martin, J.; Malvar, J.L.; Santos, J.L.; Aparicio, I.; Alonso, E. Dispersive liquid-liquid microextraction as a new clean-up procedure for the determination of parabens, perfluorinated compounds, UV filters, biocides, surfactants, and plasticizers in root vegetables. Anal. Bioanal. Chem. 2018, 410, 5155–5163. [Google Scholar] [CrossRef]
- Pierson, S.; Trujillo-Rodriguez, M.; Anderson, J. Rapid analysis of ultraviolet filters using dispersive liquid-liquid microextraction coupled to headspace gas chromatography and mass spectrometry. J. Sep. Sci. 2018, 41, 3081–3088. [Google Scholar] [CrossRef] [PubMed]
- Chisvert, A.; Benede, J.L.; Salvador, A. Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques-A review. Anal. Chim. Acta 2018, 1034, 22–38. [Google Scholar] [CrossRef]
- Vila, M.; Llompart, M.; Garcia-Jares, C.; Dagnac, T. Different miniaturized extraction methodologies followed by GC-MS/MS analysis for the determination of UV filters in beach sand. J. Sep. Sci. 2018, 41, 3449–3458. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef] [PubMed]
- Afshar Mogaddam, M.R.; Farajzadeh, M.A.; Azadmard Damirchi, S.; Nemati, M. Dispersive solid phase extraction combined with solidification of floating organic drop–liquid–liquid microextraction using in situ formation of deep eutectic solvent for extraction of phytosterols from edible oil samples. J. Chromatog. A 2020, 1630, 461523. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.R.; Danielson, N.D. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta 2017, 170, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhang, J.; Jiang, H.; Zhou, L. Factty acid and solidification floating organic drop-based dispersive liquid-liquid microextraction method coupled with high performance liquid chromatogrphy for the determination of 4-ethyphenol and 4-ethylguaiacol in wine. Chin. J. Chromatogr. 2015, 34, 895–900. [Google Scholar] [CrossRef]
- Chang, C.; Huang, S. Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography. Anal. Chim. Acta 2010, 662, 39–43. [Google Scholar] [CrossRef]
- Xu, H.; Ding, Z.; Lv, L.; Song, D.; Feng, Y. A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Anal. Chim. Acta 2009, 636, 28–33. [Google Scholar] [CrossRef]
- Leong, M.; Huang, S. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J. Chromatogr. A 2008, 1211, 8–12. [Google Scholar] [CrossRef]
- Khalili Zanjani, M.R.; Yamini, Y.; Shariati, S.; Jönsson, J.Å. A new liquid-phase microextraction method based on solidification of floating organic drop. Anal. Chim. Acta 2007, 585, 286–293. [Google Scholar] [CrossRef]
- Shi, Z.; Lee, H. Dispersive Liquid-Liquid Microextraction Coupled with Dispersive μ-Solid-Phase Extraction for the Fast Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. Anal. Chem. 2010, 82, 1540–1545. [Google Scholar] [CrossRef]
- Hu, X.; Wu, J.; Feng, Y. Molecular complex-based dispersive liquid-liquid microextraction: Analysis of polar compounds in aqueous solution. J. Chromatogr. A 2010, 1217, 7010–7016. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Seyedi, S.E.; Shalamzari, M.S.; Bamorowat, M. Dispersive liquid-liquid microextraction using extraction solvent lighter than water. J. Sep. Sci. 2009, 32, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/alpha-TERPINEOL (accessed on 15 March 2022).
