Date Palm Seed Extract for Mild Steel Corrosion Prevention in HCl Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Date Palm Seeds (DPS) Extraction
2.2. Preparation of Mild Steel
2.3. Electrochemical Studies
2.3.1. Open Circuit Potential (OCP)
2.3.2. Potentiodynamic Polarisation (PDP)
2.3.3. Electrochemical Impedance Spectroscopy (EIS) Technique
2.4. Weight Loss Test
2.5. Fourier Transform Infrared Spectroscopy (FTIR) Technique
2.6. Computational of Density Function Theory (DFT)
2.6.1. Quantum Chemical Calculation
2.6.2. Adsorption Sites
3. Results
3.1. Open Circuit Potential Analysis (OCP)
3.2. Potentiodynamic Polarisation
3.3. Electrochemical Impedance Spectroscopy (EIS)
3.4. Weight Loss Test
3.5. Scanning Electron Microscopy
3.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.7. Computational of Density Function Theory (DFT)
3.7.1. Quantum Chemical Calculations
3.7.2. Adsorption Sites
3.8. Comparison with Related Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lahhit, N.; Bouyanzer, A.; Desjobert, J.-M.; Hammouti, B.; Salghi, R.; Costa, J.; Jama, C.; Bentiss, F.; Majidi, L. Fennel (Foeniculum vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution. Port. Electrochim. Acta 2011, 29, 127–138. [Google Scholar] [CrossRef]
- Bharatiya, U.; Gal, P.; Agrawal, A.; Shah, M.; Sircar, A. Effect of corrosion on crude oil and natural gas pipeline with emphasis on prevention by ecofriendly corrosion inhibitors: A comprehensive review. J. Bio- Tribo-Corros. 2019, 5, 35. [Google Scholar] [CrossRef]
- Mobin, M.; Rizvi, M. Polysaccharide from Plantago as a Green Corrosion Inhibitor for Carbon Steel in 1M HCl Solution. Carbohydr. Polym. 2016, 160, 172–183. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.E.; Bahadur, I.; Quraishi, M.A. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J. Mol. Liq. 2018, 266, 577–590. [Google Scholar] [CrossRef]
- Fouda, A.S.; Etaiw, S.H.; Elnggar, W. Punica Plant extract as Green Corrosion inhibitor for C-steel in Hydrochloric Acid Solutions. Int. J. Electrochem. Sci. 2014, 9, 4866–4883. [Google Scholar]
- Victoria, S.N.; Prasad, R.; Manivannan, R. Psidium Guajava Leaf Extract as Green Corrosion Inhibitor for Mild steel in Phosphoric Acid. Int. J. Electrochem. Sci. 2015, 10, 2220–2238. [Google Scholar]
- Alaneme, K.K.; Daramola, Y.S.; Olusegun, S.J.; Afolabi, A.S. Corrosion Inhibition and Adsorption Characteristics of Rice Husk Extracts on Mild Steel Immersed in 1M H2SO4 and HCl Solutions. Int. J. Electrochem. Sci. 2015, 10, 3553–3567. [Google Scholar]
- Deng, S.; Li, X. Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H2SO4 solutions. Corros. Sci. 2012, 55, 407–415. [Google Scholar] [CrossRef]
- Oguzie, E.E.; Oguzie, K.L.; Akalezi, C.O.; Udeze, I.O.; Ogbulie, J.N.; Njoku, V.O. Natural Products for Materials Protection: Corrosion and Microbial Growth Inhibition Using Capsicum frutescens Biomass Extracts. ACS Sustain. Chem. Eng. 2013, 1, 214–225. [Google Scholar] [CrossRef]
