Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Processing by Microbead-Beating Extraction
2.3. GC-MS/MS Conditions
2.4. Method Performance Characteristics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berthiaume, A.; Galarneau, E.; Marson, G. Polycyclic aromatic compounds (PACs) in the Canadian environment: Sources and emissions. Environ. Pollut. 2021, 269, 116008. [Google Scholar] [CrossRef] [PubMed]
- Marvin, C.; Tomy, G.T.; Thomas, P.J.; Holloway, A.C.; Sandau, C.D.; Idowu, I.; Xia, Z. Considerations for prioritization of polycyclic aromatic compounds as environmental contaminants. Environ. Sci. Technol. 2020, 54, 14787–14789. [Google Scholar] [CrossRef]
- Hussain, K.; Hoque, R.R.; Balachandran, S.; Medhi, S.; Idris, M.G.; Rahman, M.; Hussain, F.L. Monitoring and risk analysis of PAHs in the environment. In Handbook of Environmental Materials Management; Hussain, C., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–35. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, S.; Shi, Y.; Zhu, L.; Wang, C.; Sharma, V.K. Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: The role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties. Environ. Sci. Technol. 2018, 52, 5725–5733. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zheng, M.; Lammel, G.; Bandowe, B.A.M.; Liu, G. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment. Prog. Energy Combust. Sci. 2020, 76, 100803. [Google Scholar] [CrossRef]
- Mehr, M.R.; Keshavarzi, B.; Moore, F.; Fooladivanda, S.; Sorooshian, A.; Biester, H. Spatial distribution, environmental risk and sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in surface sediments-northwest of Persian Gulf. Cont. Shelf Res. 2020, 193, 104036. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Lu, S.; Zhang, T.; Jin, B.; Wang, Q.; Tang, Z.; Liu, Y.; Guo, X.; Zhou, J. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Sci. Total Environ. 2019, 651, 2497–2506. [Google Scholar] [CrossRef]
- Gbeddy, G.; Goonetilleke, A.; Ayoko, G.A.; Egodawatta, P. Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. Environ. Pollut. 2020, 257, 113510. [Google Scholar] [CrossRef]
- Shahsavari, E.; Schwarz, A.; Aburto-Medina, A.; Ball, A.S. Biological degradation of polycyclic aromatic compounds (PAHs) in soil: A current perspective. Curr. Pollut. Rep. 2019, 5, 84–92. [Google Scholar] [CrossRef]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Petrol. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.; Idowu, I.; Francisco, O.; Marvin, C.; Thomas, P.J.; Stetefeld, J.; Tomy, G.T. Enumeration of the constitutional isomers of environmentally relevant substituted polycyclic aromatic compounds. Chemosphere 2018, 202, 9–16. [Google Scholar] [CrossRef]
- Zeigler, C.; MacNamara, K.; Wang, Z.; Robbat, A., Jr. Total alkylated polycyclic aromatic hydrocarbon characterization and quantitative comparison of selected ion monitoring versus full scan gas chromatography/mass spectrometry based on spectral deconvolution. J. Chromatogr. A 2008, 1205, 109–116. [Google Scholar] [CrossRef]
- Zeigler, C.; Wilton, N.; Robbat, A., Jr. Toward the accurate analysis of C1–C4 polycyclic aromatic sulfur heterocycles. Anal. Chem. 2012, 84, 2245–2252. [Google Scholar] [CrossRef]
- Zhao, Y.; Hong, B.; Fan, Y.; Wen, M.; Han, X. Accurate analysis of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs homologs in crude oil for improving the gas chromatography/mass spectrometry performance. Ecotoxicol. Environ. Saf. 2014, 100, 242–250. [Google Scholar] [CrossRef]
