Separation, Characterization and Mammal Pancreatic Lipase Inhibitory Potential of Cucumber Flower Flavonoids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Liquid–Liquid Extraction (LLE) and Solid-Phase Extraction (SPE) of Cucumber Flowers
2.3. Chemical Composition of LLE and SPE Fractions
2.4. Macroporous Resin Separation of SPE-2 Subfraction
2.5. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC–PDA–ESI–tQMS)
2.6. Mammal Lipase Inhibition In Vitro Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. LLE and SPE Separation of Cucumber Flower Metabolites and Mammal Pancreatic Lipase Inhibition by CF Fractions
3.2. Amberlite XAD-2 Separation of Cucumber Flower Flavonoids
3.3. LC-MS Profile of Flavonoids in the Amberlite XAD-2 Fraction of Cucumber Flowers
3.3.1. Luteolin Glycosides
3.3.2. Apigenin Glycosides
3.3.3. Chrysoeriol Glycosides
3.4. Quantification of Nine Flavonoids in Cucumber Flowers
3.5. Inhibition of Mammal Lipases by Flavonoids of Cucumber Flowers
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, K.A.; Michelsen, M.K.; Carpenter, C.L. Modern diets and the health of our planet: An investigation into the environmental impacts of food choices. Nutrients 2023, 15, 692. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yang, J.; Chen, J.; Pu, X.; Li, X.; Yang, X.; Yang, L.; Ding, Y.; Nong, M.; Zhang, S.; et al. Actional mechanisms of active ingredients in functional food adlay for human health. Molecules 2022, 27, 4808. [Google Scholar] [CrossRef]
- Restani, P.; Colombo, F.; Biella, S.; Bani, C.; Mercogliano, F.; Di Lorenzo, C. Diet, polyphenols, and human evolution. Appl. Sci. 2022, 12, 7805. [Google Scholar] [CrossRef]
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Valorization of wild edible plants as food ingredients and their economic value. Foods 2023, 12, 1012. [Google Scholar] [CrossRef]
- Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible flowers: Antioxidant compounds and their functional properties. Horticulturae 2021, 7, 66. [Google Scholar] [CrossRef]
- Kandylis, P. Phytochemicals and antioxidant properties of edible flowers. Appl. Sci. 2022, 12, 9937. [Google Scholar] [CrossRef]
- Motti, R.; Paura, B.; Cozzolino, A.; Falco, B.D. Edible flowers used in some countries of the Mediterranean basin: An ethnobotanical overview. Plants 2022, 11, 3272. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018, 21, 1524–1540. [Google Scholar] [CrossRef]
- Mateos-Maces, L.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Aquino-Bolaños, E.N.; Alba-Jiménez, J.E.; Villagómez-González, B.B. Edible leafy plants from Mexico as sources of antioxidant compounds, and their nutritional, nutraceutical and antimicrobial potential: A review. Antioxidants 2020, 9, 541. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Wang, H.; Feng, S. Research progress in leaf related molecular breeding of Cucurbitaceae. Agronomy 2022, 12, 2908. [Google Scholar] [CrossRef]
- World Cucumber Production by Country. Available online: https://www.atlasbig.com/en-us/countries-cucumber-production (accessed on 30 March 2023).
- Grumet, R.; McCreight, J.D.; McGregor, C.; Weng, Y.; Mazourek, M.; Reitsma, K.; Labate, J.; Davis, A.; Fei, Z. Genetic resources and vulnerabilities of major cucurbit crops. Genes 2021, 12, 1222. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Mishra, A.; Hasan, S.M.; Usmani, A.; Ubaid, M.; Khan, N.; Saidurrahman, M. Biological and medicinal application of Cucumis sativus Linn.—Review of current status with future possibilities. J. Complement. Integr. Med. 2021, 19, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Abou-Zaid, M.M.; Lombardo, D.A.; Kite, G.C.; Grayer, R.J.; Veitch, N.C. Acylated flavone C-glycosides from Cucumis sativus. Phytochemistry 2001, 58, 167–172. [Google Scholar] [CrossRef] [PubMed]
