Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review
Abstract
:1. Introduction
1.1. Sources of Phenols
1.2. Toxicities of Phenols to Humans
1.3. Environmental Regulations on Phenols
1.4. Trace Level Extraction and Adsorptive Removal of Phenols from Waters
1.5. Clay Minerals
1.5.1. Activation of Clays
1.5.2. Modifications of Clays
2. Clays for Environmental Water Remediation
2.1. Clays in Trace-Level Determination of Phenols from Environmental Water
2.1.1. Solid-Phase Extraction (SPE)
2.1.2. Dispersive and Magnetic Solid-Phase Extraction (DSPE and MSPE)
2.1.3. Stir Bar Sorptive Extraction (SBSE)
2.1.4. Rotating Disk Sorptive Extraction (RDSE)
2.1.5. Solid Phase Microextraction (SPME)
2.2. Clays for Adsorptive Removal of Phenols
2.2.1. Natural Clays Phenols Adsorption
2.2.2. Modified Clays for Phenols Adsorption
2.3. Parameters Optimization for Phenols Adsorption
2.3.1. Contact Time
2.3.2. Clay Loading
2.3.3. Concentration
2.3.4. pH of the Solution
2.3.5. Temperature
2.4. Modeling Kinetics
2.5. Modeling Isotherms
2.6. Regeneration and Reusability of the Clay Minerals
2.7. Mechanisms for the Phenol Adsorption onto Clays
3. Application of Clays for Phenols Remediation in Real Water Samples
3.1. General and Concluding Remarks
3.1.1. Achievement
3.1.2. Challenges
3.1.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, H.; Dang, J.; Zhao, Y.; Zhu, Y.; Qiao, P.; Feng, C. Effects of Urbanization on Water Quality and the Macrobenthos Community Structure in the Fenhe River, Shanxi Province, China. J. Chem. 2020, 2020, 8653486. [Google Scholar] [CrossRef]
- Sasakova, N.; Gregova, G.; Takacova, D.; Mojzisova, J.; Papajova, I.; Venglovsky, J.; Szaboova, T.; Kovacova, S. Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Front. Sustain. Food Syst. 2018, 2, 42. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Jumbri, K.; Sambudi, N.S.; Zango, Z.U.; Abdullah, N.A.F.B.; Saad, B. Effective adsorption of metolachlor herbicide by MIL-53(Al) metal-organic framework: Optimization, validation and molecular docking simulation studies. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100663. [Google Scholar] [CrossRef]
- da Silva Medeiros, D.C.C.; Chelme-Ayala, P.; Benally, C.; Al-Anzi, B.S.; Gamal El-Din, M. Review on carbon-based adsorbents from organic feedstocks for removal of organic contaminants from oil and gas industry process water: Production, adsorption performance and research gaps. J. Environ. Manag. 2022, 320, 115739. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Sarkar, B.; Cooray, A.T.; Sik, Y. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. J. Hazard. Mater. 2020, 384, 121301. [Google Scholar] [CrossRef]
- Zango, Z.U.; Khoo, K.S.; Garba, A.; Kadir, H.A.; Usman, F.; Zango, M.U.; Da Oh, W.; Lim, J.W. A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater. Environ. Res. 2023, 221, 115326. [Google Scholar] [CrossRef]
- del Mar Orta, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Medina-Carrasco, S.; Alonso, E. Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Appl. Clay Sci. 2020, 198, 105838. [Google Scholar] [CrossRef]
- Momina; Shahadat, M.; Isamil, S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018, 8, 24571–24587. [Google Scholar] [CrossRef]
- Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 2019, 127, 160–180. [Google Scholar] [CrossRef]
- Scaria, J.; Gopinath, A.; Nidheesh, P.V. A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. J. Clean. Prod. 2021, 278, 124014. [Google Scholar] [CrossRef]
- Mahmad, A.; Shaharun, M.S.; Zango, Z.U.; Noh, T.U.; Saad, B. Adsorptive Removal of Bisphenol A Using Zeolitic Imidazolate Framework (ZIF-8). In Springer Proceedings in Complexity; Springer: Singapore, 2021; pp. 117–129. ISBN 9789811645136. [Google Scholar]
- Zango, Z.U.; Sambudi, N.S.; Jumbri, K.; Abu Bakar, N.H.H.; Saad, B. Removal of Pyrene from Aqueous Solution Using Fe-based Metal-organic Frameworks. IOP Conf. Ser. Earth Environ. Sci. 2020, 549, 012061. [Google Scholar] [CrossRef]
- Zango, Z.U.; Sambudi, N.S.; Jumbri, K.; Ramli, A.; Hana, N.; Abu, H.; Saad, B.; Nur, M.; Rozaini, H.; Isiyaka, H.A.; et al. An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. Water 2020, 12, 2921. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, H.; Han, Y.; Xu, C.; Zhang, Z.; Han, H. Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale. Bioresour. Technol. 2019, 288, 121590. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shen, Y.; Zhang, Z.; Ge, X.; Chen, M. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; El-Shahat, M. Fabrication of ZIF-67@MIL-125-NH2 nanocomposite with enhanced visible light photoreduction activity. J. Environ. Chem. Eng. 2019, 7, 103194. [Google Scholar] [CrossRef]
- Michałowicz, J.; Włuka, A.; Cyrkler, M.; Maćczak, A.; Sicińska, P.; Mokra, K. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). Environ. Toxicol. Pharmacol. 2018, 61, 95–101. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods; Intech Open: London, UK, 2016; pp. 419–443. [Google Scholar]
- Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2020, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Bazrafshan, E.; Mostafapour, F.K.; Mahvi, A.H. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low cost adsorbent. Fresenius Environ. Bull. 2012, 21, 2962–2968. [Google Scholar]
- Yangui, A.; Abderrabba, M.; Sayari, A. Amine-modified mesoporous silica for quantitative adsorption and release of hydroxytyrosol and other phenolic compounds from olive mill wastewater. J. Taiwan Inst. Chem. Eng. 2017, 70, 111–118. [Google Scholar] [CrossRef]
