Magnet Integrated Fabric Phase Sorptive Extraction for the Extraction of Resin Monomers from Human Urine Prior to HPLC Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents, Chemicals and Samples
2.3. Chromatographic Conditions
2.4. MI-FPSE
2.5. Method Validation
2.6. Greenness Assessment of the Proposed Method
3. Results and Discussion
3.1. Selection of an Appropriate Sol–Gel Coated MI-FPSE Device and Mechanism of Extraction
3.2. Investigation of the Effect of Elution Solvent Composition, Sample Volume, Extraction and Elution Time, and Stirring Rate on the Extraction Efficiency
3.3. Method Validation
3.4. Freeze–Thaw Cycles
3.5. Reusability
3.6. Real Sample Analysis
3.7. Greenness Assessment of the Proposed Method
3.8. Comparison of the New Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental resin composites: A review on materials to product realizations. Compos. Part B Eng. 2021, 230, 109495. [Google Scholar] [CrossRef]
- Pérez-Mondragón, A.A.; Cuevas-Suárez, C.E.; González-López, J.A.; Trejo-Carbajal, N.; Meléndez-Rodríguez, M.; Herrera-González, A.M. Preparation and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer. Dent. Mater. J. 2020, 36, 542–550. [Google Scholar] [CrossRef]
- Aminoroaya, A.; Neisiany, R.E.; Khorasani, S.N.; Panahi, P.; Das, O.; Madry, H.; Cucchiarini, M.; Ramakrishna, S. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Compos. Part B Eng. 2021, 216, 108852. [Google Scholar] [CrossRef]
- Voruganti, K. Dental materials: Properties and manipulation (9th edition). Br. Dent. J. 2008, 204, 160. [Google Scholar] [CrossRef] [Green Version]
- Theilig, C.; Tegtmeier, Y.; Leyhausen, G.; Geurtsen, W. Effects of BisGMA and TEGDMA on proliferation, migration, and tenascin expression of human fibroblasts and keratinocytes. J. Biomed. Mater. Res. 2000, 53, 632–639. [Google Scholar] [CrossRef]
- Söderholm, K.-J.; Mariotti, A. Bis-Gma–Based Resins in Dentistry: Are They Safe? J. Am. Dent. Assoc. 1999, 130, 201–209. [Google Scholar] [CrossRef]
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef]
- Fenichel, P.; Chevalier, N.; Brucker-Davis, F. Bisphenol A: An endocrine and metabolic disruptor. Ann. Endocrinol. 2013, 74, 211–220. [Google Scholar]
- Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013, 42, 132–155. [Google Scholar] [CrossRef]
- Löfroth, M.; Ghasemimehr, M.; Falk, A.; von Steyern, P.V. Bisphenol A in dental materials–existence, leakage and biological effects. Heliyon 2019, 5, e01711. [Google Scholar] [CrossRef] [Green Version]
- Andreasidou, E.; Mourouzis, P.; Daktylidi, L.; Kabir, A.; Furton, K.G.; Samanidou, V. A fabric phase sorptive extraction method for the LC-UV determination of bisphenol A and leaching monomers from dental materials in human saliva. J. Chromatogr. B 2022, 1188, 123073. [Google Scholar] [CrossRef]
- Ferracane, J. Current Trends in Dental Composites. Crit. Rev. Oral Biol. Med. 1995, 6, 302–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Yang, D.-L.; Pu, Y.; Wang, D.; Wang, J.-X. CaF2/SiO2 core–shell nanoparticles as novel fillers with reinforced mechanical properties and sustained fluoride ion release for dental resin composites. J. Mater. Sci. 2021, 56, 16648–16660. [Google Scholar] [CrossRef]
