A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Liquid Chromatographic and Mass Spectrometric Conditions (LC-MS/MS)
2.3. Preparation of Stock, Calibration Standards, and Quality Control Samples
2.4. Plasma Sample Preparation
2.5. Assay Validation
2.6. Extraction Recovery and Matrix Effect
2.7. Stability Studies
3. In Vivo PK Studies and Data Analysis
4. Results and Discussion
4.1. Liquid Chromatographic and Mass Spectrometric Conditions Optimization
4.2. Assay Validation
4.2.1. Specificity and Selectivity
4.2.2. Calibration Curve and Linearity
4.2.3. Carryover
4.2.4. Accuracy and Precision
4.3. Recovery and Matrix Effect
4.4. Stability
4.5. In Vivo PK Studies: Application of Analytical Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porcu, E.P.; Salis, A.; Gavini, E.; Rassu, G.; Maestri, M.; Giunchedi, P. Indocyanine Green Delivery Systems for Tumour Detection and Treatments. Biotechnol. Adv. 2016, 34, 768–789. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, M.B.; Huntington, C.R.; Blair, L.J.; Heniford, B.T.; Augenstein, V.A. Indocyanine Green: Historical Context, Current Applications, and Future Considerations. Surg. Innov. 2016, 23, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Indocyanine Green for Injection, Usp. Highlights of Prescribing Information. 2015. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/011525s027lbl.pdf (accessed on 13 December 2022).
- Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.; Frangioni, J.V. Image-Guided Cancer Surgery Using near-Infrared Fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Alander, J.T.; Kaartinen, I.; Laakso, A.; Patila, T.; Spillmann, T.; Tuchin, V.V.; Venermo, M.; Valisuo, P. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int. J. Biomed. Imaging 2012, 2012, 940585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, B.; Crawford, A.J.; Wojtynek, N.E.; Holmes, M.B.; Souchek, J.J.; Almeida-Porada, G.; Ly, Q.P.; Cohen, S.M.; Hollingsworth, M.A.; Mohs, A.M. Indocyanine Green Loaded Hyaluronan-Derived Nanoparticles for Fluorescence-Enhanced Surgical Imaging of Pancreatic Cancer. Nanomedicine 2018, 14, 769–780. [Google Scholar] [CrossRef]
- Souchek, J.J.; Wojtynek, N.E.; Payne, W.M.; Holmes, M.B.; Dutta, S.; Qi, B.; Datta, K.; LaGrange, C.A.; Mohs, A.M. Hyaluronic Acid Formulation of near Infrared Fluorophores Optimizes Surgical Imaging in a Prostate Tumor Xenograft. Acta Biomater. 2018, 75, 323–333. [Google Scholar] [CrossRef]
- Wojtynek, N.E.; Mohs, A.M. Image-Guided Tumor Surgery: The Emerging Role of Nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1624. [Google Scholar]
- Wojtynek, N.E.; Olson, M.T.; Bielecki, T.A.; An, W.; Bhat, A.M.; Band, H.; Lauer, S.R.; Silva-Lopez, E.; Mohs, A.M. Nanoparticle Formulation of Indocyanine Green Improves Image-Guided Surgery in a Murine Model of Breast Cancer. Mol. Imaging Biol. 2020, 22, 891–903. [Google Scholar] [CrossRef]
- Hill, T.K.; Abdulahad, A.; Kelkar, S.S.; Marini, F.C.; Long, T.E.; Provenzale, J.M.; Mohs, A.M. Indocyanine Green-Loaded Nanoparticles for Image-Guided Tumor Surgery. Bioconjug. Chem. 2015, 26, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.K.; Kelkar, S.S.; Wojtynek, N.E.; Souchek, J.J.; Payne, W.M.; Stumpf, K.; Marini, F.C.; Mohs, A.M. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics 2016, 6, 2314–2328. [Google Scholar]