- Fathy, M.; Selim, H.; Shahawy, A.E.L. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. RSC Adv. 2020, 10, 23417–23430. [Google Scholar] [CrossRef]
- Mahmad, A.; Shaharun, M.S.; Zango, Z.U. Adsorption of bisphenol A: Characterisation of ZIF–8, UiO–66(Zr) and MIL–88(Fe) metal–organic frameworks (MOFs). AIP Conf. Proc. 2022, 2454, 050038. [Google Scholar] [CrossRef]
- Dong, R.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites. Environ. Res. 2019, 100, 237–245. [Google Scholar] [CrossRef]
- Krstić, V.; Urošević, T.; Pešovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Salari, M.; Dehghani, M.H.; Azari, A.; Motevalli, M.D.; Shabanloo, A.; Ali, I. High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm. J. Mol. Liq. 2019, 285, 146–157. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Han, J.; Wu, J.; Li, C.; Ni, L.; Wang, Y. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. J. Hazard. Mater. 2020, 383, 121130. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, J.; Wang, C.; Strong, P.J.; Jiang, P.; Ok, Y.S.; Wang, H. Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution. Sci. Total Environ. 2019, 682, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, L.; Cui, Y.; Liu, W.; Liu, X.; Yang, Y. A hydrophilic surface molecularly imprinted polymer on a spherical porous carbon support for selective phenol removal from coking wastewater. New Carbon Mater. 2020, 35, 220–231. [Google Scholar] [CrossRef]
- Idowu, I.G.; Xia, Z.; Sandau, C.D.; Misselwitz, M.; Thomas, P.; Marvin, C.; Tomy, G.T. Comparison of different approaches to quantify substituted polycyclic aromatic compounds. J. Chromatogr. A 2021, 1651, 462317. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Amirian, P.; Mahvi, A.H.; Ansari-Moghaddam, A. Application of adsorption process for phenolic compounds removal from aqueous environments: A systematic review. Glob. Nest J. 2016, 18, 146–163. [Google Scholar] [CrossRef]
- de Perre, C.; Le Ménach, K.; Ibalot, F.; Parlanti, E.; Budzinski, H. Development of solid-phase microextraction to study dissolved organic matter-Polycyclic aromatic hydrocarbon interactions in aquatic environment. Anal. Chim. Acta 2014, 807, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Redondo, J.M.; Platonov, A.K. Self-similar distribution of oil spills in European coastal waters. Environ. Res. Lett. 2009, 4, 014008. [Google Scholar] [CrossRef]
- Rajendran, S.; Sadooni, F.N.; Al-Kuwari, H.A.S.; Oleg, A.; Govil, H.; Nasir, S.; Vethamony, P. Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep. 2021, 11, 3817. [Google Scholar] [CrossRef] [PubMed]
- Seveso, D.; Louis, Y.D.; Montano, S.; Galli, P.; Saliu, F. The Mauritius Oil Spill: What’s Next? Pollutants 2021, 1, 18–28. [Google Scholar] [CrossRef]
- Kankia, M.U.; Baloo, L.; Mohammed, B.S.; Hassan, S.B.; Ishak, E.A.; Zango, Z.U. Review of petroleum sludge thermal treatment and utilization of ash as a construction material, a way to environmental sustainability. Int. J. Adv. Appl. Sci. 2020, 7, 68–81. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol. 2020, 235, 116152. [Google Scholar] [CrossRef]
- Karamipour, A.; Parsi, P.K.; Zahedi, P.; Moosavian, S.M.A. Using Fe3O4-coated nanofibers based on cellulose acetate/chitosan for adsorption of Cr(VI), Ni(II) and phenol from aqueous solutions. Int. J. Biol. Macromol. 2020, 154, 1132–1139. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Areo, F.I. Removal of phenol and 4-nitrophenol from wastewater using a composite prepared from clay and Cocos nucifera shell: Kinetic, equilibrium and thermodynamic studies. Resour. Environ. Sustain. 2021, 3, 100020. [Google Scholar] [CrossRef]
- Zango, Z.U.; Dennis, J.O.; Aljameel, A.I.; Usman, F.; Ali, M.K.M.; Abdulkadir, B.A.; Algessair, S.; Aldaghri, O.A.; Ibnaouf, K.H. Effective Removal of Methylene Blue from Simulated Wastewater Using ZnO-Chitosan Nanocomposites: Optimization, Kinetics, and Isotherm Studies. Molecules 2022, 27, 4746. [Google Scholar] [CrossRef]
- Sullivan, G.L.; Prigmore, R.M.; Knight, P.; Godfrey, A.R. Activated carbon biochar from municipal waste as a sorptive agent for the removal of polyaromatic hydrocarbons (PAHs), phenols and petroleum based compounds in contaminated liquids. J. Environ. Manag. 2019, 251, 109551. [Google Scholar] [CrossRef]
- Bargieł, P.; Zabochnicka-Świątek, M. Technologies of Coke Wastewater Treatment in the Frame of Legislation in Force. Environ. Prot. Nat. Resour. 2018, 29, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Kumar, R. Treatment of coke wastewater: A critical review for developing sustainable management strategies. Sep. Purif. Rev. 2014, 43, 89–123. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Gong, Y.X.; Ni, H.G. Contribution of soil erosion to PAHs in surface water in China. Sci. Total Environ. 2019, 686, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.G.; Zhao, X.H.; Yang, H.; Chen, X.H.; Yang, Q.; Yu, L.Y.; Jiang, J.H.; Chen, X.Q. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 2014, 482–483, 241–251. [Google Scholar] [CrossRef]
- Agarwal, T.; Khillare, P.S.; Shridhar, V.; Ray, S. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J. Hazard. Mater. 2009, 163, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Iwegbue, C.M.A.; Tesi, G.O.; Overah, L.C.; Emoyan, O.O.; Nwajei, G.E.; Martincigh, B.S. Effects of Flooding on the Sources, Spatiotemporal Characteristics and Human Health Risks of Polycyclic Aromatic Hydrocarbons in Floodplain Soils of the Lower Parts of the River Niger, Nigeria. Polycycl. Aromat. Compd. 2020, 40, 228–244. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Kusza, G.; Poluszyńska, J.; Kochanowska, K. Pollution of flooded arable soils with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Water Air Soil Pollut. 2014, 225, 2145. [Google Scholar] [CrossRef]