- Hu, X.; Zhang, L.; Xia, H.; Peng, M.; Zhou, Y.; Xu, Z.; Peng, X. Dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the determination of phenolic compounds in environmental water samples. J. Sep. Sci. 2020, 44, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Schlumpf, M.; Schmid, P.; Durrer, S.; Conscience, M.; Maerkel, K.; Henseler, M.; Gruetter, M.; Herzog, I.; Reolon, S.; Ceccatelli, R.; et al. Endocrine activity and developmental toxicity of cosmetic UV filters-an update. Toxicology 2004, 205, 113–122. [Google Scholar] [CrossRef]
- Ramos, S.; Homem, V.; Santos, L. Simultaneous determination of synthetic musks and UV-filters in water matrices by dispersive liquid-liquid microextraction followed by gas chromatography tandem mass-spectrometry. J. Chromatogr. A 2019, 1590, 47–57. [Google Scholar] [CrossRef]
- Vela-Soria, F.; Ballesteros, O.; Zafra-Gomez, A.; Ballesteros, L.; Navalon, A. A new method for the determination of benzophenone-UV filters in human serum samples by dispersive liquid-liquid microextraction with liquid chromatography-tandem mass spectrometry. Talanta 2014, 121, 97–104. [Google Scholar] [CrossRef] [PubMed]
- IARC. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. IARC Monogr. Eval. Carcinog. Risks Hum. 2013, 101, 285–304. [Google Scholar]
- Locatelli, M.; Furton, K.G.; Tartaglia, A.; Sperandio, E.; Ulusoy, H.I.; Kabir, A. An FPSE-HPLC-PDA method for rapid determination of solar UV filters in human whole blood, plasma and urine. J. Chromatogr. B 2019, 1118–1119, 40–50. [Google Scholar] [CrossRef]
- Ge, D.; Zhang, Y.; Dai, Y.; Yang, S. Air-assisted dispersive liquid–liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples. J. Sep. Sci. 2018, 41, 1635–1643. [Google Scholar] [CrossRef]
- Vidal, L.; Chisvert, A.; Canals, A.; Salvador, A. Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatography analysis. J. Chromatogr. A 2007, 1174, 95–103. [Google Scholar] [CrossRef]
- Purra, M.; Cinca, R.; Legaz, J.; Nunez, O. Solid-phase extraction and field-amplified sample injection-capillary zone electrophoresis for the analysis of benzophenone UV filters in environmental water samples. Anal. Bioanal. Chem. 2014, 406, 6189–6202. [Google Scholar] [CrossRef] [Green Version]
- Nurerk, P.; Llompart, M.; Donkhampa, P.; Bunkoed, O.; Dagnac, T. Solid-phase extraction based on MIL-101 adsorbent followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water. J. Chromatogr. A 2020, 1610, 460564. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, J.; Liu, Y.; Zhao, X.; Cao, Z.; Xia, L.; Li, G.; Sun, Z.; Zhang, S.; et al. A rapid, accurate and sensitive method with the new stable isotopic tags based on microwave-assisted dispersive liquid-liquid microextraction and its application to the determination of hydroxyl UV filters in environmental water samples. Talanta 2017, 167, 242–252. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Timm, A.; Blaney, L. Simultaneous determination of UV-filters and estrogens in aquatic invertebrates by modified quick, easy, cheap, effective, rugged, and safe extraction and liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2017, 1509, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Kong, X.; Liu, S.; Che, D.; Sun, Z.; Li, G.; Ping, M.; Tang, J.; You, J. Determination of Ultraviolet Filters in Domestic Wastewater by LC–MS Coupled with Polydopamine-Based Magnetic Solid-Phase Extraction and Isotope-Coded Derivatization. Chromatographia 2018, 81, 1673–1684. [Google Scholar] [CrossRef]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography–tandem mass spectrometry analysis. Anal. Bioanal. Chem. 2017, 409, 4181–4194. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Acikbas, Y.; Ozmen, M.; Erdogan, M.; Capan, R. Fabrication of LB thin film of pillar[5]arene-2-amino-3-hydroxypyridine for the sensing of vapors. Mater. Lett. 2020, 267, 127538–127541. [Google Scholar] [CrossRef]
- Bastug, E.; Kursunlu, A.N.; Guler, E. A fluorescent clever macrocycle: Deca-bodipy bearing a pillar[5]arene and its selective binding of asparagine in half-aqueous medium. J. Lumin. 2020, 225, 117343–117378. [Google Scholar] [CrossRef]
