Contaminant Cocktails of High Concern in Honey: Challenges, QuEChERS Extraction and Levels
Abstract
:1. Introduction
1.1. Honey Contaminants: Overview and Legislation
1.2. Honey Contaminant Analysis—Extraction Methods and Challenges
2. QuEChERS Approach for the Analysis of Several Contaminants in Honey Samples
2.1. Pesticides
Target Pesticides and/or Chemical Class of Pesticides | Extraction | Clean-Up | Validation Parameters | Analysis | Findings | Sample Origin | Ref. |
---|---|---|---|---|---|---|---|
OPPs, PYRs, neonicotinoids, herbicides, insecticides, carbamates, fungicides, and acaricides | Solvent: 7.5 mL water and 10.0 mL acetonitrile Extraction kit: 6.0 g MgSO4 and 1.0 g NaCl | d-SPE: 0.05 g C18, 0.05 g PSA and 0.15 g MgSO4 | Recoveries: 30.0–96.0 ±≤20.0% LOQs: 0.2–10.0 ng/g | LC–MS/MS | - | Spain | [15] |
OPPs, PYRs, herbicides and phenyl pyrazol | Solvent: 5 mL acetonitrile Extraction kit: 2 g MgSO4 and 1 g of NaCl | d-SPE: 0.15 mg PSA and 1 g MgSO4 | Recoveries: 70.0–120.0 ±<20.0% LOQs: 18.0–410.0 ng/g LODs: 6.0–135.0 ng/g | GC-ECD | HCH, endosulfan, aldrin, heptachlor, malathion, chlorpyrifos, chlorpyrifos methyl, pendimethalin, butachlor, fipronil, bifenthrin, cypermethrin | India | [37] |
Neonicotinoids, OCPs, PYRs | Solvent: 10 mL water and 10 mL acetonitrile Extraction kit: 4 g MgSO4 and 1.5 g NaCl | d-SPE: 0.750 g MgSO4, 0.250 g PSA and 0.125 g C18 | Recoveries: 74.0–104.0 ±<20.0% LOQs: 10.0–50.0 ng/g | UHPLC-MS/MS | imidacloprid, clothianidin, chlorpyrifos, permethrin, dimethoate, cypermethrin | Brazil | [38] |
Neonicotinoids | Solvent: 10 mL water and 10 mL acetonitrile Extraction kit: 4 g MgSO4 and 1 g NaCl | d-SPE: 0.150 g MgSO4, 0.050 g PSA and 0.050 g C18 | Recoveries: 86.2–101.7 ±<6.0% LOQs: 60.8–81.0 ng/g LODs: 184.3–245.4 ng/g | UHPLC | acetamiprid, thiacloprid, thiamethoxam, imidacloprid, clothianidin | Poland, Australia, Brazil, Bulgaria, Cameroon, Czech Republic, France, Greece, Italy, Portugal, Romania, Russia, USA, Turkey | [39] |
PYRs, OCPs, OPPs, neonicotinoids, insecticides, carbamates, growth regulators, herbicides, acaricides, and fungicide | Solvent: 10 mL water and 10 mL acetonitrile and ethyl acetate (70:30, v/v) Extraction kit: 4 g MgSO4, 1 g NaCl, 1 g trisodium citrate dehydrate, and 0.5 g disodium hydrogen citrate sesquihydrate | d-SPE: 0.900 g MgSO4 and 0.150 g PSA | Recoveries: 70.0–120.0 ±≤20.0% LOQs: (LC) 0.2–0.8 ng/g; (GC) 2.0–8.0 ng/g LODs: (LC) 0.1–0.4 ng/g; (GC) 1.0–4.0 ng/g | LC-MS/MS GC-MS/MS | acephate, acetamiprid, azoxystrobin, bifenthrin, boscalid, carbaryl, carbendazim, clomazone, chlorpyrifos, clothianidin, diflubenzuron, dimethoate, diuron, imidacloprid, metoxyphenazide, omethoate, pyraclostrobin, pyrimethanil, pyriproxyfen, tebuconazole, thiabendazole, thiamethoxam, triazophos, trifloxystrobin | Brazil | [36] |
Neonicotinoids | Solvent: 9 mL H2O:ACN (50:50, v/v) Extraction kit: 2 g MgSO4, 0.5 g NaCl, 0.5 g sodium citrate dihydrate and 0.25 g sodium citrate sesquihydrate | d-SPE: 0.150 g MgSO4, 0.100 g PSA bulk phase and 0.100 g C18 bulk phase | Recoveries: 73.0–95.0 ±≤22.0% LLOQs: 2.0 × 10−3–20.0 × 10−3 pg/g | UHPLC-MS/MS | - | Switzerland | [40] |