- Salcedo, G.M.; Kupski, L.; Degang, L.; Marube, L.C.; Caldas, S.S.; Primel, E.G. Determination of fifteen phenols in wastewater from petroleum refinery samples using a dispersive liquid—Liquid microextraction and liquid chromatography with a photodiode array detector. Microchem. J. 2019, 146, 722–728. [Google Scholar] [CrossRef]
- Jin, J.; Wang, S.; Hu, J.; Wu, J.; Li, M.; Wang, Y.; Jin, J. Polychlorinated naphthalenes in human serum samples from an industrial city in Eastern China: Levels, sources, and sex differences. Ecotoxicol. Environ. Saf. 2019, 177, 86–92. [Google Scholar] [CrossRef]
- Liang, X.; Junaid, M.; Wang, Z.; Li, T.; Xu, N. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China. Environ. Pollut. 2019, 250, 695–707. [Google Scholar] [CrossRef]
- McDonough, C.A.; Khairy, M.A.; Muir, D.C.G.; Lohmann, R. Significance of population centers as sources of gaseous and dissolved PAHs in the lower Great Lakes. Environ. Sci. Technol. 2014, 48, 7789–7797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, B.; Wu, P.; Huang, Z.; Li, Y.; Dang, Z.; Ruan, B.; Kang, C.; Zhu, N. Enhanced degradation of phenol by Sphingomonas sp. GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere 2016, 148, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, H.; Xu, X.; Han, B.; Li, X.; Zhu, C.; Han, C.; Liu, S.; Yang, D.; Xu, Q.; et al. Prediction of the bioaccumulation of PAHs in surface sediments of Bohai Sea, China and quantitative assessment of the related toxicity and health risk to humans. Mar. Pollut. Bull. 2016, 104, 92–100. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A Short Review of Techniques for Phenol Removal from Wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef]
- Mangrich, A.S. Evaluation of waste biomasses and their biochars for removal of polycyclic aromatic hydrocarbons. J. Environ. Manag. 2017, 200, 186–195. [Google Scholar] [CrossRef]
- Qu, Y.; Qin, L.; Liu, X.; Yang, Y. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere 2020, 251, 126376. [Google Scholar] [CrossRef]
- Bin-Dahman, O.A.; Saleh, T.A. Synthesis of carbon nanotubes grafted with PEG and its efficiency for the removal of phenol from industrial wastewater. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100286. [Google Scholar] [CrossRef]
- Saleh, T.A.; Elsharif, A.M.; Asiri, S.; Mohammed, A.R.I.; Dafalla, H. Synthesis of carbon nanotubes grafted with copolymer of acrylic acid and acrylamide for phenol removal. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100302. [Google Scholar] [CrossRef]
- Achak, M.; Elayadi, F.; Boumya, W. Chemical Coagulation/Flocculation Processes for Removal of Phenolic Compounds from Olive Mill Wastewater: A Comprehensive Review. Am. J. Appl. Sci. 2019, 16, 59–91. [Google Scholar] [CrossRef]
- Thomas, M.; Zdebik, D.; Niewiara, E. Removing phenols from post-processing wastewater originating from underground coal gasification using coagulation-flocculation and the H2O2/UV process. Polish J. Environ. Stud. 2018, 27, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wu, Q.; Ma, A. Biodegradation of Phenolic Contaminants: Current Status and Perspectives. IOP Conf. Ser. Earth Environ. Sci. 2018, 111, 012024. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Removal of phenol from wastewater using spiral-wound reverse osmosis process: Model development based on experiment and simulation. J. Water Process Eng. 2017, 18, 20–28. [Google Scholar] [CrossRef]
- Huang, Y.; Cay-Durgun, P.; Lai, T.; Yu, P.; Lind, M.L. Phenol Removal from Water by Polyamide and AgCl Mineralized Thin-Film Composite Forward Osmosis Membranes. Ind. Eng. Chem. Res. 2018, 57, 7021–7029. [Google Scholar] [CrossRef]
- Messikh, N.; Bousba, S.; Bougdah, N. The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion liquid membrane. J. Environ. Chem. Eng. 2017, 5, 3483–3489. [Google Scholar] [CrossRef]
- Ng, Y.S.; Jayakumar, N.S.; Hashim, M.A. Performance evaluation of organic emulsion liquid membrane on phenol removal. J. Hazard. Mater. 2010, 184, 255–260. [Google Scholar] [CrossRef]
- Adamu, H.; Dubey, P.; Anderson, J.A. Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem. Eng. J. 2016, 284, 380–388. [Google Scholar] [CrossRef]
- Turki, A.; Guillard, C.; Dappozze, F.; Ksibi, Z.; Berhault, G.; Kochkar, H. Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Appl. Catal. B Environ. 2015, 163, 404–414. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Z.; Liu, Y. Application of modified bentonite granulated electrodes for advanced treatment of pulp and paper mill wastewater in three-dimensional electrode system. J. Environ. Chem. Eng. 2016, 4, 1810–1817. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, Q.; Shi, Z.; Fang, Y.; Shi, S.; Wang, J.; Wu, C. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation. J. Environ. Sci. 2016, 50, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef]
- Yi, L.; Zuo, L.; Wei, C.; Fu, H.; Qu, X.; Zheng, S.; Xu, Z.; Guo, Y.; Li, H.; Zhu, D. Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Sci. Total Environ. 2020, 719, 137389. [Google Scholar] [CrossRef]
- Catherine, H.N.; Ou, M.H.; Manu, B.; Shih, Y. hsin Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water. Sci. Total Environ. 2018, 635, 629–638. [Google Scholar] [CrossRef]