- McNally, D.J.; Wurms, K.V.; Labbé, C.; Quideau, S.; Bélanger, R.R. Complex C-glycosyl flavonoid phytoalexins from Cucumis sativus. J. Nat. Prod. 2003, 66, 1280–1283. [Google Scholar] [CrossRef]
- Kai, H.; Baba, M.; Okuyama, T. Two new megastigmanes from the leaves of Cucumis sativus. Chem Pharm. Bull. 2007, 55, 133–136. [Google Scholar] [CrossRef]
- Sun, W.; Ma, N.; Huang, H. Photosynthetic contribution and characteristics of cucumber stems and petioles. BMC Plant Biol. 2021, 21, 454. [Google Scholar] [CrossRef] [PubMed]
- Krauze-Baranowska, M.; Cisowski, W. Flavonoids from some species of the genus Cucumis. Biochem. Syst. Ecol. 2001, 29, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef]
- Li, M.; Qian, M.; Jiang, Q.; Tan, B.; Yin, Y.; Han, X. Evidence of flavonoids on disease prevention. Antioxidants 2023, 12, 527. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; Rosa, L.A.D.L.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, A.E. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef]
- Buchholz, T.; Melzig, M. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 2015, 81, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.T.M.A.; Takahashi, Y.; Yamaki, K. Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Res. Int. 2015, 75, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I. New flavonoids from Cucumis sativus. Chem. Nat. Compd. 2023, 58, 356–359. [Google Scholar]
- Olennikov, D.N.; Kashchenko, N.I. Acylated flavonoids from Cucumis sativus inhibit activity of human pancreatic lipase. Appl. Biochem. Microbiol. 2023, 59, 487–493. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, Q.-S.; Wang, G.-S. Preparative separation and purification of the total flavonoids in Scorzonera austriaca with macroporous resins. Molecules 2016, 21, 768. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, B.; Ye, M.; Chen, J.; Liu, Y.; Wang, C. An effective chromatography process for simultaneous purification and separation of total lignans and flavonoids from Valeriana amurensis. Molecules 2022, 27, 8598. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I. New C,O-glycosylflavones from the genus Silene. Chem. Nat. Compd. 2020, 56, 1026–1034. [Google Scholar] [CrossRef]
- Olennikov, D.N. Ecdysteroids, flavonoids, and phenylpropanoids from Silene nutans. Chem. Nat. Compd. 2019, 55, 127–130. [Google Scholar] [CrossRef]
- Olennikov, D.N. Chemical investigation of Anagallidium dichotomum and anticholinesterase activity of its components. Chem. Nat. Compd. 2013, 49, 977–979. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. C-Glycosyl flavones from two Eastern Siberian species of Silene. Chem. Nat. Compd. 2019, 55, 642–647. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. New C,O-glycosyl flavones from Melandrium divaricatum. Chem. Nat. Compd. 2019, 55, 1032–1038. [Google Scholar] [CrossRef]
- Pedrosa, A.M.; de Castro, W.V.; Castro, A.H.F.; Duarte-Almeida, J.M. Validated spectrophotometric method for quantification of total triterpenes in plant matrices. DARU 2020, 28, 281–286. [Google Scholar] [CrossRef]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of ash in animal Feed: AOAC Official Method 942.05 revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Zilfikarov, I.N.; Penzina, T.A. Use of microcolumn HPLC for analysis of aloenin in Aloe arborescens raw material and related drugs. Pharm. Chem. J. 2013, 47, 494–497. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Polymeric compounds of lingonberry waste: Characterization of antioxidant and hypolipidemic polysaccharides and polyphenol-polysaccharide conjugates from Vaccinium vitis-idaea press cake. Foods 2022, 11, 2801. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Kamaruzaman, S.; Nasir, N.M.; Mohd Faudzi, S.M.; Yahaya, N.; Mohamad Hanapi, N.S.; Wan Ibrahim, W.N. Solid-phase extraction of active compounds from natural products by nolecularly imprinted polymers: Synthesis and extraction parameters. Polymers 2021, 13, 3780. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharm. Res. 2020, 155, 104681. [Google Scholar] [CrossRef]
- Yang, M.H.; Chin, Y.-W.; Yoon, K.D.; Kim, J. Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (Dioscorea opposita). J. Enzyme Inhibit. Med. Chem. 2013, 29, 1–6. [Google Scholar] [CrossRef]
- Ma, L.-J.; Hou, X.-D.; Qin, X.-Y.; He, R.-J.; Yu, H.-N.; Hu, Q.; Guan, X.-Q.; Jia, S.-N.; Hou, J.; Lei, T.; et al. Discovery of human pancreatic lipase inhibitors from root of Rhodiola crenulata via integrating bioactivity-guided fractionation, chemical profiling and biochemical assay. J. Pharm. Anal. 2022, 12, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Ado, M.A.; Abas, F.; Mohammed, A.S.; Ghazali, H.M. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules 2013, 18, 14651–14669. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Karmase, A.; Jagtap, S.; Shekhar, R.; Bhutani, K.K. Pancreatic lipase inhibitory activity of cassiamin A, a bianthraquinone from Cassia siamea. Nat. Prod. Commun. 2013, 8, 195–198. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Blázquez, M.A.; Garcia-Viguera, C.; Ferreres, F.; Tomás-Lorente, F. A comparative study of different amberlite XAD resins in flavonoid analysis. Phytochem. Anal. 1992, 3, 178–181. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Chu, X.; Zhang, X.; Kan, Q.; Liu, R.; Fu, X. Adsorption and desorption characteristics of total flavonoids from Acanthopanax senticosus on macroporous adsorption resins. Molecules 2021, 26, 4162. [Google Scholar] [CrossRef]
- Che Zain, M.S.; Lee, S.Y.; Teo, C.Y.; Shaari, K. Adsorption/desorption characteristics and simultaneous enrichment of orientin, isoorientin, vitexin and isovitexin from hydrolyzed oil palm leaf extract using macroporous resins. Processes 2021, 9, 659. [Google Scholar] [CrossRef]
- Liu, J.; Meng, J.; Du, J.; Liu, X.; Pu, Q.; Di, D.; Chen, C. Preparative separation of flavonoids from goji berries by mixed-mode macroporous adsorption resins and effect on Aβ-expressing and anti-aging genes. Molecules 2020, 25, 3511. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhang, X.; Wang, C.; Hou, G.; Li, H. Adsorption properties and preparative separation of flavonoids from rhizoma Smilacis glabrae using macroporous resins. Separations 2022, 9, 431. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Kataeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana species: Untargeted LC-MS metabolic profiling, antioxidant and digestive enzyme inhibiting activity of six plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef]
- Hostettmann, K.; Jacot-Guillarmod, A. Contribution à la phytochimie du genre Gentiana. X. Etude des composés flavoniques et xanthoniques dans les feuilles de Gentiana verna L. Helv. Chim. Acta 1975, 58, 130–132. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Tankhaeva, L.M. Iridoids and flavonoids of four Siberian gentians: Chemical profile and gastric stimulatory effect. Molecules 2015, 20, 19172–19188. [Google Scholar] [CrossRef]
