Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Extraction of Plant Materials
2.2. Acute Toxicity Test
2.3. Experimental Animals, Chemicals, Treatment Regime and Ethical Approval
2.4. Analysis of Hematological, Liver and Kidney Function
2.4.1. Blood Collection
2.4.2. Hematological Parameters
2.4.3. Liver and Kidney Function Test via Biochemical Analysis
2.5. Histopathological Analysis
2.6. Statistical Analysis
3. Results
3.1. Acute Toxicity
3.2. Blood Hematological Analysis
3.3. Hepatic and Renal Function Test
3.3.1. Liver and Kidney Serum Markers
3.3.2. Lipid Profile
3.3.3. Serum Electrolytes
3.4. Analysis of Liver and Kidney Antioxidants
3.4.1. Liver and Kidney GSH Levels
3.4.2. RSA Level in Liver and Kidney
3.4.3. TBRAS Level in Liver and Kidney
3.5. The Antioxidant Activity of DO.AQ Extract Based on DPPH Free Radical
3.6. Histopathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.E.; Hall, M.E. Guyton and Hall Textbook of Medical Physiology e-Book; Elsevier Health Sciences: London, UK, 2020; ISBN 9780323640039. [Google Scholar]
- Ozougwu, J.C. Physiology of the liver. Int. J. Res. Pharm. Biosci. 2017, 4, 13–24. [Google Scholar]
- Corsini, A.; Bortolini, M. Drug-induced liver injury: The role of drug metabolism and transport. J. Clin. Pharmacol. 2013, 53, 463–474. [Google Scholar] [CrossRef]
- Coleman, M.D. Human Drug Metabolism; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lee, W.M. Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? J. Hepatol. 2017, 67, 1324–1331. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.A.; Allameh, A.; Aleagha, M.S.E.; Daraeib, B. Stem Cell Factor Attenuates Formation of Acetaminophen–Glutathione Conjugate in Kidney of Mice Treated With a Toxic Dose of Acetaminophen. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 20–26. [Google Scholar]
- Pingili, R.B.; Pawar, A.K.; Challa, S.R. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chem.-Biol. Interact. 2019, 302, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Blondet, N.M.; Messner, D.J.; Kowdley, K.V.; Murray, K.F. Mechanisms of hepatocyte detoxification. In Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, The Netherlands, 2018; pp. 981–1001. [Google Scholar]
- Choi, E.; Alsop, D.; Wilson, J.Y. The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2018, 198, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Sümer, E.; Senturk, G.E.; Demirel, Ö.U.; Yesilada, E. Comparative biochemical and histopathological evaluations proved that receptacle is the most effective part of Cynara scolymus against liver and kidney damages. J. Ethnopharmacol. 2020, 249, 112458. [Google Scholar] [CrossRef] [PubMed]
- Heidari, R.; Ahmadi, A.; Mohammadi, H.; Ommati, M.M.; Azarpira, N.; Niknahad, H. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed. Pharmacother. 2018, 107, 834–840. [Google Scholar] [CrossRef]
- Chakraborty, R.; Sen, S. Nephroprotective activity of Pisonia aculeata L. leaf extract against cisplatin induced nephrotoxicity and renal dysfunction in experimental rodents. Indian J. Exp. Biol. (IJEB) 2020, 58, 770–776. [Google Scholar]
- Medina, M.F.; Gonzalez, M.E.; Klyver, S.M.R.; Odstrcl, I.M.A. Histopathological and biochemical changes in the liver, kidney, and bloodof amphibians intoxicated with cadmium. Turk. J. Biol. 2016, 40, 229–238. [Google Scholar] [CrossRef]
- Bakheet, M.S.; Haredy, H.H.; Abdesalam, A.; Abd, H.K. Hepatotoxicity implies chemical-driven liver damage induced by certain medicinal and other chemical agents. Int. Inv. J. Med. Med. Sci. 2015, 2, 144–164. [Google Scholar]