OPPs, OCPs, PYRs | Solvent: 10 mL water and 10 mL acetonitrile acidified with glacial acetic acid (1%) Extraction kit: 6.0 g MgSO4 and 1.5 g CH3COONa | d-SPE: 0.40 g PSA sorbent and 1.20 g MgSO4 | Recoveries: 86.0–107.7 ±≤12.1% LOQs: ≤27.3 ng/g LODs: ≤9.1 ng/g | GC-μECD/FTD GC-MS | dichlorvos, monocrotophos, profenofos, permethrin, ethion, lindane | India | [41] |
Neonicotinoids | Solvent: 10 mL of water and 10 mL of acetonitrile Extraction kit: MgSO4, NaCl, sodium citrate tribasic dihydrate, and sodium citrate dibasic sesquihydrate | d-SPE: MgSO4, PSA and discovery C18 | Recoveries: 79.0–101.0 ±≤3.3% LOQs: 0.3–4.8 ng/g LODs: 0.3–1.4 ng/g | LC/MS/MS | acetamiprid, thiamethoxam, thiacloprid, imidacloprid | Chile | [33] |
OCPs, OPPs, PYRs and organonitrogen pesticides | Solvent: 10 mL of water and 10 mL of acetonitrile acidified with acetic acid Extraction kit: 1.0 g sodium acetate, 4.0 g MgSO4 | d-SPE: 0.4 g PSA sorbent and 0.6 g MgSO4 | Recoveries: 84.2–120.3 ±<20.0% LODs: 1.0–168.0 ng/g | GC-NPD GC-ECD | β-HCH, γ-HCH, dicofol, tetradifon, bromopropylate, chlorpyrifos, diazinon, fenitrothion, malathion, pirimicarb, profenofos | Egypt | [42] |
acylamino acid, anilinopyrimidine, aryloxyphenoxypropionate, benzimidazole, benzofuran, carbamate, carbanilate, carboxamide, chloroacetamide, cyanoimidazole, diacylhydrazine, dicarboximide, dinitroaniline, hydroxyanilide, imidazole, morpholine, neonicotinoid, OPPs, oxadiazine, phenylamide, phenylpyrazole, phenylurea, phosphorothiolate, pyrazole, PYRs, pyridazinone, pyridine, pyrimidine, strobilurin, sulphite ester, tetrazine, tetronic acid, triazine, triazole, urea and other pesticides unclassified | Solvent: 10 mL water and 10 mL acetonitrile:ethyl acetate (70:30) with 1% acetic acid Extraction kit: 1.0 g sodium acetate, 4.0 g MgSO4 | d-SPE: 0.15 g MgSO4, 0.05 g PSA sorbent and 0.05 g Fibrosil | Recoveries: 81.6–108.9 ±≤20.0% LOQs: 10.0–25.0 ng/g LODs: 5.0 ng/g | UHPLC-MS/MS | Trichlorfon | Brazil | [43] |
OPPs, OCPs, PYRs, strobis, triazoles, chloronitrile, dinitroaniline, and pyrazole | Solvent: 5.0 mL aqueous Na2EDTA (0.1 mol L−1, heated at 45 °C) and 5.0 mL acetonitrile Extraction kit: 1.5 g NaCl, 6.0 g anhydrous MgSO4 | d-SPE: 0.12 g MgSO4 and 0.1 g PSA sorbent | Recoveries: 71.0–119.0 ±≤20.0% LOQs: 10.0–20.0 ng/g LODs: 3.0–6.0 ng/g | GC-ECD | chlorpyrifos ethyl, chlorothalonil, endosulfan sulfate, hexachlorobenzene, malathion | Brazil | [44] |
Insecticides | Solvent: 6 mL water and 5 mL acetonitrile Extraction kit: 3 g NaCl, 6 g anhydrous MgSO4 | d-SPE: 0.15 g MgSO4, 0.05 g PSA sorbent and 0.001 g graphene | Recoveries: 60.7–116.4 ±<10.0% LODs: 1.0–4.0 ng/g | UPLC-MS/MS | Acetamiprid, chlorpyrifos, imidacloprid | China | [35] |
organonitrogen pesticides, OPPs, OCPs and PYRs | Solvent: 10 mL water, 10 mL acetonitrile acidified with acetic acid Extraction kit: 1.0 g sodium acetate and 4.0 g MgSO4 | d-SPE: 0.4 g PSA sorbent and 0.6 g MgSO4 | Recoveries: 70.0–120.0 ±≤22% LOQs: 20.0–50.0 ng/g LODs: 1.0–168.0 ng/g | GC-NPD GC-ECD | - | Egypt | [45] |
Pesticides, PAHs and PCBs OCPs | Solvent: 10 mL ultrapure water and 10 mL acetonitrile Extraction kit: 4 g MgSO4, 1 g NaCl, 1 g trisodium citrate dihydrate, and 0.5 g disodium hydrogencitrate sesquihydrate | d-SPE: 1.20 g MgSO4, 0.400 g PSA, and 0.400 g C18, follows a SPME extraction and concentration | Recoveries: (LC) 55.0–105.0 ±<17.0%; (GC) 51.0–104.0 ±<28.0% LOQs: (LC) 0.2–16.1 ng/g; (GC) 0.2–168.1 ng/g LODs: (LC) 4.8 × 10−2–5.3 ng/g; (GC) 7.0 × 10−2–50.4 ng/g | LC–MS/MS for non-volatile pesticides GC-MS/MS for semivolatile pesticides | diflufenican, pyraclostrobin, diuron, penconazole, fenpropidin, acetochlor, hexachlorobenzene | Lebanon | [46] |