- Besson, E.; Dellamonica, G.; Chopin, J.; Markham, K.R.; Kim, M.; Koh, H.-S.; Fukami, H. C-Glycosylflavones from Oryza sativa. Phytochemistry 1985, 24, 1061–1064. [Google Scholar] [CrossRef]
- Herrera, A.Y.; Bain, J.F. Flavonoids of the Muhlenbergia montana complex. Biochem. Syst. Ecol. 1991, 19, 665–672. [Google Scholar] [CrossRef]
- Jacot-Guillarmod, A.; Duc, L.M.; Hostettmann, K. Contribution à la phytochimie du genre Gentian. XI. Identification de nouveaux dérivés de l’iso-orientine extraits des feuilles de Gentiana burseri Lapeyr. Helv. Chim. Acta 1975, 58, 1477–1481. [Google Scholar] [CrossRef]
- Ohkawa, M.; Kinjo, J.; Hagiwara, Y.; Hagiwara, H.; Ueyama, H.; Nakamura, K.; Ishikawa, R.; Ono, M.; Nohara, T. Three new anti-oxidative saponarin analogs from young green barley leaves. Chem. Pharm. Bull. 1998, 46, 1887–1889. [Google Scholar] [CrossRef]
- Xie, H.; Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M.; Tani, T. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem. Pharm. Bull. 2005, 53, 1416–1422. [Google Scholar] [CrossRef]
- Markham, K.R.; Mitchell, K.A. The mis-identification of the major antioxidant Flavonoids in young barley (Hordeum vulgare) leaves. Z. Naturforsch. C 2003, 58, 53–56. [Google Scholar] [CrossRef]
- Chulia, A.J.; Mariotte, A.M. Nouvelles C-glucosylflavones chez Gentiana pedicellata. J. Nat. Prod. 1985, 48, 480–483. [Google Scholar] [CrossRef]
- Williams, C.A.; Murray, B.G. Flavonoid variation in the genus Briza. Phytochemistry 1972, 11, 2507–2512. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Khandy, M.T.; Chirikova, N.K. Oriental strawberry metabolites: LC–MS profiling, antioxidant potential, and postharvest changes of Fragaria orientalis fruits. Horticulturae 2022, 8, 975. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Dai, P.; Zeng, X.; Qi, X.; Zhu, L.; Yan, T.; Wang, Y.; Lu, L.; Hu, M.; et al. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5′-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. J. Chromatogr. A 2015, 1395, 116–128. [Google Scholar] [CrossRef]
- Piasecka, A.; Sawikowska, A.; Krajewski, P.; Kachlicki, P. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. J. Mass Spectrom. 2015, 50, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.; Jacot-Guillarmod, A. Contribution à la phytochimie du genre Gentiana, XX. Identification de nouveaux di-O-glucosides de C-glucosylflavones dans Gentiana asclepiadea L. Helv. Chim. Acta 1977, 60, 1322–1324. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Cisowski, W. High-performance liquid chromatographic determination of flavone C-glycosides in some species of the Cucurbitaceae family. J. Chromatogr. A 1994, 675, 240–243. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Xie, Y.Q.; Chen, F.; Zhao, Y.Y.; Luo, C.X.; Gao, Y.Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Pinedo-Espinoza, J.M.; Gutiérrez-Tlahque, J.; Santiago-Saenz, Y.O.; Aguirre-Mancilla, C.L.; Reyes-Fuentes, M.; López-Palestina, C.U. Nutritional composition, bioactive compounds and antioxidant activity of wild edible flowers consumed in semiarid regions of Mexico. Plant Foods Hum. Nutr. 2020, 75, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.M.; Lee, S.S.; Chung, B.Y.; Cho, J.-Y.; Lee, I.C.; Ahn, S.R.; Jang, S.J.; Kim, T.H. Pancreatic lipase inhibition by C-glycosidic flavones isolated from Eremochloa ophiuroides. Molecules 2010, 15, 8251–8259. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Ruan, J.; Wang, W.; Chen, J.; Zhang, Q. Structure-activity relationship of dietary flavonoids on pancreatic lipase. Curr. Res. Food Sci. 2023, 6, 100424. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Que, Q.; Pan, J.; Guo, J. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J. Molec. Struct. 2008, 881, 132–138. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y.; Shen, S.; Zhi, Z.; Chen, H.; Chen, S.; Ye, X. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chem. 2020, 326, 126785. [Google Scholar] [CrossRef]