- Prieto, I.; Monsalve, M. ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol. 2017, 12, 1020–1025. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Yan, B.; Zeng, Q.; Liu, X.; Wu, Y.; Jiao, M.; Liu, C.; Wu, J.; Yang, X. Oral exposure of Kunming mice to diisononyl phthalate induces hepatic and renal tissue injury through the accumulation of ROS. Protective effect of melatonin. Food Chem. Toxicol. 2014, 68, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Raman, R.P.; Prasad, K.P.; Srivastava, P.; Kumar, S.; Rajendran, K. Effects on haematological and serum biochemical parameters of Pangasianodon hypophthalmus to an experimental infection of Thaparocleidus sp.(Monogenea: Dactylogyridae). Exp. Parasitol. 2018, 188, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, N.; Kandi, S.; Muddeshwar, M.; Das, R.; Ramana, K. A study of biochemical and hematological markers in alcoholic liver cirrhosis. World J. Nutr. Health 2014, 2, 24–27. [Google Scholar]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. J. Cell. Physiol. 2019, 234, 2436–2446. [Google Scholar] [CrossRef]
- Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules 2016, 21, 257. [Google Scholar] [CrossRef]
- Hassan, W.; Noreen, H.; Rehman, S.; Gul, S.; Amjad Kamal, M.; Paul Kamdem, J.; Zaman, B.; BT da Rocha, J. Oxidative stress and antioxidant potential of one hundred medicinal plants. Curr. Top. Med. Chem. 2017, 17, 1336–1370. [Google Scholar] [CrossRef]
- Nguyen, V.; Le, V.; Vo, T.; Bui, L.; Anh, H.; Danh, V. Preliminary phytochemical screening and determination of total polyphenols and flavonoids content in the leaves of Houttuynia cordata Thunb. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 062013. [Google Scholar] [CrossRef]
- Kadereit, G.; Borsch, T.; Weising, K.; Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 2003, 164, 959–986. [Google Scholar] [CrossRef]
- Safikhani, K.; Mahmoodi, M. New record of dianthus pendulus (Caryophyllaceae) from Iran. Iran. J. Bot. 2020, 26, 19–21. [Google Scholar]
- HAZAR, D.; BAKTIR, İ. Identification and Evaluation of Propagation Techniques of Dianthus orientalis Adams. ANADOLU Ege Tarımsal Araştırma Enstitüsü Derg. 2018, 28, 37–44. [Google Scholar]
- Khaledi, M.; Asadi-Samani, M.; Mahmoodi-Kouhi, A.; Gholipour, A. Antibacterial effect of the hydroalcoholic extracts of four Iranian medicinal plants on Staphylococcus aureus and Acinetobacter baumanii. Int. J. Pharm. Phytopharm. Res. 2017, 7, 10–14. [Google Scholar]
- Sadat-Hosseini, M.; Farajpour, M.; Boroomand, N.; Solaimani-Sardou, F. Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. J. Ethnopharmacol. 2017, 199, 194–204. [Google Scholar] [CrossRef]
- d’Acampora, A.J.; Rossi, L.F.; Ely, J.B.; Vasconcellos, Z.A.d. Is animal experimentation fundamental? Acta Cir. Bras. 2009, 24, 423–425. [Google Scholar] [CrossRef]
- Sana; Ur Rahman, S.; Zahid, M.; Khan, A.A.; Aziz, T.; Iqbal, Z.; Ali, W.; Khan, F.F.; Jamil, S.; Shahzad, M.; et al. Hepatoprotective effects of walnut oil and Caralluma tuberculata against paracetamol in experimentally induced liver toxicity in mice. Acta Biochim. Pol. 2022, 69, 871–878. [Google Scholar]
- Chattopadhyay, J.; Sarkar, R. Chaos to order: Preliminary experiments with a population dynamics models of three trophic levels. Ecol. Model. 2003, 163, 45–50. [Google Scholar] [CrossRef]
- Albus, U. Guide for the Care and Use of Laboratory Animals, 8th ed; National Academies Press: Washington, DC, USA, 2011. Available online: https://olaw.nih.gov/sites/default/files/Guide-for-the-Care-and-Use-of-Laboratory-Animals.pdf (accessed on 1 January 2023).