Pesticide | MRL (ng/g) | IARC | Pesticide | MRL (ng/g) | IARC |
---|---|---|---|---|---|
Acephate | 20 | - | Fenpropidin | 50 | - |
Acetochlor | 50 | - | Fipronil | 5 | - |
Acetamiprid | 50 | - | Fluvalinate | 50 | - |
Aldrin | 10 | 2A | HCH | 10 | 1 |
Azoxystrobin | 50 | - | Heptachlor | 10 | 2B |
Bifenthrin | 50 | - | Hexachlorobenzene | 10 | 2B |
Boscalid | 150 | - | Imidacloprid | 50 | - |
Bromopropylate | 10 | - | Lindane | 10 | 1 |
Carbaryl | 50 | 3 | Malathion | 50 | 2A |
Carbendazim | 1000 | - | Omethoate | 10 | - |
Chlorothalonil | 50 | 2B | Penconazole | 50 | - |
Chlorpyrifos | 10 | - | Pendimethalin | 50 | - |
Chlorpyrifos-methyl | 10 | - | Pirimicarb | 50 | - |
Clomazone | 50 | - | Profenofos | 50 | - |
Clothianidin | 50 | - | Propiconazole | 50 | - |
Coumaphos | 100 | - | Prothioconazole | 50 | - |
Cypermethrin | 50 | - | Pyraclostrobin | 50 | - |
Cyproconazole | 50 | - | Pyrimethanil | 50 | - |
Diazinon | 10 | 2A | Pyriproxyfen | 50 | - |
Dicofol | 20 | 3 | Tebuconazole | 50 | - |
Difenoconazole | 50 | - | Tetraconazole | 20 | - |
Diflubenzuron | 50 | - | Tetradifon | 50 | - |
Diflufenican | 50 | - | Thiabendazole | 50 | - |
Dimethoate | 10 | - | Thiacloprid | 200 | - |
Dimoxystrobin | 50 | - | Thiamethoxam | 50 | - |
Diuron | 50 | - | Thiazophos | 50 | - |
Endosulfan | 10 | - | Trichlorfon | 10 | 3 |
Ethion | 10 | - | Trifloxystrobin | 50 | - |
Fenitrothion | 10 | - |
2.2. Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons
Target | Extraction | Clean-Up | Validation Parameters | Analysis | Findings | Sample Origin | Ref. |
---|---|---|---|---|---|---|---|
PAHs and PCBs | Solvent: 10 Ml acetonitrile and 10 Ml water Extraction kit: 4 g MgSO4, 1 g NaCl, 1 g trisodium citrate dihydrate and 0.5 g disodium hydrogen citrate sesquihydrate | d-SPE: 1.2 g MgSO4, 0.400 g PSA and 0.400 g C18 | Recoveries: (PAHs) 63.0–104.0 ±<16.0%; (PCBs) 60.0–99.0 ±<16.0% LOQs: (PAHs) 0.2–40.0 ng/g; (PCBs) 3.1–55.9 ng/g LODs: (PAHs) 7 × 10−2–12.0 ng/g; (PCBs) 0.9–16.8 ng/g | GC-MS/MS | naphthalene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzoIpyrene, benzo(a)pyrene, benzo(g,h,i)perylene | Lebanon | [66] |
PAHs | Solvent: 3 Ml acetonitrile and 3 Ml water Extraction kit: 3 g of MgSO4 and 1 g of anhydrous sodium acetate | d-SPE: 0.150 g MgSO4, 0.100 g of PSA and 0.050 g C18 | Recoveries: 80.0–101.0 ±<15.0% LOQs: 1.0–2.0 ng/g LODs: 0–3–0.5 ng/g | GC-MS | naphthalene, acenaphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno [1,2,3cd]pyrene, dibenz[a,h]anthracene, benzo[ghi]perylene | Serbia | [63] |
PCBs | Solvent: 10 Ml water and 10 Ml acetonitrile (with 1% of acid acetic) Extraction kit: 1 g sodium acetate and 4 g MgSO4 | d-SPE: 0.0500 g PSA and 0.300 g MgSO4 | Recoveries: 81.0–116.0 ±≤20.0% LOQs: 20.0 ng/g LODs: 5.0–10.0 ng/g | GC-µECD | PCBs 28, 77, 81, 101 | Brazil | [64] |
PFOA and PFOS | Solvent: 5 Ml warm water, 10 Ml acetonitrile with 150 Μl formic acid Extraction kit: 1 g NaCl and 4 g MgSO4 | d-SPE: ENV | Recoveries: (PFOA) 82–0–85.0 ±≤4.9%; (PFOS) 84–0–87.0 ±≤4.8% LOQs: (PFOA) 5.2 × 10−2 ng/g; (PFOS) 0.1 ng/g LODs: (PFOA) 1.6 × 10−2 ng/g; (PFOS) 4.0 × 10−2 ng/g | micro-UHPLC–MS/MS | perfluorooctanoic acid | Scotland, Spain, England, Italy, France | [65] |
