Surfactant-Enhanced Extraction of Lutein from Marigold Petals using an Aqueous Two-Phase System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Marigold Petal Powder (MPP) Preparation
2.3. Experimental Section
2.3.1. Extraction of Lutein Using Surfactant-Based ATPS
2.3.2. Cloud Point Extraction
2.4. Spectrophotometric Analysis of Lutein
2.5. Optimisation of Parameters by Response Surface Methodology
2.6. Antioxidant Activity Test
2.7. Data Analysis
3. Results and Discussions
3.1. Effect of the Surfactant Type Used for Extraction of Lutein
3.2. Optimization of Process Parameters for Extraction of Lutein
3.3. Validation of Process Parameters
3.4. Phase Behaviour Study of Plurafac LF 120 Surfactant
3.5. Cloud Point Extraction
3.6. SEM Analysis
3.7. DPPH Scavenging Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MPP | Marigold petal powder |
P | Pluronic surfactants |
PF 120 | Plurafac LF 120 |
L | Lutensol Surfactants |
ATPS | Aqueous Two-Phase System |
CMC | Critical Micelle Concentration |
HLB | Hydrophilic-lipophilic balance |
References
- Ochoa Becerra, M.; Mojica Contreras, L.; Hsieh Lo, M.; Mateos Díaz, J.; Castillo Herrera, G. Lutein as a Functional Food Ingredient: Stability and Bioavailability. J. Funct. Foods 2020, 66, 103771. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef] [Green Version]
- Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of Vegetables and Fruits from Panama for Rich Sources of Lutein and Zeaxanthin. Food Chem. 2010, 122, 167–172. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Xiang, D.; Zhang, W.; Bai, X. Stability of Lutein in O/W Emulsion Prepared Using Xanthan and Propylene Glycol Alginate. Int. J. Biol. Macromol. 2020, 152, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Indrawati, R.; Kurniawan, J.M.; Wibowo, A.A.; Juliana; Gunawan, I.A.; Heriyanto; Brotosudarmo, T.H.P. Integrated Solvent-Free Extraction and Encapsulation of Lutein from Marigold Petals and Its Application. CYTA—J. Food 2019, 17, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Hojnik, M.; Škerget, M.; Knez, Ž. Extraction of Lutein from Marigold Flower Petals—Experimental Kinetics and Modelling. LWT—Food Sci. Technol. 2008, 41, 2008–2016. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Hirdyani, H. Lutein—The Less Explored Carotenoid. World J. Pharm. Res. 2017, 6, 528–553. [Google Scholar] [CrossRef] [Green Version]
- Alves-Rodrigues, A.; Shao, A. The Science behind Lutein. Toxicol. Lett. 2004, 150, 57–83. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef]
- Zafar, J.; Aqeel, A.; Shah, F.I.; Ehsan, N.; Gohar, U.F.; Moga, M.A.; Festila, D.; Ciurea, C.; Irimie, M.; Chicea, R. Biochemical and Immunological Implications of Lutein and Zeaxanthin. Int. J. Mol. Sci. 2021, 22, 10910. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.H.; Navab, M.; Dwyer, K.M.; Hassan, K.; Sun, P.; Shircore, A.; Hama-Levy, S.; Hough, G.; Wang, X.; Drake, T.; et al. Oxygenated Carotenoid Lutein and Progression of Early Atherosclerosis: The Los Angeles Atherosclerosis Study. Circulation 2001, 103, 2922–2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajizadeh-Sharafabad, F.; Ghoreishi, Z.; Maleki, V.; Tarighat-Esfanjani, A. Mechanistic Insights into the Effect of Lutein on Atherosclerosis, Vascular Dysfunction, and Related Risk Factors: A Systematic Review of in Vivo, Ex Vivo and in Vitro Studies. Pharmacol. Res. 2019, 149, 104477. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Zhou, Z.Y.; Gao, M.; Ji, G.; Huang, C.; Fan, S.J. Therapeutic Effects of Herbal Formula Huangqisan on Metabolic Disorders via SREBF1, SCD1 and AMPK Signaling Pathway. J. Integr. Med. 2021, 19, 167–176. [Google Scholar] [CrossRef]
- Jha, S.K.; Roy, P.; Chakrabarty, S. Nutraceuticals with Pharmaceutics: Its Importance and Their Applications. Int. J. Drug Dev. Res. 2021, 13, 1–10. [Google Scholar]
- Fernández-Sevilla, J.M.; Acién Fernández, F.G.; Molina Grima, E. Biotechnological Production of Lutein and Its Applications. Appl. Microbiol. Biotechnol. 2010, 86, 27–40. [Google Scholar] [CrossRef]
- Li, J.; Engelberth, A.S. Quantification and Purification of Lutein and Zeaxanthin Recovered from Distillers Dried Grains with Solubles (DDGS). Bioresour. Bioprocess. 2018, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ruen-Ngam, D.; Shotipruk, A.; Pavasant, P.; Machmudah, S.; Goto, M. Selective Extraction of Lutein from Alcohol Treated Chlorella Vulgaris by Supercritical CO2. Chem. Eng. Technol. 2012, 35, 255–260. [Google Scholar] [CrossRef]
- Di Sanzo, G.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus Pluvialis Microalgae. Mar. Drugs 2018, 16, 334. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.Q.; Zhang, G.L.; Deng, L.; Dang, Y.Y. Simultaneous Extraction and Enrichment of Polyphenol and Lutein from Marigold (Tagetes erecta L.) Flower by an Enzyme-Assisted Ethanol/Ammonium Sulfate System. Food Funct. 2019, 10, 266–276. [Google Scholar] [CrossRef]
- Jalali-Jivan, M.; Abbasi, S. Novel Approach for Lutein Extraction: Food Grade Microemulsion Containing Soy Lecithin & Sunflower Oil. Innov. Food Sci. Emerg. Technol. 2020, 66, 102505. [Google Scholar] [CrossRef]
- Boonnoun, P.; Tunyasitikun, P.; Clowutimon, W.; Shotipruk, A. Production of Free Lutein by Simultaneous Extraction and De-Esterification of Marigold Flowers in Liquefied Dimethyl Ether (DME)–KOH–EtOH Mixture. Food Bioprod. Process. 2017, 106, 193–200. [Google Scholar] [CrossRef]
- Lakshmi, A.; Aishwarya, G.; Priya, S.; Rlc, S.; Raju, S.; Rao, V. Extraction and Biological Evaluation of Esterfied Lutein from Marigold Flower Petals. J. Pharmacogn. Phytochem. 2019, 1, 2523–6075. [Google Scholar]
- Prabhu, A.; Abdul, K.S.; Rekha, P.-D. Isolation and Purification of Lutein from Indian Spinach Basella Alba. Res. J. Pharm. Technol. 2015, 8, 1379. [Google Scholar] [CrossRef]
- Derrien, M.; Badr, A.; Gosselin, A.; Desjardins, Y.; Angers, P. Optimization of a Green Process for the Extraction of Lutein and Chlorophyll from Spinach By-Products Using Response Surface Methodology (RSM). LWT—Food Sci. Technol. 2017, 79, 170–177. [Google Scholar] [CrossRef]