- Donovan, J.; Brown, P. Blood collection. Curr. Protoc. Immunol. 2006, 73, 1–7. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Hu, Z.-D. Lower mean corpuscular hemoglobin concentration is associated with poorer outcomes in intensive care unit admitted patients with acute myocardial infarction. Ann. Transl. Med. 2016, 4, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özyürek, E.; Cetintaş, S.; Ceylan, T.; ÖğÜş, E.; Haberal, A.; Gürakan, B.; Özbek, N. Complete blood count parameters for healthy, small-for-gestational-age, full-term newborns. Clin. Lab. Haematol. 2006, 28, 97–104. [Google Scholar] [CrossRef]
- Forouzandeh, H.; Azemi, M.E.; Rashidi, I.; Goudarzi, M.; Kalantari, H. Study of the protective effect of Teucrium polium L. extract on acetaminophen-induced hepatotoxicity in mice. Iran. J. Pharm. Res. IJPR 2013, 12, 123. [Google Scholar] [PubMed]
- Sathya, A.; Siddhuraju, P. Protective effect of bark and empty pod extracts from Acacia auriculiformis against paracetamol intoxicated liver injury and alloxan induced type II diabetes. Food Chem. Toxicol. 2013, 56, 162–170. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Ning, X.-Y.; Chen, Y.-Q.; Han, S.-J.; Chi, P.; Zhu, S.-N.; Yue, Y. Predictive value of serum creatinine, blood urea nitrogen, uric acid, and β2-microglobulin in the evaluation of acute kidney injury after orthotopic liver transplantation. Chin. Med. J. 2018, 131, 1059. [Google Scholar] [CrossRef]
- Penumarthy, S.; Penmetsa, G.S.; Mannem, S. Assessment of serum levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in periodontitis patients. J. Indian Soc. Periodontol. 2013, 17, 30. [Google Scholar]
- Saito, H.; Kameda, Y.; Masui, K.; Murakami, S.; Kondo, T.; Ito, H.; Oshita, F.; Tsuboi, M.; Yokose, T.; Noda, K. Correlations between thin-section CT findings, histopathological and clinical findings of small pulmonary adenocarcinomas. Lung Cancer 2011, 71, 137–143. [Google Scholar] [CrossRef]
- Li, S.; Li, S.-K.; Gan, R.-Y.; Song, F.-L.; Kuang, L.; Li, H.-B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod. 2013, 51, 289–298. [Google Scholar] [CrossRef]
- Turan, I.; Demir, S.; Aliyazicioglu, R.; Kilinc, K.; Ozer Yaman, S.; Akbulut Cakiroglu, K.; Kanbolat, S.; Ayazoglu Demir, E.; Mentese, A.; Aliyazicioglu, Y. Dimethyl sulfoxide extract of Dianthus carmelitarum induces S phase arrest and apoptosis in human colon cancer cells. Nutr. Cancer 2019, 71, 1181–1188. [Google Scholar] [CrossRef]
- El-Maddawy, Z.K.; El-Sayed, Y.S. Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environ. Sci. Pollut. Res. 2018, 25, 3468–3479. [Google Scholar] [CrossRef]
- Mossa, A.-T.H.; Swelam, E.S.; Mohafrash, S.M. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicol. Rep. 2015, 2, 775–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, M.A.; Moustafa, E.M.; Gewaily, M.S.; Abdo, S.E.; AbdEl-Kader, M.F.; SaadAllah, M.S.; Hamouda, A.H. Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat. Toxicol. 2020, 219, 105377. [Google Scholar] [CrossRef]