- Wisniewska-Jarosinska, M.; Poplawski, T.; Chojnacki, C.J.; Pawlowska, E.; Krupa, R.; Szczepańska, J.; Blasiak, J. Independent and combined cytotoxicity and genotoxicity of triethylene glycol dimethacrylate and urethane dimethacrylate. Mol. Biol. Rep. 2010, 38, 4603–4611. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, S.; Lucena, R. Recent Advances in Extraction and Stirring Integrated Techniques. Separations 2017, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Manousi, N.; Kabir, A.; Furton, K.G.; Rosenberg, E.; Zachariadis, G.A. Capsule phase microextraction of selected polycyclic aromatic hydrocarbons from water samples prior to their determination by gas chromatography-mass spectrometry. Microchem. J. 2021, 166, 106210. [Google Scholar] [CrossRef]
- Lucena, R. Extraction and stirring integrated techniques: Examples and recent advances. Anal. Bioanal. Chem. 2012, 403, 2213–2223. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Kabir, A.; Olayanju, B.; Furton, K.G.; Samanidou, V.F. Development of highly hydrophobic fabric phase sorptive extraction membranes and exploring their applications for the rapid determination of tocopherols in edible oils analyzed by high pressure liquid chromatography-diode array detection. J. Chromatogr. A 2022, 1664, 462785. [Google Scholar] [CrossRef]
- Valcárcel, M.; Cárdenas, S.; Lucena, R. Microextraction techniques. Anal. Bioanal. Chem. 2014, 406, 1999–2000. [Google Scholar] [CrossRef]
- Sidiropoulou, G.; Kabir, A.; Furton, K.G.; Kika, F.S.; Fytianos, K.; Tzanavaras, P.D.; Zacharis, C.K. Combination of fabric phase sorptive extraction with UHPLC-ESI-MS/MS for the determination of adamantine analogues in human urine. Microchem. J. 2022, 176, 107250. [Google Scholar] [CrossRef]
- Manousi, N.; Kabir, A.; Furton, K.G.; Zachariadis, G.A.; Rosenberg, E. Expanding the applicability of magnet integrated fabric phase sorptive extraction in food analysis: Extraction of triazine herbicides from herbal infusion samples. Microchem. J. 2022, 179, 107524. [Google Scholar] [CrossRef]
- Alampanos, V.; Kabir, A.; Furton, K.; Samanidou, V. Magnet integrated fabric phase sorptive extraction of selected endocrine disrupting chemicals from human urine followed by high-performance liquid chromatography–photodiode array analysis. J. Chromatogr. A 2021, 1654, 462459. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Alampanos, V.; Ferracane, A.; Efstratiadis, G.; Kabir, A.; Furton, K.G.; Tranchida, P.Q.; Zachariadis, G.A.; Mondello, L.; Rosenberg, E.; et al. Magnet integrated fabric phase sorptive extraction as a stand-alone extraction device for the monitoring of benzoyl urea insecticides in water samples by HPLC-DAD. J. Chromatogr. A 2022, 1672, 462459. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.F.; Kabir, A. Magnet Integrated Fabric Phase Sorptive Extraction (MI-FPSE): A Powerful Green(er) Alternative for Sample Preparation. Analytica 2022, 3, 439–447. [Google Scholar] [CrossRef]
- Tartaglia, A.; Covone, S.; Rosato, E.; Bonelli, M.; Savini, F.; Furton, K.G.; Gazioglu, I.; D’Ovidio, C.; Kabir, A.; Locatelli, M. Fabric Phase Sorptive Extraction (FPSE) as an efficient sample preparation platform for the extraction of antidepressant drugs from biological fluids. Adv. Sample Prep. 2022, 3, 100022. [Google Scholar] [CrossRef]
- Mazaraki, K.; Kabir, A.; Furton, K.G.; Fytianos, K.; Samanidou, V.F.; Zacharis, C.K. Fast fabric phase sorptive extraction of selected β-blockers from human serum and urine followed by UHPLC-ESI-MS/MS analysis. J. Pharm. Biomed. Anal. 2021, 199, 114053. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Wojnowski, W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namiesnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Stratigou, I.-C.; Tsiasioti, A.; Tzanavaras, P.D.; Markopoulou, C.K.; Fytianos, K.; Zacharis, C.K. Homogeneous liquid liquid extraction using salt as mass separating agent for the ultrahigh pressure liquid chromatographic determination of doxorubicin in human urine. Microchem. J. 2020, 158, 105260. [Google Scholar] [CrossRef]