- Nakai, M.; Fukui, Y.; Asami, S.; Toyoda-Ono, Y.; Iwashita, T.; Shibata, H.; Mitsunaga, T.; Hashimoto, F.; Kiso, Y. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 2005, 53, 4593–4598. [Google Scholar] [CrossRef]
- Batubara, I.; Kuspradini, H.; Muddathir, A.M.; Mitsunaga, T. Intsia palembanica wood extracts and its isolated compounds as Propionibacterium acnes lipase inhibitor. J. Wood Sci. 2014, 60, 169–174. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Ferri, C. Flavonoids: Antioxidants against atherosclerosis. Nutrients 2010, 2, 889–902. [Google Scholar] [CrossRef]
- Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; De Freitas, V. Wine flavonoids in health and disease prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Suen, J.; Thomas, J.; Kranz, A.; Vun, S.; Miller, M. Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: A systematic review. Healthcare 2016, 4, 69. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. J. Agricult. Food Chem. 2021, 69, 1441–1454. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, A.; Szostak-Węgierek, D. Flavonoids—Food Sources, Health Benefits, and Mechanisms Involved. In Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 53–78. [Google Scholar] [CrossRef]
Compound | a a | b a | Correlation Coefficient (r2) | SYX | LOD/LOQ (ng/mL) | Linear Range (µg/mL) | RSD% (Intra-Day) | RSD% (Inter-Day) | Recovery of Spiked Sample REC% |
---|---|---|---|---|---|---|---|---|---|
Isoorientin | 40.2361 | −1.2360 | 0.9903 | 1.53∙10−2 | 1.26/3.80 | 1–100 | 1.03 | 1.56 | 100.36 |
Isovitexin | 32.6814 | −0.9634 | 0.9836 | 1.26∙10−2 | 1.27/3.86 | 1–100 | 1.28 | 1.35 | 101.25 |
Orientin | 38.1005 | −0.9880 | 0.9870 | 1.42∙10−2 | 1.23/3.72 | 1–100 | 1.32 | 1.85 | 101.30 |
Juncein | 35.2114 | −2.0341 | 0.9911 | 1.69∙10−2 | 1.58/4.80 | 1–100 | 1.04 | 1.28 | 100.32 |
Isoscoparin | 31.4721 | −1.9364 | 0.9917 | 1.92∙10−2 | 2.01/6.10 | 1–100 | 1.09 | 1.37 | 99.30 |
Parameter | Fractions 1 (±S.D.) | |||||
---|---|---|---|---|---|---|
A | B | C | C1 | C2 | D | |
Yield, % DPW 2 | 4.2 (0.08) b | 1.2 (0.02) a | 12.7 (0.25) c | 57.6 (1.78) 3,e | 22.7 (0.45) 3,f | 15.3 (0.32) d |
Lipids, g/100 g DFW 4 | 82.3 (2.46) d | 75.3 (2.25) c | 3.39 (0.10) a | Traces | 5.6 (0.16) b | Traces |
Carotenoids, μg/100 g DFW | 153.4 (6.14) | — | — | — | — | — |
Triterpenes, g/100 g DFW | 5.4 (0.12) a | 25.3 (0.53) c | 11.6 (0.25) b | 15.9 (0.47) d | Traces | — |
Flavonoids, g/100 g DFW | Traces | 0.5 (0.01) a | 10.5 (0.21) c | Traces | 48.9 (0.97) d | 1.6 (0.04) b |
Phenolics, g/100 g DFW | Traces | 1.2 (0.02) | 14.8 (0.29) | Traces | 51.9 (1.05) | 3.7 (0.08) |
Carbohydrates, g/100 g DFW | — | — | 45.8 (1.46) b | 48.6 (1.57) a | 5.3 (0.15) a | 51.0 (1.02) b |
Proteins, g/100 g DFW | — | — | — | — | — | 5.6 (0.11) |
Ash, g/100 g DFW | Traces | 2.4 (0.04) a | 10.8 (0.25) b | 33.7 (0.71) c | 12.3 (0.36) a | 35.2 (1.05) c |
PLI-1 5, IC50, μg/mL 6 | >100 | >100 | 89.7 (1.81) b | >100 | 42.7 (0.85) a | >100 |
PLI-2 5, IC50, μg/mL 6 | >100 | >100 | 93.4 (2.73) b | >100 | 45.9 (1.10) a | >100 |
Parameter | Macroporous Resin Brand | ||||||
---|---|---|---|---|---|---|---|
D-101 | AD-8 | XAD-2 | XAD-4 | XAD-16 | XAD-7 | XAD-8 | |
Adsorption capacity Qa, mg/g | 29.7 ± 1.4 | 27.8 ± 1.9 | 43.2 ± 2.5 | 29.3 ± 1.8 | 31.7 ± 1.9 | 25.2 ± 1.5 | 27.8 ± 1.4 |
Desorption capacity Qd, mg/g | 24.3 ± 1.4 | 22.2 ± 1.1 | 37.5 ± 2.2 | 24.6 ± 1.2 | 24.1 ± 1.2 | 19.6 ± 1.1 | 21.1 ± 1.2 |