- Tabata, M.; Kumamoto, M.; Nishimoto, J. Chemical properties of water-miscible solvents separated by salting-out and their application to solvent extraction. Anal. Sci. 1994, 10, 383–388. [Google Scholar] [CrossRef]
Compound | Structure | pKa | LogP |
---|---|---|---|
4-Hydroxybenzophenone (HB) | 7.95 | 3.07 | |
2,4-Dihydroxybenzophenone (DB) | 7.53 | 2.96 | |
Benzophenone (BP) | — | 3.38 | |
2-Hydroxy-4-methoxybenzophenone (HMB) | 7.56 | 3.52 | |
α-Terpineol | 15.09 | 2.98 |
Analytes | Linearity Range (μg/L) | R2 | LOD (μg/L) | Enrichment Factor | Recoveries (RSD, %) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Intra-Assay (n = 6) | Inter-Assay (n = 3) | |||||||||
2 µg/L | 200 µg/L | 2000 µg/L | 2 µg/L | 200 µg/L | 2000 µg/L | |||||
HB | 2–2000 | 0.9967 | 0.12 | 36 | 80.9 (6.2) | 95.8 (3.4) | 98.7 (3.8) | 80.2 (4.4) | 98.2 (5.7) | 99.6 (4.8) |
DB | 2–2000 | 0.9986 | 0.30 | 38 | 81.4 (5.8) | 100.3 (5.6) | 93.7 (2.2) | 85.0 (5.9) | 96.4 (6.0) | 97.9 (5.2) |
BP | 2–2000 | 0.9925 | 0.37 | 47 | 80.6 (4.7) | 97.6 (4.3) | 98.9 (4.5) | 81.2 (5.6) | 99.5 (4.9) | 99.3 (3.8) |
HMB | 2–2000 | 0.9915 | 0.53 | 29 | 81.2 (6.4) | 95.1 (6.2) | 96.5 (5.8) | 82.0 (8.5) | 108.4 (5.1) | 97.9 (4.9) |
Sample | Analytes | Found (μg/L) | Added (μg/L) | Determined (μg/L) | Recoveries (%) | RSDs (%) (n = 3) |
---|---|---|---|---|---|---|
The tap water | HB | N.D. a | 50 | 42.6 | 85.2 | 4.6 |
DB | N.D. | 50 | 47.9 | 95.8 | 3.4 | |
BP | N.D. | 50 | 50.2 | 100.4 | 5.7 | |
HMB | N.D. | 50 | 48.4 | 96.8 | 4.1 | |
The lake water | HB | N.D. | 50 | 47.8 | 95.6 | 6.3 |
DB | N.D. | 50 | 49.1 | 98.2 | 4.8 | |
BP | N.D. | 50 | 43.7 | 87.4 | 3.9 | |
HMB | N.D. | 50 | 48.9 | 97.8 | 2.9 | |
Domestic wastewater | HB | N.D. | 50 | 50.7 | 101.4 | 2.6 |
DB | N.D. | 50 | 50.6 | 101.2 | 2.1 | |
BP | N.D. | 50 | 53.5 | 107.0 | 3.7 | |
HMB | N.D. | 50 | 47.9 | 95.8 | 1.4 | |
The paint factory wastewater | HB | 54.2 | 50 | 95.7 | 83.0 | 2.5 |
DB | N.D. | 50 | 45.8 | 91.6 | 1.5 | |
BP | N.D. | 50 | 46.7 | 93.4 | 3.8 | |
HMB | N.D. | 50 | 41.8 | 83.6 | 0.7 |
Matrix | Extraction Technique | Characteristics | LODs | Recovery (%) | Instrumental Analysis | Ref. |
---|---|---|---|---|---|---|
Environmental water | DLLME | IL | DB: 0.02 μg/L HMP: 0.016 μg/L | 70.5–90.3 79.5–91.3 | UPLC-PDA | [5] |
Root vegetables | UA-DLLME | ACN | HB: 0.3 μg/L DB: 0.15 μg/L HMP: 0.03 μg/L | 70–90 87–92 98–111 | LC-MS/MS | [6] |
Beach sand | SPME | AcOEt | HMB: 2.5–3.3 ng/g (LOQ) | >85 | GC-MS/MS | [9] |
Human whole blood, plasma and urine | FPSE | Sol-gel sorbent coated fabric | DB: 30 μg/L BP: 30 μg/L HMB: 30 μg/L | — | HPLC-PDA | [28] |
Aqueous solution | AA-DLLME | DES | HB: 0.1 μg/L DB: 0.1 μg/L BP: 0.1 μg/L HMP: 0.05 μg/L | 93.5 94.1 96.6 94.5 | HPLC-DAD | [29] |
Environmental water | MA-DLLME | AC; SIL | DB: 1.21 ng/L HMP:1.19 ng/L | 70–116 82–106 | LC-MS/MS | [33] |
Tap water, lake water, domestic wasterwater, factory wastewater | SFO-DLLME | α-Terpineol | HB: 0.12 μg/L DB: 0.30 μg/L BP: 0.37 μg/L HMP: 0.53 μg/L | 78.9–99.6 75.0–100.3 81.2–99.5 71.2–108.4 | HPLC-DAD | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, L.; Zheng, D.; Xia, Z.; Peng, M.; Sun, D.; Hu, X.; Peng, X. A Natural Monoterpene Enol for Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplets for Determination of Benzophenone Compounds in Water Samples. Separations 2023, 10, 1. https://doi.org/10.3390/separations10010001
Zhang X, Zhang L, Zheng D, Xia Z, Peng M, Sun D, Hu X, Peng X. A Natural Monoterpene Enol for Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplets for Determination of Benzophenone Compounds in Water Samples. Separations. 2023; 10(1):1. https://doi.org/10.3390/separations10010001
Chicago/Turabian StyleZhang, Xian, Luyun Zhang, Dan Zheng, Zhenzhen Xia, Maomin Peng, Danling Sun, Xizhou Hu, and Xitian Peng. 2023. "A Natural Monoterpene Enol for Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplets for Determination of Benzophenone Compounds in Water Samples" Separations 10, no. 1: 1. https://doi.org/10.3390/separations10010001
APA StyleZhang, X., Zhang, L., Zheng, D., Xia, Z., Peng, M., Sun, D., Hu, X., & Peng, X. (2023). A Natural Monoterpene Enol for Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplets for Determination of Benzophenone Compounds in Water Samples. Separations, 10(1), 1. https://doi.org/10.3390/separations10010001