- Oba, S.N.; Ighalo, J.O.; Aniagor, C.O.; Igwegbe, C.A. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. Sci. Total Environ. 2021, 780, 146608. [Google Scholar] [CrossRef]
- Rozaini, M.N.; Zango, Z.U.; Michelle, S. Determination of Bisphenol A in Mineral Water by Membrane-Protected Micro-Solid Phase Extraction Followed by High- Performance Liquid Chromatography Diode Array Detector. AIP Conf. Proc. 2022, 2454, 050036. [Google Scholar]
- Imam, S.S.; Muhammad, A.I.; Babamale, H.F.; Zango, Z.U. Removal of Orange G Dye from Aqueous Solution by Adsorption: A Short Review. J. Environ. Treat. Tech. 2021, 9, 318–327. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; El-Chaghaby, G.A.; Helal, F.S. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 2015, 6, 405–415. [Google Scholar] [CrossRef] [PubMed]
- El-sayed, M.E.A.; Khalaf, M.M.R.; Gibson, D.; Rice, J.A. Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction. Chem. Geol. 2019, 511, 21–27. [Google Scholar] [CrossRef]
- Phuekphong, A.; Imwiset, K.; Ogawa, M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. J. Hazard. Mater. 2020, 399, 122888. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Yang, N.; Gao, F.; Zhao, J.; Li, L.; Teng, C. Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor. Appl. Surf. Sci. 2017, 414, 218–223. [Google Scholar] [CrossRef]
- Gil, A.; Vicente, M.A. Progress and perspectives on pillared clays applied in energetic and environmental remediation processes. Curr. Opin. Green Sustain. Chem. 2020, 21, 56–63. [Google Scholar] [CrossRef]
- Bouna, L.; Ait El Fakir, A.; Benlhachemi, A.; Draoui, K.; Ezahri, M.; Bakiz, B.; Villain, S.; Guinneton, F.; Elalem, N. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Appl. Clay Sci. 2020, 196, 105764. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Yoza, B.A.; Hao, K.; Li, Q.X.; Li, Y.; Wang, Q.; Guo, S.; Chen, C. A char-clay composite catalyst derived from spent bleaching earth for efficient ozonation of recalcitrants in water. Sci. Total Environ. 2020, 699, 134395. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Ouyang, J.; Antwi, P.; Wu, M.; Huang, Z.; Qin, W. Microwave/ultrasound-assisted modification of montmorillonite by conventional and gemini alkyl quaternary ammonium salts for adsorption of chromate and phenol: Structure-function relationship. Sci. Total Environ. 2019, 655, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 2017, 7, 543–568. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Zhao, Y.; Bai, H.; Wen, T.; Kang, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2021, 420, 127574. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Han, H.; Rafiq, M.K.; Zhou, T.; Xu, R.; Mašek, O.; Li, X. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J. Hazard. Mater. 2019, 369, 780–796. [Google Scholar] [CrossRef]
- Chaari, I.; Fakhfakh, E.; Medhioub, M.; Jamoussi, F. Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J. Mol. Struct. 2019, 1179, 672–677. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, L. Structures of hexamethonium exchanged bentonite and the sorption characteristics for phenol. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 307, 1–6. [Google Scholar] [CrossRef]
- Ghogomu, J.; Noufame, D.T.; Tamungang, E.B.; Ajifack, D.; Nsami Ndi, J.; Ketcha, J. Adsorption of phenol from aqueous solutions onto natural and thermallymodified kaolinitic materials. Int. J. Biol. Chem. Sci. 2015, 8, 2325. [Google Scholar] [CrossRef]
- Tabrizi, S.H.; Tanhaei, B.; Ayati, A.; Ranjbari, S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. Environ. Res. 2022, 204, 111965. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Kaghazchi, T.; Soleimani, M.; Asasian, N. An efficient method for clay modification and its application for phenol removal from wastewater. Appl. Clay Sci. 2012, 59–60, 8–12. [Google Scholar] [CrossRef]
- Dehmani, Y.; Sellaoui, L.; Alghamdi, Y.; Lainé, J.; Badawi, M.; Amhoud, A.; Bonilla-Petriciolet, A.; Lamhasni, T.; Abouarnadasse, S. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 2020, 312, 113383. [Google Scholar] [CrossRef]
- Hernández-Hernández, K.A.; Illescas, J.; del Carmen Díaz-Nava, M.; Martínez-Gallegos, S.; Muro-Urista, C.; Ortega-Aguilar, R.E.; Rodríguez-Alba, E.; Rivera, E. Preparation of nanocomposites for the removal of phenolic compounds from aqueous solutions. Appl. Clay Sci. 2018, 157, 212–217. [Google Scholar] [CrossRef]
- Sarkar, B.; Xi, Y.; Mallavarapu, M.; Naidu, R. Adsorption of Phenol by HDTMA-modified Organoclay. In Proceedings of the Conference: WCSS 2010-19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Luo, Z.; Gao, M.; Yang, S.; Yang, Q. Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: Mechanism, kinetics and thermodynamics studies. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 482, 222–230. [Google Scholar] [CrossRef]
- Zango, Z.U.; Garba, Z.N.; Abu Bakar, N.H.H.; Tan, W.L.; Abu Bakar, M. Adsorption studies of Cu2+–Hal nanocomposites for the removal of 2,4,6-trichlorophenol. Appl. Clay Sci. 2016, 132–133, 68–78. [Google Scholar] [CrossRef]
- Heidarzadeh, N.; Parhizi, P. Improving the permeability and adsorption of phenol by organophilic clay in clay liners. Environ. Eng. Res. 2020, 25, 96–103. [Google Scholar] [CrossRef]
- Wiyantoko, B.; Lail, J.; Kurniawati, P.; Purbaningtias, T.E.; Nurrohmah, A.; Kurniandari, S. Phenolic removal using phenylamine modified montmorillonite. AIP Conf. Proc. 2017, 1823, 020076. [Google Scholar] [CrossRef]
- Berraaouan, D.; Elmiz, M.; Essifi, K.; Salhi, S.; Tahani, A. Adsorption of carvacrol on modified bentonite in aqueous solutions. Mater. Today Proc. 2020, 31, S28–S32. [Google Scholar] [CrossRef]