Desorption ratio Rd, % | 81.8 | 79.9 | 86.8 | 84.0 | 76.0 | 77.8 | 75.9 |
Mixture | Alcohol Concentration, % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
Methanol–water | 10.6 | 25.2 | 48.4 | 76.9 | 90.8 | 91.5 | 87.6 | 72.3 | 58.6 | 36.4 | 30.8 |
Ethanol–water | 10.6 | 18.4 | 41.6 | 72.6 | 92.6 | 91.8 | 90.3 | 78.6 | 62.9 | 54.7 | 27.2 |
Isopropanol–water | 10.6 | 15.2 | 29.3 | 63.9 | 81.7 | 78.2 | 73.2 | 68.7 | 57.1 | 32.1 | 14.8 |
Flow Rate, Bed Volume/h | Number of Bed Volumes Eluted | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 | 33.6 | 48.2 | 61.9 | 75.4 | 87.3 | 90.7 | 91.3 |
2 | 54.8 | 69.3 | 82.1 | 92.7 | 92.8 | 92.8 | 92.9 |
3 | 41.8 | 62.4 | 70.3 | 86.4 | 91.8 | 92.0 | 92.1 |
4 | 38.4 | 53.6 | 68.4 | 82.4 | 90.8 | 91.0 | 91.0 |
5 | 25.6 | 43.2 | 61.4 | 76.8 | 86.2 | 91.2 | 91.3 |
No. | t, min | UV, λmax, nm | ESI-MS, m/z | Compound [Ref.] | IL * |
---|---|---|---|---|---|
1 | 3.92 | 255, 270, 350 | 771 [(M − H)]−, 609 [(M − H) − Hex]−, 447 [(M − H) − 2 × Hex]−, 357 [(M − H) − 2 × Hex − 90]−, 329 [(M − H) − 2 × Hex − 90 − CO]−, 327 [(M − H) − 2 × Hex − 120]−, 299 [(M − H) − 2 × Hex − 120 − CO]− | Luteolin-C-hexoside-di-O-hexoside [52] | 1 |
2 | 4.12 | 255, 270, 350 | 771 [(M − H)]−, 609 [(M − H) − Hex]−, 447 [(M − H) − 2 × Hex]−, 357 [(M − H) − 2 × Hex − 90]−, 329 [(M − H) − 2 × Hex − 90 − CO]−, 327 [(M − H) − 2 × Hex − 120]−, 299 [(M − H) − 2 × Hex − 120 − CO]− | Luteolin-C-hexoside-di-O-hexoside [52] | 1 |
3 | 4.89 | 268, 338 | 771 [(M − H)]−, 609 [(M − H) − Hex]−, 447 [(M − H) − 2 × Hex]−, 357 [(M − H) − 2 × Hex − 90]−, 329 [(M − H) − 2 × Hex − 90 − CO]−, 327 [(M − H) − 2 × Hex − 120]−, 299 [(M − H) − 2 × Hex − 120 − CO]− | Luteolin-C-hexoside-di-O-hexoside [52] | 1 |
4 | 5.33 | 255, 270, 350 | 609 [(M − H)]−, 447 [(M − H) − Glc]−, 357 [(M − H) − Glc − 90]−, 329 [(M − H) − Glc − 90 − CO]−, 327 [(M − H) − Glc − 120]−, 299 [(M − H) − Glc − 120 − CO]− | Luteolin-6-C-(2″-O-glucosyl)-glucoside (isoorientin-2″-O-glucoside, meloside L) [53] | 2 |
5 | 5.42 | 255, 270, 350 | 609 [(M − H)]−, 447 [(M − H) − Glc]−, 357 [(M − H) − Glc − 90]−, 329 [(M − H) − Glc − 90 − CO]−, 327 [(M − H) − Glc − 120]−, 299 [(M − H) − Glc − 120 − CO]− | Luteolin-6-C-glucoside-7-O-glucoside (isoorientin-7-O-glucoside, lutonarin) [52,53] | 2 |
6 | 5.48 | 255, 270, 350 | 609 [(M − H)]−, 447 [(M − H) − Glc]−, 357 [(M − H) − Glc − 90]−, 329 [(M − H) − Glc − 90 − CO]−, 327 [(M − H) − Glc − 120]−, 299 [(M − H) − Glc − 120 − CO]− | Luteolin-6-C-(6″-O-glucosyl)-glucoside (isoorientin-6″-O-glucoside) [52,53] | 2 |
7 | 5.82 | 268, 338 | 609 [(M − H)]−, 447 [(M − H) − Glc]−, 357 [(M − H) − Glc − 90]−, 329 [(M − H) − Glc − 90 − CO]−, 327 [(M − H) − Glc − 120]−, 299 [(M − H) − Glc − 120 − CO]− | Luteolin-6-C-glucoside-4′-O-glucoside (isoorientin-4′-O-glucoside) [54] | 2 |
8 | 5.98 | 271, 334 | 875 [M − H]−, 713 [(M − H) − Hex]−, 551 [(M − H) − 2 × Hex]−, 461 [(M − H) − 2 × Hex − 90]−, 433 [(M − H) − 2 × Hex − 90 − CO]−, 431 [(M − H) − 2 × Hex − 120]−, 403 [(M − H) − 2 × Hex − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene) di-O-hexoside [15,25] | 1 |
9 | 6.09 | 269, 332 | 875 [M − H]−, 713 [(M − H) − Hex]−, 551 [(M − H) − 2 × Hex]−, 461 [(M − H) − 2 × Hex − 90]−, 433 [(M − H) − 2 × Hex − 90 − CO]−, 431 [(M − H) − 2 × Hex − 120]−, 403 [(M − H) − 2 × Hex − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene) di-O-hexoside [15,25] | 1 |
10 | 6.47 | 268, 324 | 875 [M − H]−, 713 [(M − H) − Hex]−, 551 [(M − H) − 2 × Hex]−, 461 [(M − H) − 2 × Hex − 90]−, 433 [(M − H) − 2 × Hex − 90 − CO]−, 431 [(M − H) − 2 × Hex − 120]−, 403 [(M − H) − 2 × Hex − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene) di-O-hexoside [15,25] | 1 |