PAHs and PCBs | Solvent: 10 Ml ultrapure water and 10 Ml acetonitrile Extraction kit: 4 g MgSO4, 1 g NaCl, 1 g trisodium citrate dihydrate, and 0.5 g disodium hydrogencitrate sesquihydrate | d-SPE: 1.2 g MgSO4, 0.400 g PSA, and 0.400 g C18, follows a SPME extraction and concentration | Recoveries: 51.0–104.0 ±<28.0% LOQs: (GC) 0.2–168.1 ng/g LODs: (GC) 7.0 × 10−2–50.4 ng/g | GC-MS/MS | naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene | Lebanon | [46] |
2.3. Pharmaceuticals
Target | Extraction | Clean-Up | Validation Parameters | Analysis | Findings | Sample Origin | Ref. |
---|---|---|---|---|---|---|---|
Quinolones | Solvent: 10 mL water and 15 mL extraction solution (1% acetic acid in can) Extraction kit: 1.5 g NaOAc and 6 g MgSO4 | d-SPE: 1.20 g MgSO4 and 0.400 g PSA | Recoveries: 82.0–117.0 ±<14.0% | UHPLC-ESI-MS/MS | enrofloxacin, danofloxacin, pipemidic acid, lomefloxacin, cinoxacin and, ciprofloxacin | [71] | |
Sulfonamides, fluoroquinolones, macrolides, nitroimidazoles, tetracyclines, dapsone and trimethoprim | Solvent: 0.200 g Na2EDTA, 0.100 g citric acid, 5.0 mL water, 10 mL acetonitrile containing 1% acetic acid Extraction kit: 4 g anhydrous Na2SO4 and 1 g NaCl | d-SPE: 0.050 g PSA, 0.150 g C18-EC and 0.900 g anhydrous Na2SO4 | Recoveries: 80–4–118.4 ±<20.0% LOQs: 0.5–9.7 ng/g LODs: 0.1 to 2.9 ng/g | HPLC–MS/MS | norfloxacin, ciprofloxacin, ofloxacin, enrofloxacin, metronidazole, sulfamethoxazole and oxytetracycline | China | [69] |
Quinolones | Solvent: 8 mL NaH2PO4 buffer (30 mM, vpH 7.0), 10 mL formic acid (5%) canACN Extraction kit: 4 g MgSO4, 1 g NaCl, 1 g sodium citrate, 0.5 g disodium citrate sesquihydrate | d-SPE: 0.150 g C18 and 0.900 g MgSO4 | Recoveries: −61.2–99.8 ±<8.0% LOQs: 0.8–5.5 ng/g LODs: 0.2–1.7 ng/g | UHPLC–MS/MS | - | Spain | [73] |
Nitroimidazoles and quinolones | Solvent: 5 mL Mciluffer bufer (pH = 4.00), 15 mL citric acid- acetonitrile (5:95) Extraction kit: 2.0 g NaCl and 4.0 g MgSO4 | d-SPE: 0.050 g PSA, 0.050 g C18, and 0.100 g Mg2SO4 | Recoveries: −81.0–116.8 ±<6.3% LOQs: 2.1–5.3 ng/g LODs: 0.6–1.6 ng/g | LC-MS/MS | metronidazole, ciprofloxacin | China | [72] |
Lincosamides and macrolides | Solvent: 10.0 mL acetonitrile Extraction kit: 2.0 g Na2SO4 | d-SPE: 0.1 g ZnO | Recoveries: −81.3–99.0 ±<10.0% LOQs: 0.8–2.3 ng/g LODs: 0.2–0.6 ng/g | HPLC-MS/MS | Lincomycin | China | [70] |
Neonicotinoids, insecticides, fungicides, herbicides, acaricides, veterinary drugs and growth regulators | Solvent: 10 mL water and 10 mL acetic acid (1%) solution in acetonitrile Extraction kit: 4 g MgSO4 and 1 g sodium acetate | d-SPE: 1.05 g MgSO4, 0.35 g PSA and 0.35 g Z-Sep+ | Recoveries: 70.0–120.0 ±≤20.0% LOQs: 0.1–1.0 ng/g | LC-MS/MS GC-MS/MS | thiacloprid, acetamiprid, carbendazim, amitraz, DMF, DMPF, azoxystrobin, te-buconazole, dimethoate, coumaphos, cyproconazole, boscalid, flutriafol, tau-fluvalinate, tetraconazole, diazinon, dimoxystrobin, p,p′-DDD, difenoconazole, lindane, propiconazole prothioconazole-desthio | Poland | [74] |
3. Microplastics in Honey
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. About Pollinators. Available online: https://wikis.ec.europa.eu/display/EUPKH/About+pollinators (accessed on 4 November 2022).