- Sanjeev, S.; Bidanchi, R.M.; Murthy, M.K.; Gurusubramanian, G.; Roy, V.K. Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ. Sci. Pollut. Res. 2019, 26, 20631–20653. [Google Scholar] [CrossRef] [PubMed]
- Pithayanukul, P.; Nithitanakool, S.; Bavovada, R. Hepatoprotective potential of extracts from seeds of Areca catechu and nutgalls of Quercus infectoria. Molecules 2009, 14, 4987–5000. [Google Scholar] [CrossRef] [Green Version]
- Amang, A.P.; Kodji, E.; Mezui, C.; Baane, M.P.; Siwe, G.T.; Kuissu, T.M.; Emakoua, J.; Tan, P.V. Hepatoprotective Effects of Aqueous Extract of Opilia celtidifolia (Opiliaceae) Leaves against Ethanol-Induced Liver Damage in Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 6297475. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Fawad, I.; Ali Khan, A.; Ur Rahman, S.; Zamani, G.Y.; Alharbi, M.; Alshammari, A.; Alasmari, A.F. Assessing the pharmacological and biochemical effects of Salvia hispanica (Chia seed) against oxidized Helianthus annuus (sunflower) oil in selected animals. Acta Biochim. Pol. 2023, 6621, 1–8. [Google Scholar] [CrossRef]
- Saleem, M.; Asif, A.; Akhtar, M.F.; Saleem, A. Hepatoprotective potential and chemical characterization of Artocarpus lakoocha fruit extract. Bangladesh J. Pharmacol. 2018, 13, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Adeneye, A.; Olagunju, J. Protective effect of oral ascorbic acid (Vitamin C) on acetaminophen-induced renal injury in rats. Afr. J. Biomed. Res. 2009, 12, 55–61. [Google Scholar]
- Jain, H.R.; Shetty, V.; Singh, G.; Shetty, S. A study of lipid profile in diabetes mellitus. Int. J. Sci. Study 2016, 4, 55–60. [Google Scholar]
- El-Gindy, Y.; Zeweil, H. Effects of parsley supplementation on the seminal quality, blood lipid profile and oxidant status of young and old male rabbits. World Rabbit Sci. 2017, 25, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Iweala, E.E.; Osundiya, A.O. Biochemical, haematological and histological effects of dietary supplementation with leaves of Gnetum africanum Welw. on paracetamol-induced hepatotoxicity in rats. Int. J. Pharmacol. 2010, 6, 872–879. [Google Scholar] [CrossRef]
- Ahmad, B.; Yousafzai, A.M.; Zeb, A.; Ali, W.; Khan, N.Z.; Aasim, M.; Ahmad, S.; Ullah, S.; Khan, A.A.; Naz, F. Therapeutic role of Typha elephantina leaves aqueous extract in paracetamol intoxicated rabbits. Pak. J. Pharm. Sci. 2021, 34, 737–745. [Google Scholar] [PubMed]
- Faggio, C.; Fazio, F.; Marafioti, S.; Arfuso, F.; Piccione, G. Oral administration of Gum Arabic: Effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran. J. Fish. Sci. 2015, 14, 60–72. [Google Scholar]
- Fibach, E. Erythropoiesis in vitro—A research and therapeutic tool in thalassemia. J. Clin. Med. 2019, 8, 2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.R.; Saha, R.K.; Saha, H. Muli bamboo (Melocanna baccifera) leaves ethanolic extract a non-toxic phyto-prophylactic against low pH stress and saprolegniasis in Labeo rohita fingerlings. Fish Shellfish Immunol. 2018, 74, 609–619. [Google Scholar] [CrossRef]