- Dutra-Molino, J.V.; Araujo Feitosa, V.; de Lencastre-Novaes, L.C.; de Carvalho Santos-Ebinuma, V.; Moreni Lopes, A.; Faustino Jozala, A.; de Aráujo Viana Marques, D.; Pellegrini Malpiedi, L.; Pessoa, A. Biomolecules Extracted by ATPS: Practical Examples. Rev. Mex. Ing. Quim. 2014, 13, 359–377. [Google Scholar]
- Kamal, I.; Besombes, C.; Allaf, K. One-Step Processes for in Situ Transesterification to Biodiesel and Lutein Extraction from Microalgae Phaeodactylum Using Instant Controlled Pressure Drop (DIC). Green Process. Synth. 2014, 3, 431–440. [Google Scholar] [CrossRef]
- Dermiki, M.; Gordon, M.H.; Jauregi, P. Recovery of Astaxanthin Using Colloidal Gas Aphrons (CGA): A Mechanistic Study. Sep. Purif. Technol. 2009, 65, 54–64. [Google Scholar] [CrossRef]
- Yau, Y.K.; Ooi, C.W.; Ng, E.P.; Lan, J.C.W.; Ling, T.C.; Show, P.L. Current Applications of Different Type of Aqueous Two-Phase Systems. Bioresour. Bioprocess. 2015, 2, 49. [Google Scholar] [CrossRef] [Green Version]
- Craft’, N.E.; Soares, J.H. Relative Solubility, Stability, and Absorptivity of Lutein and @-Carotene in Organic Solvents. J. Agric. Food Chem. 1992, 40, 431–434. [Google Scholar] [CrossRef]
- Jalali Jivan, M.; Abbasi, S. Nano Based Lutein Extraction from Marigold Petals: Optimization Using Different Surfactants and Co-Surfactants. Heliyon 2019, 5, e01572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, K.S.; Chong, Y.M.; Chang, W.S.; Yap, J.M.; Foo, S.C.; Khoiroh, I.; Lau, P.L.; Chew, K.W.; Ooi, C.W.; Show, P.L. Permeabilization of Chlorella Sorokiniana and Extraction of Lutein by Distillable CO2-Based Alkyl Carbamate Ionic Liquids. Sep. Purif. Technol. 2021, 256, 117471. [Google Scholar] [CrossRef]
- Ba, D.; Boyaci, I.H. Modeling and Optimization i: Usability of Response Surface Methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH Antioxidant Assay Revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Ligor, M.; Trziszka, T.; Buszewski, B. Study of Antioxidant Activity of Biologically Active Compounds Isolated from Green Vegetables by Coupled Analytical Techniques. Food Anal. Methods 2013, 6, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.S.; Li, D.; Huang, Z.G.; Zhang, Z.S.; Bhandari, B.; Chen, X.D.; Mao, Z.H. Optimization of Supercritical Carbon Dioxide Extraction of Flaxseed Oil Using Response Surface Methodology. Int. J. Food Eng. 2008, 4, 4. [Google Scholar] [CrossRef]
- Khanpit, V.V.; Mandavgane, S.A.; Tajane, S.P. Waste to Wealth-Recovery of Total Dietary Fibers from Waste Peel: A Generalized Model for Predicting Operating Parameters. Biomass Convers. Biorefinery 2021, 1–10. [Google Scholar] [CrossRef]
- Farías-Campomanes, A.M.; Rostagno, M.A.; Coaquira-Quispe, J.J.; Meireles, M.A.A. Supercritical Fluid Extraction of Polyphenols from Lees: Overall Extraction Curve, Kinetic Data and Composition of the Extracts. Bioresour. Bioprocess. 2015, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Melo, R.P.F.; Barros Neto, E.L.; Moura, M.C.P.A.; Castro Dantas, T.N.; Dantas Neto, A.A.; Oliveira, H.N.M. Removal of Reactive Blue 19 Using Nonionic Surfactant in Cloud Point Extraction. Sep. Purif. Technol. 2014, 138, 71–76. [Google Scholar] [CrossRef]