- Noor, E.A. The impact of some factors on the inhibitory action of Radish seeds aqueous extract for mild steel corrosion in 1 M H2SO4 solution The impact of some factors on the inhibitory action of Radish seeds aqueous extract for mild steel corrosion in 1 M H2SO. Mater. Chem. Phys. 2018, 131, 160–169. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, L.; Zhu, M.; Wang, K.; Zhang, R.; He, Z.; Lin, Y.; Leng, S.; Anadebe, V.C.; Zheng, X. Akebia trifoliate koiaz peels extract as environmentally benign corrosion inhibitor for mild steel in HCl solutions: Integrated experimental and theoretical investigations. J. Ind. Eng. Chem. 2021, 101, 227–236. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Singh, A.; Kumar, V.; Kumar, D.; Kumar, A. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Mater. Chem. Phys. 2010, 122, 114–122. [Google Scholar] [CrossRef]
- Bammou, L.; Belkhaouda, M.; Salghi, R.; Benali, O.; Zarrouk, A.; Zarrok, H. Journal of the Association of Arab Universities for Basic Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts. J. Assoc. Arab. Univ. Basic Appl. Sci. 2018, 16, 83–90. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, D.; Haldhar, R. Use of Butea monosperma Extract as Green Corrosion Inhibitor. Int. J. Electrochem. Sci. 2017, 12, 8793–8805. [Google Scholar] [CrossRef]
- Shahrabi Farahania, B.; Ramezanzadeh, M.J. Electrochemical and surface characterisations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl. J. Taiwan Inst. Chem. Eng. 2016, 63, 436. [Google Scholar]
- Alvarez, P.E.; Fiori-bimbi, M.V.; Neske, A.; Brandán, S.A.; Gervasi, C.A. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J. Ind. Eng. Chem. 2017, 58, 92. [Google Scholar] [CrossRef]
- Buchweishaija, J. Phytochemicals as green corrosion inhibitors in various corrosive media: A review. Tanzan. J. Sci. 2009, 35, 77–92. [Google Scholar]
- Umoren, S.A.; Gasem, Z.M.; Obot, I.B. Date palm (Phoenix dactylifera) leaf extract as an eco-friendly corrosion inhibitor for carbon steel in 1M hydrochloric acid solution. Anti-Corros. Methods Mater. 2015, 1, 19. [Google Scholar] [CrossRef]
- Al-senani, G.M.; Alshabanat, M. Study the Corrosion Inhibition of Carbon Steel in 1 M HCl Using Extracts of Date Palm Waste. Int. J. Electrochem. Sci. 2018, 13, 3777–3788. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.J.; Othman, N.K.; Taib, M.F.M.; Samat, M.H.; Yahya, S. Experimental and Theoretical Studies on Extract of Date Palm Seed as a Green Anti-Corrosion Agent in Hydrochloric Acid Solution. Molecules 2021, 26, 3535. [Google Scholar] [CrossRef]
- Jasim, N.; Othman, N.K. Date Palm Seed Extract as a Green Corrosion Inhibitor in 0.5 M HCl Medium for Carbon Steel: Electrochemical Measurement and Weight Loss Studies. Int. J. Electrochem. Sci. 2020, 15, 9597–9610. [Google Scholar] [CrossRef]