- Gupta, S.; Chawla, Y.; Kaur, J.; Saxena, R.; Duseja, A.; Dhiman, R.K.; Choudhary, N.S. Indocyanine Green Clearance Test (Using Spectrophotometry) and Its Correlation with Model for End Stage Liver Disease (Meld) Score in Indian Patients with Cirrhosis of Liver. Trop. Gastroenterol. 2012, 33, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penha, F.M.; Rodrigues, E.B.; Maia, M.; Meyer, C.H.; Ede, P.C.; Dib, E.; Bechara, E.; Lourenco, A.; Filho, A.A.L.; Freymuller, E.H.; et al. Biochemical Analysis and Decomposition Products of Indocyanine Green in Relation to Solvents, Dye Concentrations and Laser Exposure. Ophthalmologica 2013, 230 (Suppl. S2), 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Kim, Y.S.; Milenic, D.E.; Baidoo, K.E.; Brechbiel, M.W. In Vitro and in Vivo Analysis of Indocyanine Green-Labeled Panitumumab for Optical Imaging-a Cautionary Tale. Bioconjug. Chem. 2014, 25, 1801–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Ma, Y.; Sun, X.; Ye, Y.; Shen, B.; Chen, X.; Ito, Y. Purification of Optical Imaging Ligand-Cybesin by High-Speed Counter-Current Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 3039–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.Y.; Fancher, R.M.; Ruan, Q.; Marathe, P.; Rodrigues, A.D.; Yang, Z. A Liquid Chromatography Tandem Mass Spectrometry Method for the Quantification of Indocyanine Green in Dog Plasma and Bile. J. Pharm. Biomed. Anal. 2008, 47, 351–359. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, D.; Hu, W.; Lin, G.; Huang, S. Pharmacokinetic Study of Indocyanine Green after Intravenous Administration by Uplc-Ms/Ms. Int. J. Clin. Exp. Med. 2015, 8, 15482–15489. [Google Scholar]
- Sottani, C.; Grignani, E.; Cottica, D.; Mazzucchelli, S.; Sevieri, M.; Chesi, A.; Corsi, F.; Galfre, S.; Della Cuna, F.S.R.; Calleri, E. Development and Validation of a Bioanalytical Uhplc-Ms/Ms Method Applied to Murine Liver Tissue for the Determination of Indocyanine Green Loaded in H-Ferritin Nanoparticles. Front. Chem. 2021, 9, 784123. [Google Scholar] [CrossRef]
- Mindt, S.; Karampinis, I.; John, M.; Neumaier, M.; Nowak, K. Stability and Degradation of Indocyanine Green in Plasma, Aqueous Solution and Whole Blood. Photochem. Photobiol. Sci. 2018, 17, 1189–1196. [Google Scholar] [CrossRef]
- Won, J.; Kang, J.; Kang, W. Quantitative Determination of Icg-001 in Rat Plasma Using Hplc-Ms/Ms: A Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2022, 219, 114949. [Google Scholar] [CrossRef]
- Aldhafiri, W.N.; Chhonker, Y.S.; Zhang, Y.; Coutler, D.W.; McGuire, T.R.; Li, R.; Murry, D.J. Assessment of Tissue Distribution and Metabolism of Mp1, a Novel Pyrrolomycin, in Mice Using a Validated Lc-Ms/Ms Method. Molecules 2020, 25, 5898. [Google Scholar] [CrossRef]
- Bala, V.; Chhonker, Y.S.; Sleightholm, R.L.; Crawford, A.J.; Hollingsworth, M.A.; Murry, D.J. A Rapid and Sensitive Bioanalytical Lc-Ms/Ms Method for the Quantitation of a Novel Cdk5 Inhibitor 20-223 (Cp668863) in Plasma: Application to in Vitro Metabolism and Plasma Protein-Binding Studies. Biomed. Chromatogr. 2020, 34, e4859. [Google Scholar] [CrossRef] [PubMed]
Analytes | MRM Transition m/z (Q1 > Q3) | Q1 (V) | Q3 (V) | CE (V) | Retention Time (min) |
---|---|---|---|---|---|
ICG | 753.30 > 330.20 | −24 | −43 | −24 | 2.9 |