- Ashtiani, H.R.A.; Bakhshandi, A.K.; Rahbar, M.; Mirzaei, A.; Malekpour, A.; Rastegar, H. Glutathione, cell proliferation and differentiation. Afr. J. Biotechnol. 2011, 10, 6348–6363. [Google Scholar]
- Ramos, A.; Correia, A.; Antunes, S.; Gonçalves, F.; Nunes, B. Effect of acetaminophen exposure in Oncorhynchus mykiss gills and liver: Detoxification mechanisms, oxidative defence system and peroxidative damage. Environ. Toxicol. Pharmacol. 2014, 37, 1221–1228. [Google Scholar] [CrossRef]
- Schmitt, B.; Vicenzi, M.; Garrel, C.; Denis, F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol. 2015, 6, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.A. Protective Effect of Aerva jevanica Against Ethanol Induced Hepatic Stress in Rats: A Randomized Control Report. Indian J. Pharm Edu. Res. 2017, 51, S110–S114. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Siddique, F. Antioxidant effects of Citharexylum spinosum in CCl4 induced nephrotoxicity in rat. Exp. Toxicol. Pathol. 2012, 64, 349–355. [Google Scholar] [CrossRef]
- Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers 2019, 11, 1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latha, R. Anti-Hyperglycemic and Anti-Oxidant Activities of Ethanolic Extract of Lantana Camara Leaves. Ph.D. Dissertation, JKK Nattraja College of Pharmacy, Komarapalayam, India, 2016. [Google Scholar]
- Rama Devi, K.; Srinivasan, R.; Kannappan, A.; Santhakumari, S.; Bhuvaneswari, M.; Rajasekar, P.; Prabhu, N.M.; Veera Ravi, A. In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. Biofouling 2016, 32, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
Groups | RBC × 103/µL | HB G/dL | MCV G/dL | MCH G/dL | MCHC G/dL | HCT% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | |
N | 7.3 ± 0.39 a | 6.9 ±0.34 a | 7.0 ± 0.37 a | 11 ± 0.79 a | 12 ± 0.25 a | 13 ± 0.78 a | 19 ± 1.3 b | 19 ± 1.6 b | 70 ± 1.9 a | 35 ± 3.1 a | 31 ± 1.8 a | 34 ± 2.4 a | 36 ± 1.6 a | 35 ± 2.2 a | 38 ± 1.1 a | 41 ± 3.0 a | 42 ± 1.1 a | 40 ± 1.3 a |
T | 5.21 ± 0.2 b | 3.2 ± 0.33 b | 3.2 ± 0.42 b | 8.7 ± 0.52 b | 8.5 ± 0.21 b | 8.2 ± 0.8 b | 22 ± 1.2 b | 24 ± 1.7 b | 36 ± 2.6 b | 19 ± 0.84 b | 18 ± 2.0 b | 17 ± 1.2 b | 22 ± 0.11 b | 23 ± 1.1 b | 20 ± 1.1 b | 21 ± 1.3 b | 18 ± 0.3 b | 20 ± 0.6 b |
ELD | 5.7 ± 1.01 b | 3.4 ± 0.22 b | 4.5 ± 0.23 c | 8.6 ± 0.82 b | 8.1 ± 0.71 b | 8.3 ± 0.7 b | 26 ± 0.84 b | 29 ± 3.6 c | 41 ± 3.1 c | 19 ± 1.55 b | 19 ± 1.35 b | 22 ± 0.03 c | 22 ± 1.2 b | 24 ± 0.65 b | 21 ± 0.83 b | 22 ± 0.3 b | 21 ± 00 b | 25 ± 0.3 b |
EMD | 5.9 ± 0.3 b | 3.8 ± 0.21 b | 4.8 ± 0.15 c | 9.9 ± 0.73 b | 9.2 ± 0.61 b | 9.3 ± 0.8 b | 34 ± 2.3 c | 41 ± 1.5 a | 51 ± 2.5 d | 19 ± 2.1 b | 22 ± 0.84 c | 212 ± 1.2 c | 23 ± 1.2 b | 23 ± 0.4 b | 28 ± 1.1 c | 21 ± 01 b | 25 ± 0.42 b | 30 ± 1.6 c |