- Sager, M. The Honey as a Bioindicator of the Environment. Ecol. Chem. Eng. S 2017, 24, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Kazazic, M.; Djapo-Lavic, M.; Mehic, E.; Jesenkovic-Habul, L. Monitoring of honey contamination with polycyclic aromatic hydrocarbons in Herzegovina region. Chem. Ecol. 2020, 36, 726–732. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-Garcia, J.; Garcia-Martin, S.; Pena-Crecente, R.M. The use of honeybees and honey as environmental bioindicators for metals and radionuclides: A review. Environ. Rev. 2017, 25, 463–480. [Google Scholar] [CrossRef]
- Ponikvar, M.; Snajder, J.; Sedej, B. Honey as a bioindicator for environmental pollution with SO2. Apidologie 2005, 36, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Balayiannis, G.; Balayiannis, P. Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Arch. Environ. Contam. Toxicol. 2008, 55, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Ben Mukiibi, S.; Nyanzi, S.A.; Kwetegyeka, J.; Olisah, C.; Taiwo, A.M.; Mubiru, E.; Tebandeke, E.; Matovu, H.; Odongo, S.; Abayi, J.J.M.; et al. Organochlorine pesticide residues in Uganda’s honey as a bioindicator of environmental contamination and reproductive health implications to consumers. Ecotoxicol. Environ. Saf. 2021, 214, 12. [Google Scholar] [CrossRef]
- European Union. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. 2005. 396/2005. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32005R0396 (accessed on 16 October 2022).
- Cabrera, L.C.; Pastor, P.M. The 2019 European Union report on pesticide residues in food. Efsa J. 2021, 19, e06491. [Google Scholar] [CrossRef]
- European Union. Commission Recommendation of 3 March 2014 on the Monitoring of Traces of Brominated Flame Retardants in Food. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014H0118&qid=1676587691936 (accessed on 10 September 2022).
- European Union. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuff. 2006. 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006R1881&qid=1676587516415 (accessed on 10 September 2022).
- De-Melo, A.A.M.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Mate, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 33. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simo, E.; Pico, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 2016, 3, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, V.C.; Domingues, V.F.; Mateus, N.; Delerue-Matos, C. Determination of Pesticides in Fruit and Fruit Juices by Chromatographic Methods. An Overview. J. Chromatogr. Sci. 2011, 49, 715–730. [Google Scholar] [CrossRef] [Green Version]
- Gjelstad, A.; Pedersen-Bjergaard, S. Challenges and new directions in analytical sample preparation. Anal. Bioanal. Chem. 2014, 406, 375–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef]
- Souza Tette, P.A.; Rocha Guidi, L.; de Abreu Gloria, M.B.; Fernandes, C. Pesticides in honey: A review on chromatographic analytical methods. Talanta 2016, 149, 124–141. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Labella, G.F.; Panseri, S.; Britti, D.; Galbiati, F.; Villa, R.; Arioli, F. Accelerated solvent extraction by using an ‘in-line’ clean-up approach for multiresidue analysis of pesticides in organic honey. Food Addit. Contam. Part A-Chem. 2017, 34, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Camara, J.S. QuEChERS—Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Serban Moldoveanu, V.D. Solid-Phase Extraction. In Modern Sample Preparation for Chromatography; Elsevier: Amsterdam, The Netherlands, 2015; pp. 191–286. [Google Scholar]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Devi, P.I.; Manjula, M.; Bhavani, R.V. Agrochemicals, Environment, and Human Health. Annu. Rev. Environ. Resour. 2022, 47, 399–421. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt J. Aquatic Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Md Meftaul, I.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Medina, A.; Ugalde-Lizarraga, A.; Bojorquez-Cuevas, M.S.; Garnica-Ruiz, J.; Gonzalez-Corral, M.A.; Garcia-Ledezma, A.; Pineda-Garcia, G.; Cornejo-Bravo, J.M. Neuropsychiatric Disorders in Farmers Associated with Organophosphorus Pesticide Exposure in a Rural Village of Northwest Mexico. Int. J. Environ. Res. Public Health 2019, 16, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Pesticides and Bees. Available online: https://food.ec.europa.eu/animals/live-animal-movements/honey-bees/pesticides-and-bees_en (accessed on 29 September 2022).