753.30 > 422.30 | −24 | −34 | −22 | ||
IS (Cy7.5) | 747.45 > 717.50 | −26 | −45 | −28 | 3.1 |
Nominal Concentration (ng/mL) | Accuracy | Precision | ||
---|---|---|---|---|
%Bias Intra-Assay | %Bias Inter-Assay | %RSD Intra-Assay | %RSD Inter-Assay | |
LLOQ (1 ng/mL) | 7.32 | −3.33 | 11.95 | 10.34 |
LQC (3 ng/mL) | −11.39 | −6.34 | 2.71 | 4.56 |
MQC (200 ng/mL) | −2.43 | 2.88 | 9.91 | 5.81 |
HQC (750 ng/mL) | 14.56 | 11.77 | 4.63 | 4.62 |
Nominal Concentration (ng/mL) | % Extraction Recoveries (Mean ± SD, n = 3) |
---|---|
LQC (3 ng/mL) | 97.7 ± 12.1 |
MQC (200 ng/mL) | 87.6 ± 3.2 |
HQC (750 ng/mL) | 89.8 ± 10.1 |
Internal standard (IS) (0.5 µg/mL) | 97.7 ± 8.3 |
Storage Conditions | Nominal Concentration (ng/mL) | % Accuracy |
---|---|---|
Benchtop (20 °C, up to 4 h under room light condition) | LQC (3 ng/mL) | 86.1 ± 0.5 |
MQC (200 ng/mL) | 89.7 ± 2.9 | |
HQC (750 ng/mL) | 111.5 ± 1.5 | |
Benchtop (20 °C, up to 4 h under dark condition) | LQC (3 ng/mL) | 86.4 ± 9.7 |
MQC (200 ng/mL) | 90.4 ± 2.0 | |
HQC (750 ng/mL) | 109 ± 8.6 | |
Benchtop (20 °C, up to 24 h under room light condition) | LQC (3 ng/mL) | 84.5 ± 6.5 |
MQC (200 ng/mL) | 88.6 ± 4.6 | |
HQC (750 ng/mL) | 107 ± 1.2 | |
Long term stability (20 °C, up to 5 months) | LQC (3 ng/mL) | 94.5 ± 9.2 |
MQC (200 ng/mL) | 92.6 ± 9.2 | |
HQC (750 ng/mL) | 88.9 ± 2.7 |
Storage Conditions | Nominal Conc. (ng/mL) | % Accuracy |
---|---|---|
Benchtop (20 °C, up to 4 h under dark condition) | LQC (3 ng/mL) | 105.6 ± 5.6 |
MQC (200 ng/mL) | 112.0 ± 7.0 | |
HQC (750 ng/mL) | 108.0 ± 4.2 | |
Freeze-thaw stability (−80 °C, up to 3 Cycle) | LQC (3 ng/mL) | 91.4 ± 10.3 |
MQC (200 ng/mL) | 94.0 ± 8.6 | |
HQC (750 ng/mL) | 95.4 ± 5.0 | |
Auto-sampler (AS) storage (4 °C, up to 24 h) | LQC (3 ng/mL) | 93.5 ± 13.9 |
MQC (200 ng/mL) | 107.4 ± 11.1 | |
HQC (750 ng/mL) | 113.0 ± 1.1 | |
Auto-sampler (AS) storage (4 °C, up to 7 days) | LQC (3 ng/mL) | 87.6 ± 10.6 |
MQC (200 ng/mL) | 96.4 ± 24.9 | |
HQC (750 ng/mL) | 84.1 ± 6.6 | |
Long term stability (−80 °C, up to 30 days) | LQC (3 ng/mL) | 91.2 ± 7.6 |
MQC (200 ng/mL) | 87.9 ± 4.3 | |
HQC (750 ng/mL) | 94.1 ± 3.9 |
PK Parameter | Mean ± SD |
---|---|
C0 (µg/mL) | 56.38 ± 34.48 |
Tmax (min) | 2.0 ± 0.0 |
t1/2 (min) | 90.9 ± 41.1 |
AUC0–∞ (min × µg/mL) | 189.42 ± 89.61 |
AUC0–last (min × µg/mL) | 191.53 ± 89.00 |
Vd (L/kg) | 1.5 ± 1.3 |
Cl (L/h/kg) | 351.5 ± 279.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhonker, Y.S.; Wojtynek, N.E.; Agrawal, P.; Mohs, A.M.; Murry, D.J. A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study. Separations 2023, 10, 66. https://doi.org/10.3390/separations10020066
Chhonker YS, Wojtynek NE, Agrawal P, Mohs AM, Murry DJ. A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study. Separations. 2023; 10(2):66. https://doi.org/10.3390/separations10020066
Chicago/Turabian StyleChhonker, Yashpal S., Nicholas E. Wojtynek, Prachi Agrawal, Aaron M. Mohs, and Daryl J. Murry. 2023. "A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study" Separations 10, no. 2: 66. https://doi.org/10.3390/separations10020066
APA StyleChhonker, Y. S., Wojtynek, N. E., Agrawal, P., Mohs, A. M., & Murry, D. J. (2023). A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study. Separations, 10(2), 66. https://doi.org/10.3390/separations10020066