EHD | 6.4 ± 0.26 c | 5.8 ± 0.20 c | 6.8 ± 0.21 a | 11 ± 0.00 b | 11 ± 1.52 c | 40 ± 1.7 a | 39 ± 4.2 a | 43 ± 1.8 a | 67 ± 3.7 a | 23 ± 0.2 c | 24 ± 0.24 c | 31 ± 1.6 a | 27 ± 0.1 c | 25 ± 1.3 c | 31 ± 1.7 a | 27 ± 1.2 c | 35 ± 2.1 c | 42 ± 1.2 a |
SM | 6.0 ± 0.092 c | 5.6 ± 0.04 c | 6.8 ± 0.58 a | 9.9 ± 0.0 b | 9.1 ± 0.10 b | 10 ± 1.92 a | 51 ± 0.0 c | 64 ± 1.7 a | 69 ± 3.5 a | 25 ± 1.9 c | 28 ± 2.0 a | 32 ± 1.7 a | 27 ± 1.7 c | 30 ±1.1 a | 35 ± 0.5 a | 27 ± 0.74 c | 3 6± 3.0 a | 41 ± 0.1 a |
Groups | WBC × 103/µL | PLT G/dL | Neutrophils G/dL | Lymphocytes % | Monocytes % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | |
N | 5.9 ± 0.3 a | 6.9 ± 2.1 a | 7.8 ± 0.2 a | 134 ± 4.5 a | 142 ± 1.3 a | 141 ± 2.a | 34 ± 1.3 a | 37 ± 2.2 a | 36 ± 2.3 a | 31 ± 2.9 a | 34 ± 3.6 a | 35 ± 1.6 a | 33 ± 1.6 a | 32 ± 1.3 a | 33 ± 0.2 a |
T | 13 ± 2.1 b | 14 ± 1.1 b | 15 ± 1.1 b | 255 ± 3.2 b | 264 ± 5.1 b | 270 ± 1.8 b | 64 ± 4.2 b | 63 ± 1.6 b | 67 ± 3.6 b | 70 ± 1.9 b | 68 ± 2.1 b | 71 ± 0.75 b | 71 ± 2.3 b | 25 ± 1.4 b | 25 ± 0.2 b |
ELD | 12 ± 0.1 b | 13 ±0.51 c | 13 ± 0.1 c | 252 ± 1.5 b | 2451 ± 2.3 c | 231 ± 2.2 c | 58 ± 1.1 c | 52 ± 3.3 c | 45 ± 2.5 c | 66 ± 1.6 c | 67 ± 1.3 c | 63 ± 2.6 c | 65 ± 3.2 c | 23 ± 0.2 c | 22 ± 0.1 c |
EMD | 11 ± 0.1 b | 13 ± 0.5 c | 12 ± 0.1 c | 223 ± 5.6 c | 225 ± 3.6 d | 221 ± 3.6 d | 42 ± 2.6 d | 44 ± 2.4 d | 46 ± 3.7 c | 63 ± 2.7 c | 57 ± 2.1 d | 44 ± 1.4 d | 62 ± 3.1 c | 22 ± 0.4 c | 21 ± 0.4 c |
EHD | 11 ± 0.39 c | 11 ±0.71 d | 7.7 ±0.1 a | 221 ± 2.3 d | 191 ± 3.5 e | 151 ± 2.3 a | 47 ± 3.8 d | 42 ± 1.4 d | 37 ± 2.7 a | 44 ± 1.89 d | 44 ± 2.8 | 32 ± 1.8 a | 46 ± 1.2 d | 18 ± 1.4 d | 16 ± 0.2 a |
SM | 10 ± 0.1 c | 7.7 ± 0.14 a | 7.8 ± 0.1 a | 176 ± 4.2 e | 168 ± 5.6 e | 149 ± 3.5 a | 42 ± 2.5 d | 33 ± 3.2 a | 39 ± 1.8 a | 43 ± 3.2 d | 33 ± 3.8 a | 39 ± 0.7 a | 47 ± 12.2 d | 17 ± 2.4 d | 17 ± 0.3 a |
Groups | Serum ALT | Serum AST | Serum ALP | Serum Creatinine | Serum Urea | Serum Uric Acid | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | |
N | 40 ± 2.2 a | 38 ± 3.1 a | 37 ± 3.1 a | 43 ± 2.1 a | 41 ± 2.2 a | 39 ± 2.1 a | 43 ± 1.1 a | 41 ± 1.0 a | 45 ± 1.8 a | 0.88 ± 00.2 a | 0.87 ± 1.7 a | 1.3 ± 0.4 a | 41 ± 1.8 a | 37 ± 1.4 a | 35 ± 0.3 a | 1.6 ± 0.6 a | 1.3 ± 0.3 a | 1.9 ± 0.4 a |
T | 141 ± 1.2 b | 146 ± 4.2 b | 153 ± 3.1 b | 145 ± 4.3 b | 151 ± 2.3 b | 135 ± 3.1 b | 156 ± 2.2 b | 162 ± 3.4 b | 172 ± 3.2 b | 2.4 ± 0.8 b | 2.4 ± 0.0 b | 2.5 ± 0.2 b | 76 ± 3.2 b | 82 ± 1.2 b | 81 ± 2.2 b | 4.4 ± 0.2 b | 4.3 ± 0.7 b | 4.6 ± 0.29 b |
ELD | 121 ± 1.3 c | 132 ± 4.2 c | 121 ± 2.4 c | 154 ± 3.3 c | 122 ± 1.2 c | 121 ± 2.1 c | 159 ± 3.0 b | 124 ± 1.8 c | 91 ± 2.3 c | 2.2 ± 0.7 b | 2.6 ± 0.0 b | 2.5 ± 0.03 c | 73 ± 2.9 c | 62 ± 2.1 c | 64 ± 1.4 c | 4.32 ± 0.6 b | 3.1 ± 0.4 c | 3.4 ± 0.4 c |
EMD | 131 ± 3.1 d | 131 ± 2.2 d | 94 ± 2.2 d | 84 ± 1.1 d | 81 ± 2.2 d | 69 ± 3.2 d | 126 ± 3.1 c | 82 ± 2.0 d | 85 ± 1.3 c | 2.7 ± 0.5 b | 2.2 ± 0.02 b | 1.4± 0.4 d | 66 ± 0.4 c | 57 ± 0.64 d | 56 ± 1.3 d | 3.3 ± 0.32 c | 3.5 ± 0.5 | 2.9 ± 0.21 d |