- Butler, D. Scientists Hail European Ban on Bee-Harming Pesticides. Available online: https://www.nature.com/articles/d41586-018-04987-4 (accessed on 29 September 2022).
- European Commission. Neonicotinoids. Available online: https://food.ec.europa.eu/plants/pesticides/approval-active-substances/renewal-approval/neonicotinoids_en (accessed on 29 September 2022).
- Bridi, R.; Larena, A.; Pizarro, P.N.; Giordano, A.; Montenegro, G. LC-MS/MS analysis of neonicotinoid insecticides: Residue findings in chilean honeys. Cienc. Agrotec. 2018, 42, 51–57. [Google Scholar] [CrossRef]
- European Comission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed 2022, 57. Available online: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727 (accessed on 16 October 2022).
- Pang, X.; Li, C.; Zang, C.; Guan, L.; Zhang, P.; Di, C.; Zou, N.; Li, B.; Mu, W.; Lin, J. Simultaneous detection of ten kinds of insecticide residues in honey and pollen using UPLC-MS/MS with graphene and carbon nanotubes as adsorption and purification materials. Environ. Sci. Pollut. Res. 2022, 29, 21826–21838. [Google Scholar] [CrossRef]
- Almeida, M.O.; Oloris, S.C.S.; Faria, V.H.E.; Ribeiro, M.C.M.; Cantini, D.M.; Soto-Blanco, B. Optimization of Method for Pesticide Detection in Honey by Using Liquid and Gas Chromatography Coupled with Mass Spectrometric Detection. Foods 2020, 9, 1368. [Google Scholar] [CrossRef]
- Nadaf, H.A.; Yadav, G.S.; Kumari, B. Validation and monitoring of pesticide residues in honey using QuEChERS and gas chromatographic analysis. J. Apic. Res. 2015, 54, 260–266. [Google Scholar] [CrossRef]
- Souza, A.P.F.; Petrarca, M.H.; Braga, P.A.D.; Rodrigues, N.R.; Reyes, F.G.R. Analysis of insecticide residues in honey by liquid chromatography tandem mass spectrometry using QuEChERS optimized by the Plackett Burman design. Cyta-J. Food 2021, 19, 326–332. [Google Scholar] [CrossRef]
- Ligor, M.; Bukowska, M.; Ratiu, I.A.; Gadzala-Kopciuch, R.; Buszewski, B. Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries. Molecules 2020, 25, 5817. [Google Scholar] [CrossRef]
- Kammoun, S.; Mulhauser, B.; Aebi, A.; Mitchell, E.A.D.; Glauser, G. Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination. Environ. Pollut. 2019, 247, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gill, J.P.S.; Bedi, J.S.; Kumar, A. Pesticide residues in Indian raw honeys, an indicator of environmental pollution. Environ. Sci. Pollut. Res. 2018, 25, 34005–34016. [Google Scholar] [CrossRef]
- Eissa, F.; El-Sawi, S.; Zidan, N.E. Determining Pesticide Residues in Honey and their Potential Risk to Consumers. Pol. J. Environ. Stud. 2014, 23, 1573–1580. [Google Scholar]
- Tette, P.A.; da Silva Oliveira, F.A.; Pereira, E.N.; Silva, G.; de Abreu Gloria, M.B.; Fernandes, C. Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC-MS/MS. Food Chem. 2016, 211, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Orso, D.; Martins, M.L.; Donato, F.F.; Rizzetti, T.M.; Kemmerich, M.; Adaime, M.B.; Zanella, R. Multiresidue Determination of Pesticide Residues in Honey by Modified QuEChERS Method and Gas Chromatography with Electron Capture Detection. J. Braz. Chem. Soc. 2014, 25, 10. [Google Scholar] [CrossRef]
- Barakat, A.A.; Badawy, H.M.A.; Salama, E.; Attallah, E.; Maatook, G. Simple and rapid method of analysis for determination of pesticide residues in honey using dispersive solid phase extraction and GC determination. J. Food Agric. Environ. 2007, 5, 97–100. [Google Scholar]
- Al-Alam, J.; Fajloun, Z.; Chbani, A.; Millet, M. A multiresidue method for the analysis of 90 pesticides, 16 PAHs, and 22 PCBs in honey using QuEChERS-SPME. Anal. Bioanal. Chem. 2017, 409, 5157–5169. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Agents Classified by the IARC Monographs. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 12 November 2022).
- European Commission. EU Pesticides Database. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 12 November 2022).
- International Agency for Research on Cancer. Monographs Available. Available online: https://monographs.iarc.who.int/monographs-available/ (accessed on 12 November 2022).
- UN Environment Programme. What Are POPs? Available online: http://chm.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx (accessed on 26 December 2022).
- Kim, L.; Lee, D.; Cho, H.K.; Choi, S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, 16. [Google Scholar] [CrossRef]
- UN Environment Programme. All POPs Listed in the Stockholm Convention. Available online: http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed on 26 December 2022).