- Tanhaei, B.; Pourafshari Chenar, M.; Saghatoleslami, N.; Hesampour, M.; Kallioinen, M.; Sillanpää, M.; Mänttäri, M. Removal of Nickel Ions from Aqueous Solution by Micellar-Enhanced Ultrafiltration, Using Mixed Anionic-Non-Ionic Surfactants. Sep. Purif. Technol. 2014, 138, 169–176. [Google Scholar] [CrossRef]
- Goswami, A.; Nath, J.; Purkait, M.K. Cloud Point Extraction of Nitrobenzene Using TX-100. Sep. Sci. Technol. 2011, 46, 744–753. [Google Scholar] [CrossRef]
- Macías-Sánchez, M.D.; Fernandez-Sevilla, J.M.; Fernández, F.G.A.; García, M.C.C.; Grima, E.M. Supercritical Fluid Extraction of Carotenoids from Scenedesmus Almeriensis. Food Chem. 2010, 123, 928–935. [Google Scholar] [CrossRef]
- Fu, X.Q.; Ma, N.; Sun, W.P.; Dang, Y.Y. Microwave and Enzyme Co-Assisted Aqueous Two-Phase Extraction of Polyphenol and Lutein from Marigold (Tagetes erecta L.) Flower. Ind. Crops Prod. 2018, 123, 296–302. [Google Scholar] [CrossRef]
- Jalali-Jivan, M.; Abbasi, S.; Fathi-Achachlouei, B. Lutein Extraction by Microemulsion Technique: Evaluation of Stability versus Thermal Processing and Environmental Stresses. LWT 2021, 149, 111839. [Google Scholar] [CrossRef]
- Goto, M.; Kanda, H.; Wahyudiono; Machmudah, S. Extraction of Carotenoids and Lipids from Algae by Supercritical CO2 and Subcritical Dimethyl Ether. J. Supercrit. Fluids 2015, 96, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Mezzomo, N.; Ferreira, S.R.S. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. J. Chem. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hung, K.; Chen, B.; Yu, L.E. Cloud-Point Extraction of Selected Polycyclic Aromatic Hydrocarbons by Nonionic Surfactants. Sep. Purif. Technol. 2007, 57, 1–10. [Google Scholar] [CrossRef]
- Kanda, H.; Wahyudiono; MacHmudah, S.; Goto, M. Direct Extraction of Lutein from Wet Macroalgae by Liquefied Dimethyl Ether without Any Pretreatment. ACS Omega 2020, 5, 24005–24010. [Google Scholar] [CrossRef]
- Sindhu, E.R.; Preethi, K.C.; Kuttan, R. Antioxidant Activity of Carotenoid Lutein in Vitro and in Vivo. Indian J. Exp. Biol. 2010, 48, 843–848. [Google Scholar]
- Wang, M.; Tsao, R.; Zhang, S.; Dong, Z.; Yang, R.; Gong, J.; Pei, Y. Antioxidant Activity, Mutagenicity/Anti-Mutagenicity, and Clastogenicity/Anti-Clastogenicity of Lutein from Marigold Flowers. Food Chem. Toxicol. 2006, 44, 1522–1529. [Google Scholar] [CrossRef]
Run No. | Temperature (X1) | S/L (X2) | Surfactant Concentration (X3) | Lutein Content (Y) |
---|---|---|---|---|
1 | 30 | 0.0025 | 1.5 | 6.01 ± 0.13 |
2 | 37.5 | 0.0025 | 0.5 | 7.89 ± 0.14 |
3 | 37.5 | 0.0025 | 2.5 | 6.20 ± 0.14 |
4 * | 37.5 | 0.00375 | 1.5 | 12.12 ± 0.16 |
5 | 37.5 | 0.00375 | 1.5 | 11.98 ± 0.13 |
6 | 45 | 0.0025 | 1.5 | 4.90 ± 0.07 |
7 | 30 | 0.00375 | 0.5 | 7.52 ± 0.04 |
8 | 45 | 0.005 | 1.5 | 5.01 ± 0.03 |
9 | 37.5 | 0.005 | 0.5 | 7.89 ± 0.07 |
10 | 37.5 | 0.005 | 2.5 | 9.56 ± 0.07 |
11 | 30 | 0.005 | 1.5 | 8.23 ± 0.13 |
12 | 45 | 0.00375 | 2.5 | 6.72 ± 0.08 |
13 | 30 | 0.00375 | 2.5 | 6.98 ± 0.10 |
14 | 37.5 | 0.00375 | 1.5 | 10.96 ± 0.08 |
15 | 45 | 0.00375 | 0.5 | 6.01 ± 0.13 |
Source | F-Value | p-Value |