- Richards, S.; Bouazza, A. Phenol adsorption in organo-modified basaltic clay and bentonite. Appl. Clay Sci. 2007, 37, 133–142. [Google Scholar] [CrossRef]
- Yang, S.; Gao, M.; Luo, Z.; Yang, Q. The characterization of organo-montmorillonite modified with a novel aromatic-containing gemini surfactant and its comparative adsorption for 2-naphthol and phenol. Chem. Eng. J. 2015, 268, 125–134. [Google Scholar] [CrossRef]
- Fadillah, G.; Yudha, S.P.; Sagadevan, S.; Fatimah, I.; Muraza, O. Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chem. 2020, 18, 1148–1166. [Google Scholar] [CrossRef]
- Lee, S.M.; Tiwari, D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci. 2012, 59–60, 84–102. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, H.; Jiang, X.; Lu, F.; Zhou, Y.; Yin, W.; Ji, X. Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants. J. Colloid Interface Sci. 2009, 332, 16–21. [Google Scholar] [CrossRef]
- Tetteh, S.; Quashie, A.; Anang, M.A. Purification, Characterization, and Time-Dependent Adsorption Studies of Ghanaian Muscovite Clay. J. Chem. Hindawi 2018, 2018, 6252913. [Google Scholar] [CrossRef]
- Dos Santos, D.C.; Adebayo, M.A.; Lima, E.C.; Pereira, S.F.P.; Cataluña, R.; Saucier, C.; Thue, P.S.; Machado, F.M. Application of carbon composite adsorbents prepared from coffee waste and clay for the removal of reactive dyes from aqueous solutions. J. Braz. Chem. Soc. 2015, 26, 924–938. [Google Scholar] [CrossRef]
- Ismadji, S.; Tong, D.S.; Soetaredjo, F.E.; Ayucitra, A.; Yu, W.H.; Zhou, C.H. Bentonite-hydrochar composite for removal of ammonium from Koi fish tank. Appl. Clay Sci. 2015, 114, 467–475. [Google Scholar] [CrossRef]
- Das, S.; Samanta, A.; Gangopadhyay, G.; Jana, S. Clay-Based Nanocomposites as Recyclable Adsorbent toward Hg(II) Capture: Experimental and Theoretical Understanding. ACS Omega 2018, 3, 6283–6292. [Google Scholar] [CrossRef]
- Kausar, A.; Naeem, K.; Tariq, M.; Nazli, Z.I.H.; Bhatti, H.N.; Jubeen, F.; Nazir, A.; Iqbal, M. Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: Comparison of linear and non-linear regression methods. J. Mater. Res. Technol. 2019, 8, 1161–1174. [Google Scholar] [CrossRef]
- Mojoudi, F.; Hamidian, A.H.; Zhang, Y.; Yang, M. Synthesis and evaluation of activated carbon/nanoclay/ thiolated graphene oxide nanocomposite for lead(II) removal from aqueous solution. Water Sci. Technol. 2019, 79, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef]
- Kausar, A.; Sher, F.; Hazafa, A.; Javed, A.; Sillanpää, M.; Iqbal, M. Biocomposite of sodium-alginate with acidified clay for wastewater treatment: Kinetic, equilibrium and thermodynamic studies. Int. J. Biol. Macromol. 2020, 161, 1272–1285. [Google Scholar] [CrossRef]
- Camino-Sánchez, F.J.; Rodríguez-Gómez, R.; Zafra-Gómez, A.; Santos-Fandila, A.; Vílchez, J.L. Stir bar sorptive extraction: Recent applications, limitations and future trends. Talanta 2014, 130, 388–399. [Google Scholar] [CrossRef]
- Nouri, N.; Khorram, P.; Duman, O.; Tunç, S.; Sereshti, H. Overview of nanosorbents used in solid phase extraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Trends Environ. Anal. Chem. 2020, 25, e00081. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Lu, N.; Wu, X.; Zhang, Y.; Hou, X. Development and application of metal-organic framework@GA based on solid-phase extraction coupling with UPLC-MS/MS for the determination of five NSAIDs in water. Talanta 2021, 225, 121846. [Google Scholar] [CrossRef] [PubMed]
- Marrubini, G.; Dugheri, S.; Cappelli, G.; Arcangeli, G.; Mucci, N.; Appelblad, P.; Melzi, C.; Speltini, A. Experimental designs for solid-phase microextraction method development in bioanalysis: A review. Anal. Chim. Acta 2020, 1119, 77–100. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Cai, W.; Shao, X. Preparation of 4-butylaniline-bonded attapulgite for pre-concentration of bisphenol A in trace quantity. Talanta 2015, 136, 29–34. [Google Scholar] [CrossRef]
- Aurea, A.-E.; Canle, M.; Leroy-Cancellieri, V.; Cerda, V. Solid-phase extraction of organic compounds: A critical review (Part I). TrAC-Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal. Chem. 2003, 75, 2517–2521. [Google Scholar] [CrossRef]
- Fang, G.Z.; He, J.X.; Wang, S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr. A 2006, 1127, 12–17. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Muthwa, S.F.; Chimuka, L. Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography. S. Afr. J. Chem. 2014, 67, 143–150. [Google Scholar]
- Thesing, A.; Poersch, S.; Medeiros, L.F.; Santos, J.F.L.; Fernandes, A.N. SPE cartridges with a 3D graphene framework for extraction of triclosan in environmental water. Anal. Methods 2020, 12, 666–672. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Li, Y.; Jin, J.; Yang, J.; Li, F.; Shah, S.M.; Chen, J. Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. J. Chromatogr. A 2014, 1360, 9–16. [Google Scholar] [CrossRef]
- Samanidou, V.; Kehagia, M.; Kabir, A.; Furton, K.G. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk. Anal. Chim. Acta 2016, 914, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Chen, Y.; Xuan, R.; Ma, J.; Jin, Z.; Wang, T.; Qiu, D.; Zhang, L.; Zhang, Y. Application of polyethyleneimine-modified attapulgite for the solid-phase extraction of chlorophenols at trace levels in environmental water samples. Anal. Bioanal. Chem. 2018, 410, 6643–6651. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, Y.; Ma, J.; Jin, Z.; Chai, M.; Xiao, X.; Zhang, L.; Zhang, Y. A polyethyleneimine-modified attapulgite as a novel solid support in matrix solid-phase dispersion for the extraction of cadmium traces in seafood products. Talanta 2018, 180, 254–259. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC-Trends Anal. Chem. 2017, 89, 99–118. [Google Scholar] [CrossRef]