- Lohmann, R.; Breivik, K.; Dachs, J.; Muir, D. Global fate of POPs: Current and future research directions. Environ. Pollut. 2007, 150, 150–165. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef]
- Kosek, K.; Ruman, M. Arctic Freshwater Environment Altered by the Accumulation of Commonly Determined and Potentially New POPs. Water 2021, 13, 1739. [Google Scholar] [CrossRef]
- Othman, N.; Ismail, Z.; Selamat, M.I.; Sheikh Abdul Kadir, S.H.; Shibraumalisi, N.A. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? Int. J. Environ. Res. Public Health 2022, 19, 13923. [Google Scholar] [CrossRef] [PubMed]
- Hens, B.; Hens, L. Persistent Threats by Persistent Pollutants: Chemical Nature, Concerns and Future Policy Regarding PCBs-What Are We Heading For? Toxics 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. IARC Monographs Volume 107: Polychlorinated Biphenyls and Polybrominated Biphenyls. Available online: https://www.iarc.who.int/news-events/iarc-monographs-volume-107-polychlorinated-biphenyls-and-polybrominated-biphenyls/ (accessed on 10 February 2023).
- Kim, Y.A.; Park, J.B.; Woo, M.S.; Lee, S.Y.; Kim, H.Y.; Yoo, Y.H. Persistent Organic Pollutant-Mediated Insulin Resistance. Int. J. Environ. Res. Public Health 2019, 16, 448. [Google Scholar] [CrossRef] [Green Version]
- Zwierello, W.; Maruszewska, A.; Skorka-Majewicz, M.; Goschorska, M.; Baranowska-Bosiacka, I.; Dec, K.; Styburski, D.; Nowakowska, A.; Gutowska, I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics—Review. Chemosphere 2020, 240, 124901. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Siyi, L.Y.; Yousaf, B.; Abbas, Q.; Hameed, R.; Zheng, C.M.; Kuang, X.X.; Wong, M.H. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 857–896. [Google Scholar] [CrossRef]
- Petrovic, J.; Kartalovic, B.; Ratajac, R.; Spiric, D.; Djurdjevic, B.; Polacek, V.; Pucarevic, M. PAHs in different honeys from Serbia. Food Addit. Contam. Part B-Surveill. 2019, 12, 116–123. [Google Scholar] [CrossRef]
- dos Santos, M.; Vareli, C.S.; Janisch, B.; Pizzutti, I.R.; Fortes, J.; Sautter, C.K.; Costabeber, I.H. Contamination of polychlorinated biphenyls in honey from the Brazilian state of Rio Grande do Sul. Food Addit. Contam. Part A-Chem. 2021, 38, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Surma, M.; Wiczkowski, W.; Cieslik, E.; Zielinski, H. Method development for the determination of PFOA and PFOS in honey based on the dispersive Solid Phase Extraction (d-SPE) with micro-UHPLC-MS/MS system. Microchem. J. 2015, 121, 150–156. [Google Scholar] [CrossRef]
- Al-Alam, J.; Fajloun, Z.; Chbani, A.; Millet, M. Determination of 16 PAHs and 22 PCBs in honey samples originated from different region of Lebanon and used as environmental biomonitors sentinel. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 9–15. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EU) No 1259/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Dioxins, Dioxin-Like PCBs and Non Dioxin-Like PCBs in Foodstuffs. 2011. 1259/2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1259&qid=1676587373985 (accessed on 16 October 2022).
- European Union. Commission Regulation (EU) 2020/1255 of 7 September 2020 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Traditionally Smoked Meat and Smoked Meat Products and Traditionally Smoked Fish and Smoked Fishery Products and Establishing a Maximum Level of PAHs in Powders of Food of Plant Origin Used for the Preparation of Beverages. 2020. 2020/1255. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R1255 (accessed on 16 October 2022).
- Jin, Y.; Zhang, J.Z.; Zhao, W.; Zhang, W.W.; Wang, L.; Zhou, J.H.; Li, Y. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry. Food Chem. 2017, 221, 1298–1307. [Google Scholar] [CrossRef]
- Xu, J.; Yang, M.; Wang, Y.H.; Yang, Y.; Tu, F.Q.; Yi, J.; Hou, J.; Lu, H.; Jiang, X.M.; Chen, D. Multiresidue analysis of 15 antibiotics in honey using modified QuEChERS and high performance liquid chromatography-tandem mass spectrometry. J. Food Compos. Anal. 2021, 103, 8. [Google Scholar] [CrossRef]
- Emir, A.I.; Ece, Y.K.; Sinem, R.; Sezer, A.; Ozge, E. Validation of two UHPLC-MS/MS methods for fast and reliable determination of quinolone residues in honey. Food Addit. Contam. Part A-Chem. 2021, 38, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.Y.; Guo, J.B.; Lv, Z.; Zhu, X.H.; Xue, X.F.; Wu, L.M.; Cao, W. Simultaneous Determination of Nitroimidazoles and Quinolones in Honey by Modified QuEChERS and LC-MS/MS Analysis. Int. J. Anal. Chem. 2018, 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Lombardo-Agui, M.; Garcia-Campana, A.M.; Gamiz-Gracia, L.; Cruces-Blanco, C. Determination of quinolones of veterinary use in bee products by ultra-high performance liquid chromatography-tandem mass spectrometry using a QuEChERS extraction procedure. Talanta 2012, 93, 193–199. [Google Scholar] [CrossRef]
- Gawel, M.; Kiljanek, T.; Niewiadowska, A.; Semeniuk, S.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [Google Scholar] [CrossRef]
- European Union. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. 2010. 37/2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010R0037&qid=1676587318550 (accessed on 16 October 2022).