- Musa, A.Y.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Chee, E.P. Inhibition of aluminum corrosion by phthalazinone and synergistic effect of halide ion in 1.0 M HCl. CAP 2012, 12, 325–330. [Google Scholar] [CrossRef]
- Lowmunkhong, P.; Ungthararak, D.; Sutthivaiyakit, P. Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution. Corros. Sci. 2010, 52, 30–36. [Google Scholar] [CrossRef]
- Shahmoradi, A.R.; Ranjbarghanei, M.; Javidparvar, A.A.; Guo, L.; Berdimurodov, E.; Ramezanzadeh, B. Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. J. Mol. Liq. 2021, 338, 116550. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Obot, I.B.; Guo, L. Thioglycoluril derivative as a new and effective corrosion inhibitor for low carbon steel in a 1 M HCl medium: Experimental and theoretical investigation. J. Mol. Struct. 2021, 1234, 130165. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Prasad, D.; Haldhar, R. Study of the Aegle marmelos as a Green Corrosion Inhibitor for Mild Steel in Acidic Medium: Experimental and Theoretical Approach. J. Bio- Tribo-Corros. 2018, 4, 61. [Google Scholar] [CrossRef]
- Kokalj, A. On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem. Phys. 2012, 393, 1–12. [Google Scholar] [CrossRef]
- Reza, N.A.; Akhmal, N.H.; Fadil, N.A.; Taib, M.F.M. A review on plants and biomass wastes as organic green corrosion inhibitors for mild steel in acidic environment. Metals 2021, 11, 1062. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, X.L.; Yu, H.H.; Du, M. The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium OH. Corros. Sci. 2011, 53, 3324–3330. [Google Scholar] [CrossRef]
- Fragoza-mar, L.; Olivares-xometl, O.; Domínguez-aguilar, M.A.; Flores, E.A. Corrosion inhibitor activity of 1,3-diketone malonates for mild steel in aqueous hydrochloric acid solution Corrosion inhibitor activity of 1,3-diketone malonates for mild steel in aqueous hydrochloric acid solution. Corros. Sci. 2012, 61, 171–184. [Google Scholar] [CrossRef]
- Oguzie, E.E.; Ogukwe, C.E.; Ogbulie, J.N.; Nwanebu, F.C.; Adindu, C.B.; Udeze, I.O.; Oguzie, K.L.; Eze, F.C. Broad spectrum corrosion inhibition: Corrosion and microbial (SRB) growth inhibiting effects of Piper guineense extract. J. Mater. Sci. 2012, 47, 3592–35601. [Google Scholar] [CrossRef]
- Medyński, D.; Chęcmanowski, J. Corrosion Resistance of L120G13 Steel Castings Zone-Reinforced with Al2O3. Materials 2022, 15, 4090. [Google Scholar] [CrossRef]
- Guo, L.; Tan, J.; Kaya, S.; Leng, S.; Li, Q.; Zhang, F. Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation. J. Colloid. Interface Sci. 2020, 570, 116–124. [Google Scholar] [CrossRef]
- Olowokere, J.A.; Onen, A.I.; Odineze, M.C.; B’aga, I.D.; Kefas, E.G. Extraction and Characterisation of Oil from Date Palm (Phoenix dactylifera) Seed. Asian J. Appl. Chem. Res. 2019, 3, 1–9. [Google Scholar]