- Safarikova, M.; Safarik, I. Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999, 194, 108–112. [Google Scholar] [CrossRef]
- Maya, F.; Palomino Cabello, C.; Frizzarin, R.M.; Estela, J.M.; Turnes Palomino, G.; Cerdà, V. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC-Trends Anal. Chem. 2017, 90, 142–152. [Google Scholar] [CrossRef]
- Salehinia, S.; Ghoreishi, S.M.; Maya, F.; Cerdà, V. Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. J. Environ. Chem. Eng. 2016, 4, 4062–4071. [Google Scholar] [CrossRef]
- Liu, X.; Yin, J.; Zhu, L.; Zhao, G.; Zhang, H. Evaluation of a magnetic polysulfone microcapsule containing organic modified montmorillonite as a novel solid-phase extraction sorbent with chlorophenols as model compounds. Talanta 2011, 85, 2451–2457. [Google Scholar] [CrossRef]
- Peng, G.; Lu, Y.; You, W.; Yin, Z.; Li, Y.; Gao, Y. Analysis of five bisphenol compounds in sewage sludge by dispersive solid-phase extraction with magnetic montmorillonite. Microchem. J. 2020, 157, 105040. [Google Scholar] [CrossRef]
- Ghani, M.; Saraji, M.; Maya, F.; Cerdà, V. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars. J. Chromatogr. A 2016, 1445, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.; Leiva, C.; Choque, C.; Giordano, A.; Sepúlveda, B. Rotating-disk sorptive extraction of nonylphenol from water samples. J. Chromatogr. A 2009, 1216, 8598–8602. [Google Scholar] [CrossRef]
- Fiscal-Ladino, J.A.; Obando-Ceballos, M.; Rosero-Moreano, M.; Montaño, D.F.; Cardona, W.; Giraldo, L.F.; Richter, P. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction. Anal. Chim. Acta 2017, 953, 23–31. [Google Scholar] [CrossRef]
- Pawliszyn, J. Theory of Solid-Phase Microextraction; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9780124160170. [Google Scholar]
- Abolghasemi, M.M.; Parastari, S.; Yousefi, V. Microextraction of phenolic compounds using a fiber coated with a polyaniline-montmorillonite nanocomposite. Microchim. Acta 2015, 182, 273–280. [Google Scholar] [CrossRef]
- Abolghasemi, M.M.; Parastari, S.; Yousefi, V. Polypyrrole-montmorillonite nanocomposite as sorbent for solid-phase microextraction of phenolic compounds in water. J. Sep. Sci. 2014, 37, 3526–3532. [Google Scholar] [CrossRef]
- Abolghasemi, M.M.; Arsalani, N.; Yousefi, V.; Arsalani, M.; Piryaei, M. Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions. J. Sep. Sci. 2016, 39, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Abolghasemi, M.M.; Parastari, S.; Yousefi, V. A nanoporous anodized alumina wire with a nanosized hydroxyapatite coating for headspace solid-phase microextraction of phenol and chlorophenols. Microchim. Acta 2016, 183, 241–247. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, S.; Jing, R.; Shao, Y.; Liu, X.; Lv, F.; Hu, X.; Zhang, Q.; Meng, Z.; Liu, A. Competitive adsorption of antibiotic tetracycline and ciprofloxacin on montmorillonite. Appl. Clay Sci. 2019, 180, 105175. [Google Scholar] [CrossRef]
- Alkaram, U.F.; Mukhlis, A.A.; Al-Dujaili, A.H. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J. Hazard. Mater. 2009, 169, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef]
- Access, O. Investigation of Mixture Effects on the Adsorption Rates of Aromatics from Aqueous Solution on Clay and Sandy Soil. Chem. Sci. J. 2016, 6, 4–8. [Google Scholar] [CrossRef]
- Nanuam, J.; Zuddas, P.; Sawangwong, P.; Pachana, K. Modeling of PAHs adsozrption on Thai Clay Minerals under Seawater Solution Conditions. Procedia Earth Planet. Sci. 2013, 7, 607–610. [Google Scholar] [CrossRef]
- Liu, C.; Gu, C.; Yu, K.; Li, H.; Teppen, B.J.; Johnston, C.T.; Boyd, S.A.; Zhou, D. Integrating structural and thermodynamic mechanisms for sorption of PCBs by montmorillonite. Environ. Sci. Technol. 2015, 49, 2796–2805. [Google Scholar] [CrossRef]
- Ben Moshe, S.; Rytwo, G. Thiamine-based organoclay for phenol removal from water. Appl. Clay Sci. 2018, 155, 50–56. [Google Scholar] [CrossRef]
- Nafees, M.; Waseem, A. Organoclays as Sorbent Material for Phenolic Compounds: A Review. Clean-Soil Air Water 2014, 42, 1500–1508. [Google Scholar] [CrossRef]
- Kamińska, G.; Dudziak, M.; Kudlek, E.; Bohdziewicz, J. Preparation, characterization and adsorption potential of grainy halloysite-CNT composites for anthracene removal from aqueous solution. Nanomaterials 2019, 9, 890. [Google Scholar] [CrossRef]
- Zango, Z.U.; Abu Bakar, N.H.H.; Tan, W.L.; Bakar, M.A. Enhanced removal efficiency of methyl red via the modification of halloysite nanotubes by copper oxide. J. Dispers. Sci. Technol. 2017, 39, 148–154. [Google Scholar] [CrossRef]
- Ouallal, H.; Dehmani, Y.; Moussout, H.; Messaoudi, L.; Azrour, M. Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays. Heliyon 2019, 5, e01616. [Google Scholar] [CrossRef] [PubMed]
- Djebbar, M.; Djafri, F.; Bouchekara, M.; Djafri, A. Adsorption of phenol on natural clay. Appl. Water Sci. 2012, 2, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Nayak, P.S.; Singh, B.K. Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination 2007, 207, 71–79. [Google Scholar] [CrossRef]
- Banat, F.A.; Al-Bashir, B.; Al-Asheh, S.; Hayajneh, O. Adsorption of phenol by bentonite. Environ. Pollut. 2000, 107, 391–398. [Google Scholar] [CrossRef]