EHD | 121 ± 2.1 e | 63 ± 1.4 e | 42 ± 2.3 a | 82 ± 2.3 e | 70 ± 3.0 e | 48 ± 1.2 a | 98 ± 3.1 d | 6 3 ± 2.3 e | 57 ± 4.3 a | 2.3 ± 0.3 b | 1.6 ± 0.0 1 c | 1.5 ± 0.3 a | 62 ± 1.3 d | 47 ± 1.21 e | 37 ± 0.75 a | 2.5 ± 0.03 d | 2.2 ± 0.1 d | 1.4 ± 0.3 a |
SM | 80 ± 2.3 e | 62 ± 2.2 e | 41 ± 2.5 a | 75 ± 2.1 e | 40 ± 1.9 a | 40 ± 2.1 a | 81 ± 2.2 e | 67 ± 1.2 e | 53 ± 1.0 a | 1.7 ± 0.3 c | 1.7 ± 0.1 c | 1.4 ± 0.3 a | 55 ± 2.7 d | 43 ± 3.2 e | 40 ± 1.1 a | 2.4 ± 1.31 a | 2.2 ± 0.02 d | 1.7 ± 0.3 a |
Groups | Cholesterol | Triglycerides | HDL | LDL | Glucose mg/dL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | |
N | 56 ± 2.2 a | 49 ± 3.2 a | 44 ± 3.2 a | 51 ± 3.1 a | 51 ± 3.1 a | 49 ± 3.0 a | 49 ± 2.3 a | 47 ± 2.2 a | 40 ± 3.4 a | 26 ± 2.1 a | 27 ± 3.2 a | 25 ± 1.7 a | 84 ± 2.21 a | 79 ± 2.4 a | 82 ± 1.4 a |
T | 87 ± 3.4 b | 84 ± 2.2 b | 89 ± 3.1 b | 132 ± 2.1 b | 142 ± 3.2 b | 154 ± 4.2 b | 29 ± 4.1 b | 28 ± 3.1 b | 27 ± 1.5 b | 61 ± 3.4 b | 61 ± 1.3 b | 66 ± 2.5 b | 117 ± 3.00 b | 119 ± 2.12 b | 121 ± 3.01 b |
ELD | 3 ± 2.1 b | 74 ± 2.1 b | 71 ± 2.5 b | 81 ± 3.1 c | 81 ± 5.1 | 75 ± 3.1 c | 34 ± 2.2 b | 32 ± 2.3 c | 31 ± 2.1 c | 51 ± 5.1 b | 54 ± 2.3 c | 47 ± 2.4 c | 114 ± 4.33 c | 113 ± 3.23 c | 113 ± 4.26 c |
EMD | 79 ± 1.4 b | 77 ± 4.2 b | 62 ± 4.1 c | 89 ± 2.2 c | 75 ± 2.3 c | 61 ± 2.2 d | 36 ± 4.2 b | 33 ± 3.4 c | 34 ± 1.3 d | 57 ± 3.1 b | 40 ± 2.6 d | 41 ± 3.1 c | 107 ± 2.11 d | 105 ± 3.31 d | 101 ± 2.31 d |
EHD | 73.25 c | 61 ± 2.1 c | 55 ± 3.1 a | 69 ± 1.7 d | 64 ± 2.1 d | 53 ± 3.2 a | 33 ± 3.1 b | 32 ± 3.4 d | 37 ± 2.1 a | 41 ± 5.2 c | 32 ± 2.3 e | 26 ± 2.4 a | 96 ± 3.21 d | 91 ± 2.22 ac | 96 ± 3.12 a |
SM | 66 ± 2.3 c | 62 ± 3.2 c | 51 ± 3.2 a | 70 ± 4.1 d | 52 ± 3.1 a | 51 ± 2.3 a | 42 ± 3.3 c | 39 ± 2.5 d | 36 ± 4.3 a | 37 ± 2.3 d | 33 ± 3.1 e | 30 ± 2.3 a | 107 ± 2.1 ac | 105 ± 3.1 ac | 95 ± 2.5 a |
Groups | C (mmol/L) | Mg (mmol/dL) | Cl (mmol/dL) | Na (mmol/dL) | K (mmol/dL) | P (mmol/dL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | |
N | 82 ± 1.4 a | 3.98 ± 0.31 a | 3.91 ± 1.3 a | 3.42 ± 2.1 a | 0.61 ± 1.00 a | 0.62 ± 31.0 a | 0.64 ± 11.0 a | 89.1 ± 1.12 a | 78.0 ± 2.1 a | 88.0 ± 1.1 a | 124.4 ± 2.2 a | 123 ± 2.31 a | 127 ± 3.2 a | 4.91 ± 1.11 a | 4.1 ± 2.1 a | 4.25 ± 1.0 a | 2.72 ± 0.00 a | 3.00 ± 0.00 a | 2.91 ± 1.00 a |
T | 121 ± 3.01 b | 6.01 ± 0.23 b | 5.03 ± 1.12 b | 6.171 ± 2.17 b | 0.86 ± 0.02 b | 0.89 ± 0.62 b | 0.90 ± 1.51 b | 110.6 ± 0.4 b | 116 ± 0.8 b | 119 ± 2.51 b | 143.4 ± 1.3 b | 149.4 ± 3.7 b | 144 ± 2.86 b | 6.82 ± 0.34 b | 7.02 ± 0.52 b | 6.90 ± 0. 2 b | 3.69 ± 0.04 b | 4.12 ± 0.0 b | 4.76 ± 0.12 b |
ELD | 113 ± 4.26 c | 6.15 ± 0.14 c | 5.95 ± 2.14 c | 5.99 ± 1.32 c | 0.67 ± 0.01 c | 0.715 ± 0.03 c | 0.66 ± 0.04 c | 104.1 ± 3.1 c | 103 ± 2.1 c | 102 ± 3.1 c | 148.3 ± 2.26 c | 145 ± 3.14 c | 145 ± 3.14 c | 6.22 ± 0.31 c | 6.34 ± 0.461 c | 6.31 ± 1.01 c | 3.36 ± 0.1 c | 3.46 ± 0.4 c | 3.35 ± 0.6 c |
EMD | 101 ± 2.31 d | 5.90 ± 0.13 c | 5.89 ± 0.32 c | 5.12 ± 0.12 d | 0.66 ± 0.21 c | 0.67 ± 0.01 c | 0.65 ± 0.01 d | 103.1 ± 1.4 c | 102 ± 2.1 c | 99 ± 2.4 d | 139.1 ± 0.41 c | 138 ± 3.11 c | 133 ± 2.41 d | 5.96 ± 0.13 c | 5.76 ± 1.11 c | 5.52 ± 0.31 d | 3.47 ± 0.02 c | 3.43 ± 0.01 c | 3.83 ± 0.031 d |