---|---|---|
Model | 23.60 | 0.001 |
Linear | 17.74 | 0.022 |
X1 | 31.76 | 0.015 |
X2 | 20.20 | 0.019 |
X3 | 11.24 | 0.932 |
Square | 58.44 | 0.000 |
X12 | 118.78 | 0.000 |
X22 | 54.86 | 0.000 |
X32 | 24.13 | 0.058 |
2—way Interaction | 4.10 | 0.081 |
X1 × X2 | 3.17 | 0.135 |
X1 × X3 | 1.11 | 0.340 |
X2 × X3 | 8.03 | 0.035 |
R2 | 97.70% | |
R2a | 93.56% |
S. No | Source | Methods of Extraction | Solvents | Conditions | Extracted Amount of Lutein Content | Year | References |
---|---|---|---|---|---|---|---|
1. | Marigold flowers | Supercritical CO2 Extraction | Soyabean oil as co-solvent | 58.7 °C, 35.5 MPa, CO2 flow rate of 19.9 L⁄ h with 6.9% of soybean oil | 10.397 mg/g | 2007 | [42] |
2. | Marigold flowers | Solvent extraction | Hexane | 40 °C, solvent/material 5 L/kg | 2.13 mg/g | 2007 | [6] |
3. | Marigold flowers | (SC-CO2) Extraction & ultrasound | Supercritical Carbon dioxide | 55 °C, extraction pressure of 32.5 MPa, CO2 flow rate of 10 kg/h | 6.90 mg/g | 2009 | [43] |
4. | Marigold flowers | Solvent extraction | (DME)–KOH–EtOH mixture | 35 °C, Solvent: marigold flowers 33:0.5 (w/w), extraction time 1 h | 16.65 mg/g | 2017 | [22] |
5. | Marigold flowers | Enzyme assisted ATPE | Ethanol/ammonium sulphate system | 37 °C enzymolysis temperature 30% (w/w) ethanol/19% (w/w) ammonium sulphate, and Extraction time 117 min | 5.59 mg/g | 2018 | [20] |
6. | Marigold flowers | microwave and enzyme co-assisted ATPE | ethanol/ammonium sulphate | 45 °C enzymolysis temperature 28% ethanol/20% ammonium sulphate, Extraction time of 150 min | 7.32 mg/g | 2018 | [43] |
7. | Marigold flowers | Solvent free extraction | Canola oil | 0.2 g dried flower/mL oil | 6.05 mg/g | 2019 | [5] |
8. | Marigold flowers | Microemulsion technique | Lecithin, sunflower oil | 25 °C, S/L: 20 mg of MPP/10 mL of acetone, mixed for 30 min at 300 rpm | 14.51 mg/g | 2020 | [21] |
9. | Marigold flowers | Surfactant-based ATPS | Various non-ionic surfactant solutions | 37.5 °C, S/L = 0.00375, Surfactant Concentration = 1.5% (v/v) | 12.12 mg/g | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maheshwari, N.; Arya, R.K.; Verros, G.D.; Dhamole, P.B.; Kannan, A. Surfactant-Enhanced Extraction of Lutein from Marigold Petals using an Aqueous Two-Phase System. Separations 2023, 10, 133. https://doi.org/10.3390/separations10020133
Maheshwari N, Arya RK, Verros GD, Dhamole PB, Kannan A. Surfactant-Enhanced Extraction of Lutein from Marigold Petals using an Aqueous Two-Phase System. Separations. 2023; 10(2):133. https://doi.org/10.3390/separations10020133
Chicago/Turabian StyleMaheshwari, Neha, Raj Kumar Arya, George D. Verros, Pradip B. Dhamole, and Ashwin Kannan. 2023. "Surfactant-Enhanced Extraction of Lutein from Marigold Petals using an Aqueous Two-Phase System" Separations 10, no. 2: 133. https://doi.org/10.3390/separations10020133
APA StyleMaheshwari, N., Arya, R. K., Verros, G. D., Dhamole, P. B., & Kannan, A. (2023). Surfactant-Enhanced Extraction of Lutein from Marigold Petals using an Aqueous Two-Phase System. Separations, 10(2), 133. https://doi.org/10.3390/separations10020133