- Idowu, I.; Johnson, W.; Francisco, O.; Obal, T.; Marvin, C.; Thomas, P.J.; Sandau, C.D.; Stetefeld, J.; Tomy, G.T. Comprehensive two-dimensional gas chromatography high-resolution mass spectrometry for the analysis of substituted and unsubstituted polycyclic aromatic compounds in environmental samples. J. Chromatogr. A 2018, 1579, 106–114. [Google Scholar] [CrossRef]
- Santos, P.M.; del Nogal Sánchez, M.; Pavón, J.L.P.; Cordero, B.M. Determination of polycyclic aromatic hydrocarbons in human biological samples: A critical review. TrAC Trends Anal. Chem. 2019, 113, 194–209. [Google Scholar] [CrossRef]
- Świsłowski, P.; Hrabák, P.; Wacławek, S.; Liskova, K.; Antos, V.; Rajfur, M.; Ząbkowska-Wacławek, M. The application of active biomonitoring with the use of mosses to identify polycyclic aromatic hydrocarbons in an atmospheric aerosol. Molecules 2021, 26, 7258. [Google Scholar] [CrossRef]
- Xia, Z.; Idowu, I.; Marvin, C.; Thomas, P.J.; Johnson, W.; Francisco, O.; Stetefeld, J.; Crimmins, B.; Fry, M.; Tomy, G.T. Identification of halogenated polycyclic aromatic hydrocarbons in biological samples from Alberta Oil-Sands Region. Chemosphere 2019, 215, 206–213. [Google Scholar] [CrossRef]
- Roux, K.E.; Marra, P.P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 2007, 53, 261–268. [Google Scholar] [CrossRef]
- Braune, B.M.; Gaston, A.J.; Mallory, M.L. Temporal trends of legacy organochlorines in eggs of Canadian Arctic seabirds monitored over four decades. Sci. Total Environ. 2019, 646, 551–563. [Google Scholar] [CrossRef]
- Esparza, I.; Elliott, K.H.; Choy, E.S.; Braune, B.M.; Letcher, R.J.; Patterson, A.; Fernie, K.J. Mercury, legacy and emerging POPs, and endocrine-behavioural linkages: Implications of Arctic change in a diving seabird. Environ. Res. 2022, 212, 113190. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, K.; Morrissey, C.A. Polycyclic aromatic hydrocarbon exposure impairs pre-migratory fuelling in captively-dosed Sanderling (Calidris alba). Ecotoxicol. Environ. Saf. 2018, 161, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Pleil, J.; Stiegel, M.; Sobus, J.; Tabucchi, S.; Ghio, A.; Madden, M. Cumulative exposure assessment for trace-level polycyclic aromatic hydrocarbons (PAHs) using human blood and plasma analysis. J. Chromatogr. B 2010, 878, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Patel, D.K.; Ram, S.; Mathur, N.; Siddiqui, M.; Behari, J.R. Blood levels of polycyclic aromatic hydrocarbons in children of Lucknow, India. Arch. Environ. Contam. Toxicol. 2008, 54, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Patel, D.; Ram, S.; Mathur, N.; Siddiqui, M. Blood levels of polycyclic aromatic hydrocarbons in children and their association with oxidative stress indices: An Indian perspective. Clin. Biochem. 2008, 41, 152–161. [Google Scholar] [CrossRef]
- Singh, V.K.; Anand, M.; Rawtani, D.; Singh, U.P.; Patel, D.; Mehrotra, P.; Mathur, N.; Siddiqui, M. Blood levels of polycyclic aromatic hydrocarbons in women with benign and malignant breast lesions: A case-control study. Asian J. Med. Sci. 2010, 1, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Huo, X.; Wu, K.; Liu, J.; Zhang, Y.; Xu, X. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China. Sci. Total Environ. 2012, 427, 35–40. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Wang, B.; Tao, S.; Liu, W.; Wang, X.; Cao, J.; Li, B.; Lu, X.; Wong, M.H. Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China. Environ. Sci. Technol. 2011, 45, 10235–10242. [Google Scholar] [CrossRef]