- Hamdaoui, M.; Hadri, M.; Bencheqroun, Z.; Draoui, K.; Nawdali, M.; Zaitan, H.; Barhoun, A. Improvement of phenol removal from aqueous medium by adsorption on organically functionalized Moroccan stevensite. J. Mater. Environ. Sci. 2018, 9, 1119–1127. [Google Scholar]
- Arellano-Cárdenas, S.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; López-Cortez, M.d.S. Preparation of a Porous Clay Heterostructure and Study of its Adsorption Capacity of Phenol and Chlorinated Phenols from Aqueous Solutions. Water Environ. Res. 2008, 80, 60–67. [Google Scholar] [CrossRef]
- Tabana, L.S.; Ledikwa, R.P.; Tichapondwa, S.M. Adsorption of phenol from wastewater using modified layered double hydroxide clay. Chem. Eng. Trans. 2019, 76, 1267–1272. [Google Scholar] [CrossRef]
- Bel Hadjltaief, H.; Sdiri, A.; Ltaief, W.; Da Costa, P.; Gálvez, M.E.; Ben Zina, M. Efficient removal of cadmium and 2-chlorophenol in aqueous systems by natural clay: Adsorption and photo-Fenton degradation processes. Comptes Rendus Chim. 2018, 21, 253–262. [Google Scholar] [CrossRef]
- Tabana, L.; Tichapondwa, S.; Labuschagne, F.; Chirwa, E. Adsorption of phenol fromwastewater using calcined magnesium-zinc-aluminium layered double hydroxide clay. Sustainability 2020, 12, 4273. [Google Scholar] [CrossRef]
- Ge, M.; Wang, X.; Du, M.; Liang, G.; Hu, G.; Alam, S.M.J. Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies. Materials 2018, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fu, D.; Ma, Q. Adsorption Characteristics of Bisphenol A from Aqueous Solution onto HDTMAB-Modified Palygorskite. Sep. Sci. Technol. 2014, 49, 81–89. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, Z.; Park, Y.; Ayoko, G.A.; Frost, R.L. Removal of bisphenol A from wastewater by Ca-montmorillonite modified with selected surfactants. Chem. Eng. J. 2013, 234, 416–422. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Mtunzi, F.M.; Adebowale, K.O. Clay-carbonaceous material composites: Towards a new class of functional adsorbents for water treatment. Surf. Interfaces 2020, 19, 100506. [Google Scholar] [CrossRef]
- Shen, T.; Gao, M. Gemini surfactant modified organo-clays for removal of organic pollutants from water: A review. Chem. Eng. J. 2019, 375, 121910. [Google Scholar] [CrossRef]
- Shen, Y.H. Removal of phenol from water by adsorption-flocculation using organobentonite. Water Res. 2002, 36, 1107–1114. [Google Scholar] [CrossRef]
- Belarbi, H.; Al-Malack, M.H. Adsorption and stabilization of phenol by modified local clay. Int. J. Environ. Res. 2010, 4, 855–860. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Jin, Q.; Liu, Y.; Wang, Y. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite. J. Environ. Manag. 2007, 84, 229–236. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Hua, Y.; Su, X.; Ma, S.; Wang, J.; Tao, Q.; Wang, Y.; Komarneni, S. Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Appl. Clay Sci. 2017, 140, 1–9. [Google Scholar] [CrossRef]
- Boufatit, M.; Ait-Amar, H.; McWhinnie, W.R. Development of an Algerian material montmorillonite clay. Adsorption of phenol, 2-dichlorophenol and 2,4,6-trichlorophenol from aqueous solutions onto montmorillonite exchanged with transition metal complexes. Desalination 2007, 206, 394–406. [Google Scholar] [CrossRef]
- Yan, J.; Quan, G. Equilibrium and kinetic studies of phenol sorption by chitosan coated montmorillonite. J. Chil. Chem. Soc. 2009, 54, 73–76. [Google Scholar] [CrossRef]
- Maarof, H.I.; Hameed, B.H.; Ahmad, A.L. Adsorption Equlibrium of Phenols From Aqueous Solution Using Modified Clay. J. Jurutera Kim. Malays. 2002, 3, 85–96. [Google Scholar]
- Xiang, Y.; Gao, M.; Shen, T.; Cao, G.; Zhao, B.; Guo, S. Comparative study of three novel organo-clays modified with imidazolium-based gemini surfactant on adsorption for bromophenol blue. J. Mol. Liq. 2019, 286, 110928. [Google Scholar] [CrossRef]
- Park, Y.; Ayoko, G.A.; Kurdi, R.; Horváth, E.; Kristóf, J.; Frost, R.L. Adsorption of phenolic compounds by organoclays: Implications for the removal of organic pollutants from aqueous media. J. Colloid Interface Sci. 2013, 406, 196–208. [Google Scholar] [CrossRef]
- Juang, R.S.; Lin, S.H.; Tsao, K.H. Mechanism of sorption of phenols from aqueous solutions onto surfactant-modified montmorillonite. J. Colloid Interface Sci. 2002, 254, 234–241. [Google Scholar] [CrossRef]
- Hamidouche, S.; Bouras, O.; Zermane, F.; Cheknane, B.; Houari, M.; Debord, J.; Harel, M.; Bollinger, J.C.; Baudu, M. Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon. Chem. Eng. J. 2015, 279, 964–972. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Liu, X.; Zhang, Y.; Zhao, Q.; Ning, P.; Tian, S. Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chem. Eng. J. 2018, 334, 1214–1221. [Google Scholar] [CrossRef]
- Chidi, O.; Nnanna, O.U.; Ifedi, O.P. The Use of Organophilic Bentonite in the Removal Phenol from Aqueous Solution: Effect of Preparation Techniques. Mod. Chem. Appl. 2018, 6, 1000258. [Google Scholar] [CrossRef]
- Zubair, M.; Daud, M.; McKay, G.; Shehzad, F.; Al-Harthi, M.A. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 2017, 143, 279–292. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Jumbri, K.; Sambudi, N.S.; Zango, Z.U.; Saad, B.; Mustapha, A. Removal of 4-chloro-2-methylphenoxyacetic acid from water by MIL-101(Cr) metal-organic framework: Kinetics, isotherms and statistical models. R. Soc. Open Sci. 2021, 8, 201553. [Google Scholar] [CrossRef]
- Tai, Y.; Shi, C.; Wang, C. Preparation and characterization of anion-cation organopalygorskite for 2-naphthol removal from aqueous solution. J. Mol. Liq. 2014, 195, 116–124. [Google Scholar] [CrossRef]