11 | 6.56 | 268, 324 | 875 [M − H]−, 713 [(M − H) − Hex]−, 551 [(M − H) − 2 × Hex]−, 461 [(M − H) − 2 × Hex − 90]−, 433 [(M − H) − 2 × Hex − 90 − CO]−, 431 [(M − H) − 2 × Hex − 120]−, 403 [(M − H) − 2 × Hex − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene) di-O-hexoside [15,25] | 1 |
12 | 7.11 | 271, 334 | 713 [M − H]−, 551 [(M − H) − Glc]−, 461 [(M − H) − 90]−, 433 [(M − H) − 90 − CO]−, 431 [(M − H) − 120]−, 403 [(M − H) − 120 − CO]− | Apigenin-6-C-(2‴-O-glucosyl)-glucoside-8-C-(4-hydroxy-1-ethylbenzene) (cucumerin D) [25] | 2 |
13 | 7.48 | 255, 270, 350 | 813 [(M − H)]−, 771 [(M − H) − Ac]−, 609 [(M − H) − Ac − Hex]−, 447 [(M − H) − Ac − 2 × Hex]−, 357 [(M − H) − Ac − 2 × Hex − 90]−, 329 [(M − H) − Ac − 2 × Hex − 90 − CO]−, 327 [(M − H) − Ac − 2 × Hex − 120]−, 299 [(M − H) − Ac − 2 × Hex − 120 − CO]− | Luteolin-C-hexoside-di-O-hexoside-O-acetate [52] | 1 |
14 | 7.68 | 269, 332 | 713 [M − H]−, 551 [(M − H) − Glc]−, 461 [(M − H) − 90]−, 433 [(M − H) − 90 − CO]−, 431 [(M − H) − 120]−, 403 [(M − H) − 120 − CO]− | Apigenin-6-C-(4-hydroxy-1-ethylbenzene)-8-C-(2‴-O-glucosyl)-glucoside (cucumerin C) [25] | 2 |
15 | 7.79 | 255, 270, 350 | 813 [(M − H)]−, 771 [(M − H) − Ac]−, 609 [(M − H) − Ac − Hex]−, 447 [(M − H) − Ac − 2 × Hex]−, 357 [(M − H) − Ac − 2 × Hex − 90]−, 329 [(M − H) − Ac − 2 × Hex − 90 − CO]−, 327 [(M − H) − Ac − 2 × Hex − 120]−, 299 [(M − H) − Ac − 2 × Hex − 120 − CO]− | Luteolin-C-hexoside-di-O-hexoside-O-acetate [52] | 1 |
16 | 8.12 | 268, 324 | 713 [M − H]−, 551 [(M − H) − Hex]−, 461 [(M − H) − 90]−, 433 [(M − H) − 90 − CO]−, 431 [(M − H) − 120]−, 403 [(M − H) − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene) O-hexoside [15,25] | 1 |
17 | 8.52 | 268, 338 | 813 [(M − H)]−, 771 [(M − H) − Ac]−, 609 [(M − H) − Ac − Hex]−, 447 [(M − H) − Ac − 2 × Hex]−, 357 [(M − H) − Ac − 2 × Hex − 90]−, 329 [(M − H) − Ac − 2 × Hex − 90 − CO]−, 327 [(M − H) − Ac − 2 × Hex − 120]−, 299 [(M − H) − Ac − 2 × Hex − 120 − CO]− | Luteolin-C-hexoside-di-O-hexoside-O-acetate [52] | 1 |
18 | 8.78 | 255, 269, 349 | 447 [M − H]−, 357 [(M − H) − 90]−, 329 [(M − H) − 90 − CO]−, 327 [(M − H) − 120]−, 299 [(M − H) − 120 − CO]− | Luteolin-8-C-glucoside (orientin) [54] | 2 |
19 | 9.08 | 268, 324 | 713 [M − H]−, 551 [(M − H) − Hex]−, 461 [(M − H) − 90]−, 433 [(M − H) − 90 − CO]−, 431 [(M − H) − 120]−, 403 [(M − H) − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene) O-hexoside [15,25] | 1 |
20 | 9.52 | 255, 269, 349 | 447 [M − H]−, 357 [(M − H) − 90]−, 329 [(M − H) − 90 − CO]−, 327 [(M − H) − 120]−, 299 [(M − H) − 120 − CO]− | Luteolin-6-C-glucoside (isoorientin) [54] | 2 |
21 | 9.92 | 252, 266, 346 | 623 [(M − H)]−, 461 [(M − H) − Glc]−, 371 [(M − H) − Glc − 90]−, 343 [(M − H) − Glc − 90 − CO]−, 341 [(M − H) − Glc − 120]−, 313 [(M − H) − Glc − 120 − CO]− | Chrysoeriol-6-C-(2″-O-glucosyl)-glucoside (isoscoparin-2″-O-glucoside) [55] | 2 |
22 | 10.12 | 252, 266, 346 | 623 [(M − H)]−, 461 [(M − H) − Glc]−, 371 [(M − H) − Glc − 90]−, 343 [(M − H) − Glc − 90 − CO]−, 341 [(M − H) − Glc − 120]−, 313 [(M − H) − Glc − 120 − CO]− | Chrysoeriol-6-C-glucoside-7-O-glucoside (isoscoparin-7-O-glucoside) [55] | 2 |
23 | 10.83 | 252, 266, 346 | 623 [(M − H)]−, 461 [(M − H) − Hex]−, 371 [(M − H) − Hex − 90]−, 343 [(M − H) − Hex − 90 − CO]−, 341 [(M − H) − Hex − 120]−, 313 [(M − H) − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside [52,55] | 1 |
24 | 11.42 | 255, 270, 350 | 417 [M − H]−, 357 [(M − H) − 60]−, 329 [(M − H) − 60 − CO]−, 327 [(M − H) − 90]−, 299 [(M − H) − 90 − CO]− | Luteolin-6-C-arabinoside [56] | 2 |