- Hsissou, R. Review on epoxy polymers and its composites as a potential anticorrosive coatings for carbon steel in 3.5% NaCl solution: Computational approaches. J. Mol. Liq. 2021, 336, 116307. [Google Scholar] [CrossRef]
- Wang, B.-L.; Zhang, Y.; Liu, X.-H.; Zhang, L.-Y.; Zhan, Y.-Z.; Zhang, X.; Wang, L.Z.; Li, Y.H.; Li, Z.M. Synthesis and biological activity of novel dimethylpyrazole and piperazine-containing (bis) 1,2,4-triazole derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 34–41. [Google Scholar] [CrossRef]
- Guo, L.; Safi, Z.S.; Kaya, S.; Shi, W.; Tüzün, B.; Altunay, N.; Kaya, C. Anticorrosive effects of some thiophene derivatives against the corrosion of iron: A computational study. Front. Chem. 2018, 6, 155. [Google Scholar] [CrossRef] [PubMed]
- Ituen, E.B.; Essien, E.A.; Udo, U.E.; Oluwaseyi, O.R. Experimental and theoretical study of corrosion inhibition effect of Cucumeropsis mannii N. seed oil metallic soap of zinc on mild steel surface in sulphuric acid. Adv. Appl. Sci. Res. 2014, 5, 26–53. [Google Scholar]
- Chandra, A.; Nguyen, M. Use of Local Softness for the Interpretation of Reaction Mechanisms. Int. J. Mol. Sci. 2002, 3, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Obayes, H.R.; Al-Amiery, A.A.; Alwan, G.H.; Abdullah, T.A.; Kadhum, A.A.H.; Mohamad, A.B. Sulphonamides as corrosion inhibitor: Experimental and DFT studies. J. Mol. Struct. 2017, 1138, 27–34. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Mohammed, N.J.; Othman, N.K. Electrochemical Studies of Date Palm Seed as a Green Corrosion Inhibitor for Carbon Steel in 0.5 M HSO and CHCOOH Conditions. In Proceedings of the 7th International Corrosion Prevention Symposium for Research Scholars; Springer: Berlin/Heidelberg, Germany, 2023; pp. 239–246. [Google Scholar]
- Daoudi, W.; El Aatiaoui, A.; Falil, N.; Azzouzi, M.; Berisha, A.; Olasunkanmi, L.O.; Dagdag, O.; Ebenso, E.E.; Koudad, M.; Aouinti, A.; et al. Essential oil of Dysphania ambrosioides as a green corrosion inhibitor for mild steel in HCl solution. J. Mol. Liq. 2022, 363, 119839. [Google Scholar] [CrossRef]
- Hossain, N.; Chowdhury, M.A.; Rana, M.; Hassan, M.; Islam, S. Terminalia arjuna leaves extract as green corrosion inhibitor for mild steel in HCl solution. Results Eng. 2022, 14, 100438. [Google Scholar] [CrossRef]
- Fekkar, G.; Yousfi, F.; Elmsellem, H.; Aiboudi, M.; Ramdani, M.; Abdel-Rahman, I.; Hammouti, B.; Bouyazza, L. Eco-friendly Chamaerops humilis L. fruit extract corrosion inhibitor for mild steel in 1M HCl. Int. J. Corros. Scale Inhib. 2020, 9, 446–459. [Google Scholar]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: Detailed macro/micro-scale experimental and computational explorations. Constr. Build. Mater. 2020, 245, 118464. [Google Scholar] [CrossRef]