- Mahmad, A.; Shaharun, M.S.; Ubaidah, T.; Zango, Z.U.; Taha, M.F. Experimental and molecular modelling approach for rapid adsorption of Bisphenol A using Zr and Fe based metal–organic frameworks. Inorg. Chem. Commun. 2022, 142, 109604. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Zango, Z.U.; Jumbri, K.; Soraya, N.; Hanif, H.; Bakar, A.; Nasiru, Z.; Ahmad, H.; Saad, B. Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron 2021, 210, 115515. [Google Scholar] [CrossRef]
- MacÍas-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Characterization of Colombian Clay and Its Potential Use as Adsorbent. Sci. World J. 2018, 2018, 15–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, F.; Ueta, E.; Kawasaki, N. Adsorption capability of ionic dyes onto pristine and calcined activated clay. e-J. Surf. Sci. Nanotechnol. 2016, 14, 209–215. [Google Scholar] [CrossRef]
- Zhu, M.X.; Li, Y.P.; Xie, M.; Xin, H.Z. Sorption of an anionic dye by uncalcined and calcined layered double hydroxides: A case study. J. Hazard. Mater. 2005, 120, 163–171. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Wu, T.; Sun, D.; Li, Y. Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 484, 118–129. [Google Scholar] [CrossRef]
- Gu, Z.; Gao, M.; Luo, Z.; Lu, L.; Ye, Y.; Liu, Y. Bis-pyridinium dibromides modified organo-bentonite for the removal of aniline from wastewater: A positive role of π-π Polar interaction. Appl. Surf. Sci. 2014, 290, 107–115. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, M.; Zhu, L. Adsorption-desorption behavior of naphthalene onto CDMBA modified bentonite: Contribution of the π-π interaction. Appl. Clay Sci. 2014, 100, 29–34. [Google Scholar] [CrossRef]
- Zango, Z.U.; Garba, A.; Garba, Z.N.; Zango, M.U.; Usman, F.; Lim, J. Montmorillonite for Adsorption and Catalytic Elimination of Pollutants from Wastewater: A State-of-the-Arts Review. Sustainability 2022, 14, 16441. [Google Scholar] [CrossRef]
Adsorbent | Pollutant | Concentration (mg/L) | Adsorption Capacity (mg/g) | Equilibrium Time (min) | Ref. |
---|---|---|---|---|---|
Natural clay Na-Montmorillonite | phenol | 5 | 11.1 18.9 | 15 | [157] |
Natural clay | phenol | 400 | 37.6 | 120 | [158] |
Bentonite | phenol | 500 | 1.8 | 360 | [159] |
Raw clay Activated clay | phenol | 50 | 2.7 6.8 | 180 | [97] |
Stevensite | phenol | 100 | 8.9 | 180 | [160] |
Clay | Phenol 3,4-DCP 2,5-DCP | 100 | 14.5 48.7 45.5 | 720 | [161] |
Montmorillonite clay | 4-CP phenol | 10 | 0.5 0.4 | 555 | [98] |
Kaolinite clay Metakaolinite | phenol | 100 | 25.5 24.0 | 40 | [94] |
Natural clay Calcined clay | phenol | 98 | 10.6 59.1 | 1440 | [162] |
Natural clay | 2-CP | 100 | 27.5 | 60 | [163] |
Calcined clay | phenol | 40 | 12.0 | 840 | [164] |
Muscovite clay | phenol | 5 | - | 600 | [110] |
Magadiite | phenol | 50 | 52.1 | 60 | [165] |
Palygorskite | BPA | 50 | 30.0 | 120 | [166] |
Montmorillonite | BPA | 100 | 1.3 | 240 | [167] |
Adsorbent | Pollutant | Concentration (mg/L) | Adsorption Capacity (mg/g) | Equilibrium Time (min) | Ref. |
---|---|---|---|---|---|
Na-Montmorillonite | Phenol | 5 | 18.9 | 15 | [157] |
Chitosan-coated montmorillonite | Phenol | 100 | 28.4 | 240 | [175] |
Modified montmorillonite | Phenol 3-CP | 250 | 10.0 15.0 | 240 | [176] |
HDTMA-stevensite | Phenol | 100 | 13.2 | 180 | [160] |
C14-4-C14im-Vt organo-clay C14-4-C14im-SiNSs organo-clay C14-4-C14im-Mt organo-clay | BP | 200 | 400.2 230.8 220.3 | 180 20 120 | [177] |
HDTMA-bentonite | Phenol | 200 | 50.0 | 30 | [96] |
OTMAC-modified attapulgite | Phenol | 0.05 | 0.8 | 60 | [172] |
HMBP-montmorillonite | Phenol | 47 | 8.3 | 120 | [100] |
Surfactant-bentonite Surfactant-kaolinite | Phenol | 60 | 8.4 3.5 | 30 50 | [147] |
DDTMA-montmorillonite DDDMA-montmorillonite | p-CP p-NP p-CP p-NP | 100 | 4.1 11.5 12.9 14.3 | 80 | [178] |
CTAB-modified clay | phenol m-NP | 1.0 0.7 | 28.0 31.0 | 720 | [179] |
BHPD-montmorillonite | 2-napthol phenol | 160 100 | 124.0 34.0 | 40 | [106] |
CHS-STAC-montmorillonite | phenol | 40 | 2.6 | 120 | [173] |
Surfactant-aluminum-pillared montmorillonite | 4-NP 2-NP | 20 | 14.0 17.0 | 70 | [180] |
FTMA-montmorillonite | Phenol | 200 | 18.5 | 420 | [181] |
HDTMA-bentonite Na exchanged bentonite | phenol | 30 | 22.4 2.6 | 60 | [182] |
HDTMAB-Modified Palygorskite | BPA | 50 | 108.2 | 120 | [166] |
Ca-montmorillonite | BPA | 100 | 34.2 | 240 | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zango, Z.U.; Rozaini, M.N.; Bakar, N.H.H.A.; Zango, M.U.; Haruna, M.A.; Dennis, J.O.; Alsadig, A.; Ibnaouf, K.H.; Aldaghri, O.A.; Wadi, I.A. Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. Separations 2023, 10, 125. https://doi.org/10.3390/separations10020125
Zango ZU, Rozaini MN, Bakar NHHA, Zango MU, Haruna MA, Dennis JO, Alsadig A, Ibnaouf KH, Aldaghri OA, Wadi IA. Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. Separations. 2023; 10(2):125. https://doi.org/10.3390/separations10020125
Chicago/Turabian StyleZango, Zakariyya Uba, Muhammad Nur’Hafiz Rozaini, Noor Hana Hanif Abu Bakar, Muttaqa Uba Zango, Maje Alhaji Haruna, John Ojur Dennis, Ahmed Alsadig, Khalid Hassan Ibnaouf, Osamah A. Aldaghri, and Ismael Abdalla Wadi. 2023. "Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review" Separations 10, no. 2: 125. https://doi.org/10.3390/separations10020125
APA StyleZango, Z. U., Rozaini, M. N., Bakar, N. H. H. A., Zango, M. U., Haruna, M. A., Dennis, J. O., Alsadig, A., Ibnaouf, K. H., Aldaghri, O. A., & Wadi, I. A. (2023). Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. Separations, 10(2), 125. https://doi.org/10.3390/separations10020125