- Xu, X.; Yekeen, T.A.; Xiao, Q.; Wang, Y.; Lu, F.; Huo, X. Placental IGF-1 and IGFBP-3 expression correlate with umbilical cord blood PAH and PBDE levels from prenatal exposure to electronic waste. Environ. Pollut. 2013, 182, 63–69. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Huang, C.; Lu, F.; Chiung, Y.M.; Huo, X. Association of polycyclic aromatic hydrocarbons (PAHs) and lead co-exposure with child physical growth and development in an e-waste recycling town. Chemosphere 2015, 139, 295–302. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Q.; Peng, J.; Wu, M.; Pan, B.; Xing, B. Transfer of polycyclic aromatic hydrocarbons from mother to fetus in relation to pregnancy complications. Sci. Total Environ. 2018, 636, 61–68. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Scheifler, R.; Amiot, C.; Riols, R.; Coeurdassier, M. Determination of polycyclic aromatic hydrocarbon (PAH) contents in micro-volumes of the whole blood and liver of Red Kite by a simplified GC-MS/MS method. Int. J. Environ. Anal. Chem. 2022, 102, 834–843. [Google Scholar] [CrossRef]
- Provatas, A.A.; Yevdokimov, A.V.; King, C.A.; Gatley, E.L.; Stuart, J.D.; Evers, D.C.; Perkins, C.R. Rapid quick, easy, cheap, effective, rugged, and safe extraction with novel phospholipid cleanup: A streamlined ultra high performance liquid chromatography with ultraviolet detection approach for screening polycyclic aromatic hydrocarbons in avian blood cells and plasma. J. Sep. Sci. 2015, 38, 2677–2683. [Google Scholar]
- Dulsat-Masvidal, M.; Bertolero, A.; Mateo, R.; Lacorte, S. Legacy and emerging contaminants in flamingos’ chicks’ blood from the Ebro Delta Natural Park. Chemosphere 2022, 312, 137205. [Google Scholar] [CrossRef]
- Paruk, J.D.; Adams, E.M.; Uher-Koch, H.; Kovach, K.A.; Long IV, D.; Perkins, C.; Schoch, N.; Evers, D.C. Polycyclic aromatic hydrocarbons in blood related to lower body mass in common loons. Sci. Total Environ. 2016, 565, 360–368. [Google Scholar] [CrossRef]
- Troisi, G.; Borjesson, L. Development of an immunoassay for the determination of polyaromatic hydrocarbons in plasma samples from oiled seabirds. Environ. Sci. Technol. 2005, 39, 3748–3755. [Google Scholar] [CrossRef]
- Burgos-Núñez, S.; Navarro-Frómeta, A.; Marrugo-Negrete, J.; Enamorado-Montes, G.; Urango-Cárdenas, I. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Mar. Pollut. Bull. 2017, 120, 379–386. [Google Scholar] [CrossRef]
- Xia, Z.; Idowu, I.; Halldorson, T.; Lucas, A.-M.; Stein, C.; Kaur, M.; Tomy, T.; Marvin, C.; Thomas, P.J.; Hebert, C.E.; et al. Microbead beating extraction of avian eggs for polycyclic aromatic compounds. Chemosphere 2023. Under review. [Google Scholar]
- Idowu, I.; Francisco, O.; Thomas, P.J.; Johnson, W.; Marvin, C.; Stetefeld, J.; Tomy, G.T. Validation of a simultaneous method for determining polycyclic aromatic compounds and alkylated isomers in biota. Rapid Commun. Mass Spectrom. 2018, 32, 277–287. [Google Scholar] [CrossRef]
- Magnusson, B.; Omemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf. (accessed on 21 August 2022).
- Association of Official Analytical Chemist International. Guidelines for Standard Method Performance Requirements AOAC Official Methods of Analysis. Appendix F. 2016, pp. 1–18. Available online: http://www.eoma.aoac.org/app_f.pdf (accessed on 21 August 2022).