- Subbiah, K.; Lee, H.-S.; Mandal, S.; Park, T. Conifer Cone (Pinus resinosa) as a Green Corrosion Inhibitor for Steel Rebar in Chloride-Contaminated Synthetic Concrete Pore Solutions. ACS Appl. Mater. Interfaces 2021, 13, 43676–43695. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Selvaraj, R.M.; Mohamed, T.; Mukesh, A.M.; Olfa, K.; Nikolova, M.P. Aerva lanata flowers extract as green corrosion inhibitor of low-carbon steel in HCl solution: An in vitro study. Chem. Pap. 2021, 75, 1165–1174. [Google Scholar] [CrossRef]
Concentrations | EOCP mV |
---|---|
Blank | −478.7 |
800 mg/L | −471.3 |
900 mg/L | −465.1 |
1200 mg/L | −446.9 |
1400 mg/L | −432.8 |
2000 mg/L | −439.2 |
Concentrations | icorr (µA.cm−2) | Ecorr (mV) | Ba (mV/dec) | Bc (mV/dec) | IE% |
---|---|---|---|---|---|
Blank | 124 | −455 | 79.9 | −126.7 | 0 |
800 mg/L | 39 | −465 | 69.1 | −148.6 | 69 |
900 mg/L | 32 | −470 | 60.4 | −119.8 | 75 |
1200 mg/L | 18 | −469 | 64.9 | −123.7 | 86 |
1400 mg/L | 6 | −467 | 68.8 | −143.7 | 95 |
2000 mg/L | 10 | −471 | 61.3 | −104.9 | 92 |
Concentrations | Rct (Ωcm2) | Rs (Ωcm2) | IE% |
---|---|---|---|
blank | 40.43 | 622 | 0 |
800 mg/L | 120 | 197 | 66 |
900 mg/L | 190 | 228 | 79 |
1200 mg/L | 300 | 626 | 87 |
1400 mg/L | 900 | 790 | 96 |
2000 mg/L | 701 | 821 | 94 |
Concentrations | Cr (mmy−1) | IE% | |
---|---|---|---|
Blank | 2.508 | - | - |
800 mg/L | 0.895 | 64 | 0.64 |
900 mg/L | 0.672 | 73 | 0.73 |
1200 mg/L | 0.396 | 84 | 0.84 |
1400 mg/L | 0.228 | 91 | 0.91 |
2000 mg/L | 0.292 | 88 | 0.88 |
The Wavenumber (cm−1) of the Main Peaks Detected in This Study | Possible Functional Groups in Fatty Acid |
---|---|
584 | C=C |
721 | C=C |
963.37 | O−H bend |
852 and 1114 | C-O and CH2 |
1157 | C-O |
1376 | H-C-H bending, CH2 and CH3 |
1457 and 1585 | H-C-H bending and CH2 |
1232 and 1418 | CH2 |
1743 | C=C |
2921 and 2852 | C-H in CH2 and terminal CH3 groups |
1652 cm−1 | O-H bonds of the H2O molecule |
Fatty Acids | EHOMO | ELUMO | ΔE | IP | EA | ΔN | |||
---|---|---|---|---|---|---|---|---|---|
Lauric | –6.255 | –0.979 | 5.276 | 6.255 | 0.979 | 3.617 | 2.638 | 0.3791 | 0.2280 |
Myristic | –6.258 | –0.972 | 5.286 | 6.258 | 0.972 | 3.615 | 2.643 | 0.3784 | 0.2280 |
Oleic | –5.539 | –0.991 | 4.548 | 5.539 | 0.991 | 3.265 | 2.274 | 0.4398 | 0.3419 |
Phthalic | –6.404 | –2.924 | 3.480 | 6.404 | 2.924 | 4.664 | 1.740 | 0.5747 | 0.0448 |
Caprylic | –6.244 | –1.028 | 5.216 | 6.244 | 1.028 | 3.636 | 2.608 | 0.3834 | 0.2270 |
Palmitic | –6.260 | –0.973 | 5.287 | 6.260 | 0.973 | 3.617 | 2.644 | 0.3783 | 0.2276 |
Fatty Acids | Structure | HOMO | LUMO |
---|---|---|---|
Lauric | |||
Myristic | |||
Oleic | |||
Phthalic | |||
Caprylic | |||
Palmitic |
Lauric Acid | Myristic Acid | Oleic Acid | ||||||
---|---|---|---|---|---|---|---|---|
Atom | Atom | Atom | ||||||
C1 | −0.003 | −0.002 | C1 | −0.002 | −0.002 | C1 | −0.043 | −0.004 |