EHD | 83± 3.12 a | 4.52 ± 1.20 c | 4.22 ± 0.10 c | 34.22 ± 0.20 a | 0.78 ± 1.02 c | 0.71 ± 0.03 d | 0.58 ± 2.02 a | 96.4 ± 2.6 c | 93.5 ± 1.3 d | 83.5 ± 2.1 a | 138.4 ± 2.43 c | 136.4 ± 1.63 ac | 126.4 ± 2.23 aa | 4.99 ± 0.21 c | 4.79 ± 0.34 d | 4.29 ± 0.31 a | 1.56 ± 0.00 c | 1.99 ± 0.10 cd | 2.26 ± 1.10 a |
SM | 95 ± 2.5 a | 5.26 ± 0.1 c | 4.32 ± 0.23 d | 3.82 ± 0.41 a | 0.69 ± 0.21 c | 0.68 ± 0.01 d | 0.62 ± 0.02 a | 103.2 ± 2.2 b | 99.12 ± 3.2 d | 89.12 ± 2.5 a | 143.7 ± 0.31 bc | 133.2 ± 0.34 ad | 125 ± 0.13 a | 5.23 ± 0.38 b | 4.63 ± 0.21 c | 4.13 ± 0.30 a | 3.83 ± 0.23 c | 3.12 ± 0.00 ac | 2.12 ± 0.00 a |
Groups | Liver GSH | Kidney GSH | Liver RSA | Kidney RSA | Liver TBARS | Kidney TBARS |
---|---|---|---|---|---|---|
N | 37.35 ± 1.14 a | 27.12 ± 1.76 a | 54.39± 2.031 a | 29 ± 0.705 a | 13 ± 1.3 a | 13 ± 1.75 a |
T | 15.65 ± 3.5 b | 14.12 ± 1.73 b | 27.73 ± 1.179 b | 18.4 ± 2.37 b | 33 ± 1.2 b | 24 ± 0.52 b |
ELD | 15.41 ± 1.3 b | 15.18 ± 1.41 b | 38.13 ± 1.741 c | 21.8 ± 1.44 b | 34 ± 0.8 b | 22 ± 2.2 b |
EMD | 23.20 ± 2.34 c | 17.3 ± 2.84 c | 42.41 ± 2.21 d | 22.23 ± 1.905 b | 26 ± 1.4 c | 18 ± 1.85 c |
EHD | 38.31 ± 0.23 a | 26.16 ± 1.391 a | 56.36 ± 1.32 a | 26.7 ± 2.51 a | 13 ± 0.63 a | 14 ± 1.1 a |
SM | 36.12 ± 1.51 a | 27.29 ± 2.04 a | 57.32 ± 1.21 a | 25.66 ± 1.43 b | 9.0 ± 0.75 a | 13 ± 0.32 a |
DO.AQ Extract Concentration | No | Absorption | % Inhibition | Mean ± SEM |
---|---|---|---|---|
100 ppm | 1 | 0.56 | 48.74% | 46.50 ± 2.46 |
2 | 0.100 | |||
3 | 0.85 | |||
150 ppm | 1 | 0.188 | 49.88% | 47.90 ± 3.89 |
2 | 0.191 | |||
3 | 0.149 | |||
250 ppm | 1 | 0.160 | 56.53% | 55.60 ± 3.10 |
2 | 0.135 | |||
3 | 0.172 | |||
300 ppm | 1 | 0.120 | 69.90% | 67.89 ± 2.31 |
2 | 0.112 | |||
3 | 0.121 | |||
400 ppm | 1 | 0.041 | 73.33% | 71.9 ± 1.65 |
2 | 0.072 | |||
3 | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Muhammad Yousafzai, A.; Maria, H.; Khan, A.A.; Aziz, T.; Alharbi, M.; Alsahammari, A.; Alasmari, A.F. Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations 2023, 10, 182. https://doi.org/10.3390/separations10030182
Ahmad B, Muhammad Yousafzai A, Maria H, Khan AA, Aziz T, Alharbi M, Alsahammari A, Alasmari AF. Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations. 2023; 10(3):182. https://doi.org/10.3390/separations10030182
Chicago/Turabian StyleAhmad, Bashir, Ali Muhammad Yousafzai, Hafsa Maria, Ayaz Ali Khan, Tariq Aziz, Metab Alharbi, Abdulrahman Alsahammari, and Abdullah F. Alasmari. 2023. "Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model" Separations 10, no. 3: 182. https://doi.org/10.3390/separations10030182
APA StyleAhmad, B., Muhammad Yousafzai, A., Maria, H., Khan, A. A., Aziz, T., Alharbi, M., Alsahammari, A., & Alasmari, A. F. (2023). Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations, 10(3), 182. https://doi.org/10.3390/separations10030182