Compound | Spiking Level | Interday Precision RSD (%) | LOD pg µL−1 | LOQ pg µL−1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 pg µL−1 | 50 pg µL−1 | 250 pg µL−1 | ||||||||||||||||
Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | |||||||||||||
(%) | RSD (%) | (%) | RSD (%) | (%) | RSD (%) | |||||||||||||
PAHs | P | S | P | S | P | S | P | S | P | S | P | S | P | S | P | S | P | S |
Ace | 76.6 | 85.5 | 6.3 | 10.1 | 89.1 | 94.4 | 5.6 | 3.5 | 84.1 | 90.5 | 6.3 | 15.0 | 5.7 | 10.5 | 0.7 | 0.5 | 2.2 | 1.7 |
Acy | 91.9 | 96.4 | 2.5 | 3.8 | 92.8 | 92.9 | 6.6 | 1.7 | 80.8 | 89.1 | 0.7 | 2.5 | 6.9 | 5.4 | 0.3 | 0.3 | 0.9 | 1.1 |
Ant | 93.4 | 107.3 | 15.5 | 12.3 | 86.1 | 96.9 | 5.4 | 5.3 | 81.1 | 98.3 | 1.2 | 6.0 | 9.2 | 7.2 | 0.4 | 0.3 | 1.4 | 0.9 |
B[a]A | 84.6 | 85.7 | 6.0 | 7.2 | 91.8 | 92.2 | 13.0 | 4.1 | 81.3 | 93.4 | 7.5 | 7.9 | 13.4 | 12.8 | 0.2 | 0.3 | 0.8 | 0.9 |
B[a]P | 94.0 | 96.9 | 4.1 | 3.2 | 93.4 | 88.3 | 3.4 | 14.0 | 83.6 | 99.3 | 11.0 | 12.1 | 10.7 | 13.4 | 0.4 | 0.4 | 1.4 | 1.5 |
B[b]F | 93.4 | 93.8 | 4.8 | 5.4 | 97.7 | 96.6 | 9.3 | 7.4 | 82.2 | 106.7 | 3.6 | 26.2 | 10.1 | 6.8 | 0.4 | 0.4 | 1.3 | 1.5 |
B[ghi]P | 107.8 | 93.5 | 4.1 | 13.9 | 86.8 | 96.9 | 16.8 | 11.1 | 89.3 | 98.8 | 20.2 | 19.7 | 15.5 | 20.6 | 0.5 | 0.4 | 1.8 | 1.4 |
B[k]F | 81.7 | 101.2 | 20.0 | 11.6 | 95.6 | 101.4 | 24.0 | 10.6 | 81.4 | 110.1 | 12.7 | 18.8 | 25.2 | 14.1 | 0.5 | 0.6 | 1.8 | 1.9 |
Chr | 87.9 | 94.9 | 12.2 | 6.4 | 80.2 | 95.9 | 11.2 | 8.7 | 76.5 | 97.4 | 5.7 | 10.7 | 8.8 | 6.0 | 0.5 | 0.5 | 1.7 | 1.7 |
D[a,h]A | 93.0 | 86.7 | 18.5 | 12.1 | 87.4 | 91.6 | 14.0 | 10.0 | 95.5 | 107.8 | 7.5 | 11.5 | 11.8 | 12.5 | 0.6 | 0.4 | 2.1 | 1.2 |
Flt | 66.7 | 69.4 | 8.2 | 6.5 | 132.1 | 133.7 | 25.7 | 6.5 | 85.7 | 99.4 | 5.2 | 4.2 | 20.9 | 13.4 | 0.3 | 0.4 | 0.9 | 1.3 |
Flu | 83.5 | 93.0 | 8.5 | 5.8 | 90.1 | 89.1 | 8.3 | 2.6 | 81.0 | 82.7 | 2.3 | 12.9 | 8.1 | 4.0 | 0.3 | 0.3 | 1.0 | 1.0 |
Ind | 80.6 | 80.9 | 1.6 | 12.4 | 86.1 | 87.8 | 7.0 | 10.6 | 80.2 | 97.4 | 7.6 | 7.9 | 10.0 | 12.2 | 0.6 | 0.9 | 1.9 | 2.8 |
Nap | 62.5 | 88.4 | 5.4 | 12.9 | 87.8 | 93.6 | 1.5 | 4.9 | 82.7 | 91.3 | 2.3 | 2.4 | 6.5 | 16.7 | 1.2 | 0.8 | 4.1 | 2.7 |
Phen | 61.4 | 67.1 | 5.9 | 4.13 | 101.2 | 110.8 | 9.7 | 5.4 | 80.7 | 93.1 | 1.3 | 3.4 | 10.3 | 9.04 | 0.3 | 0.2 | 1.1 | 0.6 |
Pyr | 52.6 | 59.5 | 4.4 | 1.8 | 61.0 | 51.6 | 16.6 | 7.6 | 117.1 | 125.9 | 1.7 | 11.6 | 21.6 | 23.8 | 0.3 | 0.4 | 0.9 | 1.2 |
Compounds | Spiking Level | LOD pg µL−1 | LOQ pg µL−1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