C2 | −0.004 | −0.003 | C2 | −0.003 | −0.002 | C2 | −0.043 | −0.002 |
C3 | −0.004 | −0.003 | C3 | −0.003 | −0.002 | C3 | 0.152 | 0.008 |
C4 | −0.004 | −0.003 | C4 | −0.003 | −0.002 | C4 | 0.151 | 0.010 |
C5 | −0.005 | −0.005 | C5 | −0.003 | −0.002 | C5 | −0.025 | −0.002 |
C6 | −0.007 | −0.006 | C6 | −0.004 | −0.003 | C6 | −0.017 | −0.001 |
C7 | −0.009 | −0.009 | C7 | −0.005 | −0.005 | C7 | −0.011 | −0.001 |
C8 | −0.012 | −0.013 | C8 | −0.007 | −0.006 | C8 | −0.008 | −0.001 |
C9 | −0.020 | −0.023 | C9 | −0.010 | −0.009 | C9 | −0.006 | −0.001 |
C10 | −0.042 | −0.031 | C10 | −0.012 | −0.012 | C10 | −0.005 | −0.001 |
C11 | −0.013 | −0.068 | C11 | −0.020 | −0.024 | C11 | −0.004 | −0.001 |
C12 | 0.128 | 0.273 | C12 | −0.041 | −0.028 | C12 | −0.025 | −0.007 |
O13 | 0.090 | 0.110 | C13 | −0.013 | −0.070 | C13 | −0.017 | −0.009 |
O14 | 0.370 | 0.231 | C14 | 0.123 | 0.273 | C14 | −0.010 | −0.013 |
O15 | 0.087 | 0.111 | C15 | −0.007 | −0.022 | |||
O16 | 0.356 | 0.232 | C16 | −0.006 | −0.031 | |||
C17 | −0.004 | −0.068 | ||||||
C18 | 0.002 | 0.272 | ||||||
O19 | 0.004 | 0.119 | ||||||
O20 | 0.005 | 0.226 | ||||||
Phthalic acid | Caprylic acid | Palmitic acid | ||||||
Atom | Atom | Atom | ||||||
C1 | 0.043 | 0.034 | C1 | −0.007 | −0.007 | C1 | −0.002 | −0.001 |
C2 | 0.018 | 0.077 | C2 | −0.009 | −0.009 | C2 | −0.003 | −0.001 |
C3 | 0.022 | 0.014 | C3 | −0.011 | −0.011 | C3 | −0.002 | −0.001 |
C4 | 0.005 | 0.058 | C4 | −0.016 | −0.018 | C4 | −0.002 | −0.001 |
C5 | 0.024 | 0.047 | C5 | −0.017 | −0.017 | C5 | −0.003 | −0.002 |
C6 | 0.026 | 0.032 | C6 | −0.021 | −0.038 | C6 | −0.003 | −0.002 |
C7 | 0.017 | 0.089 | C7 | −0.025 | −0.052 | C7 | −0.003 | −0.003 |
O8 | 0.001 | 0.047 | C8 | 0.115 | 0.277 | C8 | −0.004 | −0.003 |
O9 | 0.068 | 0.043 | O9 | 0.375 | 0.226 | C9 | −0.005 | −0.005 |
C10 | 0.092 | 0.025 | O10 | 0.119 | 0.117 | C10 | −0.007 | −0.006 |
O11 | 0.084 | 0.114 | C11 | −0.009 | −0.009 | |||
O12 | 0.289 | 0.076 | C12 | −0.012 | −0.013 | |||
C13 | −0.018 | −0.023 | ||||||
C14 | −0.040 | −0.029 | ||||||
C15 | −0.011 | −0.069 | ||||||
C16 | 0.117 | 0.273 | ||||||
O17 | 0.082 | 0.111 | ||||||
O18 | 0.338 | 0.232 |
Lauric Acid | Myristic Acid | Oleic Acid | |||
---|---|---|---|---|---|
Atom | Mulliken Charge | Atom | Mulliken Charge | Atom | Mulliken Charge |
C1 | −0.247 | C1 | −0.245 | C1 | −0.195 |
C2 | −0.151 | C2 | −0.153 | C2 | −0.195 |
C3 | −0.146 | C3 | −0.146 | C3 | −0.042 |
C4 | −0.147 | C4 | −0.147 | C4 | −0.041 |
C5 | −0.148 | C5 | −0.149 | C5 | −0.158 |
C6 | −0.149 | C6 | −0.149 | C6 | −0.153 |
C7 | −0.150 | C7 | −0.150 | C7 | −0.149 |
C8 | −0.150 | C8 | −0.150 | C8 | −0.148 |
C9 | −0.151 | C9 | −0.150 | C9 | −0.146 |
C10 | −0.146 | C10 | −0.151 | C10 | −0.152 |
C11 | −0.279 | C11 | −0.152 | C11 | −0.246 |
C12 | 0.525 | C12 | −0.143 | C12 | −0.158 |
O13 | −0.418 | C13 | −0.283 | C13 | −0.154 |