- Janicka, P.; Płotka-Wasylka, J.; Jatkowska, N.; Chabowska, A.; Fares, M.Y.; Andruch, V.; Kaykhaii, M.; Gębicki, J. Trends in the new generation of green solvents in extraction processes. Curr. Opin. Green Sustain. Chem. 2022, 37, 100670. [Google Scholar] [CrossRef]
- Samanidou, V.F.; Livadiotou, D.; Palaghias, G.; Papadoyannis, I. A Simple and Rapid HPLC Method for the Direct Determination of Residual Monomers Released From Dental Polymeric Materials in Blood Serum and Urine. J. Liq. Chromatogr. Relat. Technol. 2014, 38, 201–207. [Google Scholar] [CrossRef]
Sol–Gel Coating | Sorbent Loading (mg/cm2) | Fabric Substrate | Polarity | Absolute Recovery Values (%) | |||
---|---|---|---|---|---|---|---|
BPA | TEG | UDMA | BisGMA | ||||
PTHF | 3.96 | Cellulose | Medium Polar | 76.0 | 72.2 | 77.2 | 60.2 |
CW 20M | 4.71 | Cellulose | Polar | 65.5 | 64.7 | 62.9 | 54.6 |
Analyte | Added (ng μL−1) | Intra-Day (n = 5) | Inter-Day (n = 4 × 3) | ||||
---|---|---|---|---|---|---|---|
Found (ng μL−1) | RSD% | RR% | Found (ng μL−1) | RSD% | RR% | ||
TEGDMA | 0.100 | 0.093 ± 0.003 | 3.2 | 93.0 | 0.090 ± 0.008 | 8.9 | 90.0 |
0.500 | 0.462 ± 0.011 | 2.4 | 92.4 | 0.450 ± 0.045 | 10.0 | 90.0 | |
BPA | 0.100 | 0.086 ± 0.004 | 4.7 | 86.0 | 0.088 ± 0.005 | 5.7 | 88.0 |
0.500 | 0.510 ± 0.017 | 3.3 | 102.0 | 0.478 ± 0.047 | 9.8 | 95.6 | |
UDMA | 0.100 | 0.092 ± 0.009 | 9.8 | 92.0 | 0.099 ± 0.005 | 5.1 | 99.0 |
0.500 | 0.503 ± 0.011 | 2.2 | 100.6 | 0.526 ± 0.039 | 7.4 | 105.2 | |
BisGMA | 0.100 | 0.103 ± 0.004 | 3.9 | 103.0 | 0.097 ± 0.006 | 6.2 | 97.0 |
0.500 | 0.433 ± 0.007 | 1.6 | 86.6 | 0.428 ± 0.051 | 11.9 | 85.6 |
Analytical Technique | Pretreatment Protocol | % RR | RSD % | LOD (ng/μL) | Reference |
---|---|---|---|---|---|
HPLC-UV | ACN and centrifugation at 3500 rpm for 15 min. | 95.0–106.9% | <6.6% | BPA-1.1 TEGDMA-0.6 UDMA-0.6 Bis-GMA-0.6 | [32] |
HPLC-PDA | MI-FPSE | 85.6–105.2% | <11.9% | BPA-0.017 TEGDMA-0.017 UDMA-0.017 Bis-GMA-0.017 | Current Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, G.; Alampanos, V.; Kabir, A.; Zughaibi, T.; Furton, K.G.; Samanidou, V. Magnet Integrated Fabric Phase Sorptive Extraction for the Extraction of Resin Monomers from Human Urine Prior to HPLC Analysis. Separations 2023, 10, 235. https://doi.org/10.3390/separations10040235
Antoniou G, Alampanos V, Kabir A, Zughaibi T, Furton KG, Samanidou V. Magnet Integrated Fabric Phase Sorptive Extraction for the Extraction of Resin Monomers from Human Urine Prior to HPLC Analysis. Separations. 2023; 10(4):235. https://doi.org/10.3390/separations10040235
Chicago/Turabian StyleAntoniou, Georgios, Vasileios Alampanos, Abuzar Kabir, Torki Zughaibi, Kenneth G. Furton, and Victoria Samanidou. 2023. "Magnet Integrated Fabric Phase Sorptive Extraction for the Extraction of Resin Monomers from Human Urine Prior to HPLC Analysis" Separations 10, no. 4: 235. https://doi.org/10.3390/separations10040235
APA StyleAntoniou, G., Alampanos, V., Kabir, A., Zughaibi, T., Furton, K. G., & Samanidou, V. (2023). Magnet Integrated Fabric Phase Sorptive Extraction for the Extraction of Resin Monomers from Human Urine Prior to HPLC Analysis. Separations, 10(4), 235. https://doi.org/10.3390/separations10040235