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Furst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Kontrick, A.V. Microplastics and Human Health: Our Great Future to Think About Now. J. Med. Toxicol. 2018, 14, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Plastics Europe. Plastics—the Facts 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 26 December 2022).
- Plastics Europe. Plastics—the Facts 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 26 December 2022).
- Plastics Europe. Plastics—the Facts 2020. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed on 26 December 2022).
- Plastics Europe. Plastics—the Facts 2019. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2019/ (accessed on 26 December 2022).
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Gigault, J.; ter Halle, A.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Liebezeit, G.; Liebezeit, E. Origin of Synthetic Particles in Honeys. Pol. J. Food Nutr. Sci. 2015, 65, 5. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.C.; Madrid, F.G.M.; Hernandez, D.; Pincheira, G.; Peralta, A.K.; Gavilan, M.U.; Vergara-Carmona, V.; Fuentes-Penailillo, F. Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress. Agronomy 2021, 11, 1528. [Google Scholar] [CrossRef]
- Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 7. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Non-pollen particulates in honey and sugar. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 2136–2140. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Basantes, M.F.; Conesa, J.A.; Fullana, A. Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability 2020, 12, 5514. [Google Scholar] [CrossRef]
- Edo, C.; Fernandez-Alba, A.R.; Vejsnaes, F.; van der Steen, J.J.M.; Fernandez-Pinas, F.; Rosal, R. Honeybees as active samplers for microplastics. Sci. Total Environ. 2021, 767, 144481. [Google Scholar] [CrossRef]
Sample | Extraction Method/Analysis | Size | Amount | MP | Ref. |
---|---|---|---|---|---|
47 honey samples | Extraction: digestion with 30% H2O2 (72 h) followed by filtration with 90 °C water Visual Analysis: dissecting microscope | Fibers: 40 µm up to several millimeters | 10–36 fibers/kg 2–10 fragments/kg | - | [85] |
Honey dew, mixed and single honey samples | Extraction: digestion with 30% H2O2 (72 h) followed by filtration with filters heated to 75 °C Visual Analysis: dissection microscope | Fibers: 40–9 mm Fragments: 10–20 µm | 40–660 fibers/kg 0–38 fragments/kg | - | [88] |
Industrial honey samples | Extraction: digestion with 30% H2O2 (72 h) followed by filtration with 70 °C water Visual Analysis: inverted microscope Chemical composition determination: FTIR | Fibers: 67.2–3.3 mm Fragments: 5.6–183.0 µm | 20–166 fibers/L 126–552 fragments/L | HDPE LDPE PAAm PP | [89] |
Craft honey samples | Fibers: 85.0–5.2 mm Fragments: 5.2–226.0 µm | 82–178 fibers/L 200–828 fragments/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamas, M.; Rodrigues, F.; Amaral, M.H.; Delerue-Matos, C.; Fernandes, V.C. Contaminant Cocktails of High Concern in Honey: Challenges, QuEChERS Extraction and Levels. Separations 2023, 10, 142. https://doi.org/10.3390/separations10020142
Lamas M, Rodrigues F, Amaral MH, Delerue-Matos C, Fernandes VC. Contaminant Cocktails of High Concern in Honey: Challenges, QuEChERS Extraction and Levels. Separations. 2023; 10(2):142. https://doi.org/10.3390/separations10020142
Chicago/Turabian StyleLamas, Mariana, Francisca Rodrigues, Maria Helena Amaral, Cristina Delerue-Matos, and Virgínia Cruz Fernandes. 2023. "Contaminant Cocktails of High Concern in Honey: Challenges, QuEChERS Extraction and Levels" Separations 10, no. 2: 142. https://doi.org/10.3390/separations10020142
APA StyleLamas, M., Rodrigues, F., Amaral, M. H., Delerue-Matos, C., & Fernandes, V. C. (2023). Contaminant Cocktails of High Concern in Honey: Challenges, QuEChERS Extraction and Levels. Separations, 10(2), 142. https://doi.org/10.3390/separations10020142