O14 | −0.378 | C14 | 0.527 | C14 | −0.151 |
O15 | −0.419 | C15 | −0.150 | ||
O16 | −0.378 | C16 | −0.144 | ||
C17 | −0.246 | ||||
C18 | 0.520 | ||||
O19 | −0.429 | ||||
O20 | −0.406 | ||||
Phthalic acid | Caprylic acid | Palmitic acid | |||
Atom | Mulliken charge | Atom | Mulliken charge | Atom | Mulliken charge |
C1 | −0.063 | C1 | −0.247 | C1 | −0.245 |
C2 | −0.057 | C2 | −0.153 | C2 | −0.153 |
C3 | −0.067 | C3 | −0.144 | C3 | −0.146 |
C4 | −0.003 | C4 | −0.156 | C4 | −0.147 |
C5 | 0.009 | C5 | −0.154 | C5 | −0.149 |
C6 | −0.064 | C6 | −0.174 | C6 | −0.150 |
C7 | 0.447 | C7 | −0.228 | C7 | −0.150 |
C8 | −0.412 | C8 | 0.513 | C8 | −0.151 |
C9 | −0.409 | O9 | −0.406 | C9 | −0.151 |
C10 | 0.475 | O10 | −0.425 | C10 | −0.151 |
O11 | −0.406 | C11 | −0.151 | ||
O12 | −0.372 | C12 | −0.151 | ||
C13 | −0.152 | ||||
C14 | −0.146 | ||||
C15 | −0.282 | ||||
C16 | 0.525 | ||||
O17 | −0.418 | ||||
O18 | −0.377 |
# | Plant or Source of GCI | Is It a Source of Bio-Waste? | Major Constituent | Metal | Electrolyte | Max IE% | C | Applied DFT | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | Date palm seed | Yes | Fatty acid | Carbon steel | 0.5 H2SO4 | 88 | 2000 mg/L | No | [41] |
2 | Dysphania ambrosioides | No | Fatty acid | Mild steel | 1 M HCl | 84 | 1.5 g/L | No | [42] |
3 | Terminalia arjuna leaves | Yes | - | Mild steel | 0.2 M HCl | 64 | - | No | [43] |
4 | Chamaerops humilis L. fruit | No | - | Mild steel | 1 M HCl | 80 | 1 g/L | No | [44] |
5 | Ziziphora leaves from jungles | No | Acacetin, chrysin, and thymonin compounds | Mild steel | 1 M HCl | 91 | 800 mg/L | No | [45] |
6 | Pinus resinosa | No | - | Steel Rebar | Chloride ions | 81 | 1000 mg/L | No | [46] |
7 | Aerva lanata flowers | No | Alkaloids, saponins, favonoids, and phenols | Carbon steel | 1 M HCl | 87 | 600 ppm | No | [47] |
Date palm seed | Yes | Fatty acid | Mild steel | 0.5 M HCl | 96 | 1400 mg/L | Yes | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, N.J.; Othman, N.K.; Al-Gburi, A.J.A.; Yusop, R.M. Date Palm Seed Extract for Mild Steel Corrosion Prevention in HCl Medium. Separations 2023, 10, 54. https://doi.org/10.3390/separations10010054
Mohammed NJ, Othman NK, Al-Gburi AJA, Yusop RM. Date Palm Seed Extract for Mild Steel Corrosion Prevention in HCl Medium. Separations. 2023; 10(1):54. https://doi.org/10.3390/separations10010054
Chicago/Turabian StyleMohammed, Naba Jasim, Norinsan Kamil Othman, Ahmed Jamal Abdullah Al-Gburi, and Rahimi M. Yusop. 2023. "Date Palm Seed Extract for Mild Steel Corrosion Prevention in HCl Medium" Separations 10, no. 1: 54. https://doi.org/10.3390/separations10010054
APA StyleMohammed, N. J., Othman, N. K., Al-Gburi, A. J. A., & Yusop, R. M. (2023). Date Palm Seed Extract for Mild Steel Corrosion Prevention in HCl Medium. Separations, 10(1), 54. https://doi.org/10.3390/separations10010054