50 pg µL−1 | Interday Precision RSD (%) | |||||||||
Accuracy (%) | Precision RSD (%) | |||||||||
APAHs | Plasma | Serum | Plasma | Plasma | Plasma | Serum | Plasma | Serum | Plasma | Serum |
2-Methylnaphthalene | 70.9 | 74.3 | 17.3 | 16.6 | 24.0 | 24.4 | 3.8 | 6.1 | 12.7 | 20.2 |
1,2,5,6-Me4-Naphthalene | 89.8 | 102.2 | 21.7 | 20.9 | 18.7 | 20.9 | 6.9 | 5.7 | 23.0 | 19.0 |
3-Methylphenanthrene | 99.4 | 94.5 | 17.9 | 16.0 | 8.5 | 11.0 | 0.1 | 0.1 | 0.3 | 0.4 |
1,2,6,9-Me4-Phenanthrene | 105.2 | 79.1 | 29.1 | 23.9 | 9.4 | 9.3 | 7.0 | 8.9 | 23.5 | 29.7 |
Retene | 100.3 | 86.3 | 31.3 | 25.2 | 11.2 | 11.6 | 0.1 | 0.1 | 0.2 | 0.3 |
2-Me-Chrysene | 89.4 | 102.9 | 20.6 | 22.1 | 11.7 | 12.4 | 7.4 | 4.4 | 24.8 | 14.8 |
1,3,6-Me3-Chrysene | 90.4 | 81.4 | 15.7 | 19.1 | 15.6 | 21.0 | 0.5 | 0.1 | 1.6 | 0.2 |
1-Me-Fluorene | 104.3 | 108.4 | 17.9 | 16.0 | 8.5 | 13.9 | 0.3 | 0.4 | 1.2 | 1.4 |
9-Bu-Fluorene | 100.3 | 94.9 | 31.3 | 23.9 | 9.4 | 12.1 | 7.0 | 5.4 | 23.4 | 17.9 |
Benzothiophene | 78.7 | 99.1 | 21.7 | 20.9 | 18.7 | 11.6 | 0.3 | 0.5 | 0.9 | 1.8 |
4-Me-Dibenzothiophene | 94.5 | 106.3 | 31.3 | 25.2 | 11.2 | 10.1 | 0.1 | 0.1 | 0.2 | 0.2 |
4-Bu-Dibenzothiophene | 105.2 | 89.1 | 20.5 | 20.1 | 9.4 | 12.8 | 1.2 | 3.1 | 4.3 | 10.2 |
1-Me-Pyrene | 87.3 | 102.9 | 20.6 | 22.1 | 11.7 | 14.2 | 2.9 | 3.3 | 9.6 | 11.2 |
1-Bu-Pyrene | 76.2 | 92.3 | 15.7 | 19.1 | 15.6 | 11.6 | 3.8 | 14.5 | 12.6 | 48.4 |
2,3-BNT | 98.6 | 100.8 | 20.5 | 20.1 | 21.2 | 24.5 | 8.3 | 7.2 | 27.5 | 24.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, V.; Halldorson, T.; Idowu, I.; Xia, Z.; Vitharana, N.; Marvin, C.; Thomas, P.J.; Tomy, G.T. Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. Separations 2023, 10, 48. https://doi.org/10.3390/separations10010048
Moradi V, Halldorson T, Idowu I, Xia Z, Vitharana N, Marvin C, Thomas PJ, Tomy GT. Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. Separations. 2023; 10(1):48. https://doi.org/10.3390/separations10010048
Chicago/Turabian StyleMoradi, Vida, Thor Halldorson, Ifeoluwa Idowu, Zhe Xia, Nipuni Vitharana, Chris Marvin, Philippe J. Thomas, and Gregg T. Tomy. 2023. "Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood" Separations 10, no. 1: 48. https://doi.org/10.3390/separations10010048
APA StyleMoradi, V., Halldorson, T., Idowu, I., Xia, Z., Vitharana, N., Marvin, C., Thomas, P. J., & Tomy, G. T. (2023). Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. Separations, 10(1), 48. https://doi.org/10.3390/separations10010048