25 | 12.47 | 267, 337 | 623 [(M − H)]−, 461 [(M − H) − Hex]−, 371 [(M − H) − Hex − 90]−, 343 [(M − H) − Hex − 90 − CO]−, 341 [(M − H) − Hex − 120]−, 313 [(M − H) − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside [52] | 1 |
26 | 12.65 | 267, 337 | 623 [(M − H)]−, 461 [(M − H) − Hex]−, 371 [(M − H) − Hex − 90]−, 343 [(M − H) − Hex − 90 − CO]−, 341 [(M − H) − Hex − 120]−, 313 [(M − H) − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside [52] | 1 |
27 | 13.22 | 270, 333 | 551 [M − H]−, 461 [(M − H) − 90]−, 433 [(M − H) − 90 − CO]−, 431 [(M − H) − 120]−, 403 [(M − H) − 120 − CO]− | Apigenin-6-C-glucoside-8-C-(4-hydroxy-1-ethylbenzene) (cucumerin B) [15,25] | 2 |
28 | 13.71 | 256, 268, 333 | 785 [(M − H)]−, 609 [(M − H) − Fer]−, 447 [(M − H) − Fer − Hex]−, 357 [(M − H) − Fer − Hex − 90]−, 329 [(M − H) − Fer − Hex − 90 − CO]−, 327 [(M − H) − Fer − Hex − 120]−, 299 [(M − H) − Fer − Hex − 120 − CO]− | Luteolin-C-hexoside-O-hexoside-O-ferulate [52,57] | 1 |
29 | 13.82 | 256, 268, 333 | 785 [(M − H)]−, 609 [(M − H) − Fer]−, 447 [(M − H) − Fer − Hex]−, 357 [(M − H) − Fer − Hex − 90]−, 329 [(M − H) − Fer − Hex − 90 − CO]−, 327 [(M − H) − Fer − Hex − 120]−, 299 [(M − H) − Fer − Hex − 120 − CO]− | Luteolin-C-hexoside-O-hexoside-O-ferulate [52,57] | 1 |
30 | 14.08 | 269, 332 | 551 [M − H]−, 461 [(M − H) − 90]−, 433 [(M − H) − 90 − CO]−, 431 [(M − H) − 120]−, 403 [(M − H) − 120 − CO]− | Apigenin-6-C-(4-hydroxy-1-ethylbenzene)-8-C-glucoside (cucumerin A) [15,25] | 2 |
31 | 14.49 | 256, 268, 333 | 785 [(M − H)]−, 609 [(M − H) − Fer]−, 447 [(M − H) − Fer − Hex]−, 357 [(M − H) − Fer − Hex − 90]−, 329 [(M − H) − Fer − Hex − 90 − CO]−, 327 [(M − H) − Fer − Hex − 120]−, 299 [(M − H) − Fer − Hex − 120 − CO]− | Luteolin-C-hexoside-O-hexoside-O-ferulate [52,57] | 1 |
32 | 14.65 | 270, 333 | 769 [(M − H)]−, 593 [(M − H) − Fer]−, 431 [(M − H) − Fer − Glc]−, 341 [(M − H) − Fer − Glc − 90]−, 313 [(M − H) − Fer − Glc − 90 − CO]−, 311 [(M − H) − Fer − Glc − 120]−, 283 [(M − H) − Fer − Glc − 120 − CO]− | Apigenin-7-O-(6″-O-feruloyl)-glucoside (saponarin-6″-O-ferulate) [58] | 2 |
33 | 14.81 | 270, 333 | 769 [(M − H)]−, 593 [(M − H) − Fer]−, 431 [(M − H) − Fer − Hex]−, 341 [(M − H) − Fer − Hex − 90]−, 313 [(M − H) − Fer − Hex − 90 − CO]−, 311 [(M − H) − Fer − Hex − 120]−, 283 [(M − H) − Fer − Hex − 120 − CO]− | Apigenin-C-hexoside-O-hexoside-O-ferulate [52,58] | 1 |
34 | 15.02 | 268, 337 | 447 [M − H]−, 285 [(M − H) − Glc]− | Luteolin-4′-O-glucoside (juncein) [59] | 2 |
35 | 15.43 | 256, 268, 333 | 623 [(M − H)]−, 447 [(M − H) − Fer]−, 357 [(M − H) − Fer − 90]−, 329 [(M − H) − Fer − 90 − CO]−, 327 [(M − H) − Fer − 120]−, 299 [(M − H) − Fer − 120 − CO]− | Luteolin-C-hexoside-O-ferulate [52,58] | 1 |
36 | 15.78 | 256, 268, 333 | 623 [(M − H)]−, 447 [(M − H) − Fer]−, 357 [(M − H) − Fer − 90]−, 329 [(M − H) − Fer − 90 − CO]−, 327 [(M − H) − Fer − 120]−, 299 [(M − H) − Fer − 120 − CO]− | Luteolin-C-hexoside-O-ferulate [52,58] | 1 |
37 | 16.33 | 268, 330 | 799 [(M − H)]−, 623 [(M − H) − Fer]−, 461 [(M − H) − Fer − Hex]−, 371 [(M − H) − Fer − Hex − 90]−, 343 [(M − H) − Fer − Hex − 90 − CO]−, 341 [(M − H) − Fer − Hex − 120]−, 313 [(M − H) − Fer − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside-O-ferulate [52,58] | 1 |
38 | 16.52 | 256, 268, 330 | 665 [(M − H)]−, 489 [(M − H) − Fer]−, 447 [(M − H) − Fer − Ac]−, 357 [(M − H) − Fer − Ac − 90]−, 329 [(M − H) − Fer − Ac − 90 − CO]−, 327 [(M − H) − Fer − Ac − 120]−, 299 [(M − H) − Fer − Ac − 120 − CO]− | Luteolin-C-hexoside-O-ferulate-O-acetate [52,58] | 1 |
39 | 17.12 | 268, 330 | 799 [(M − H)]−, 623 [(M − H) − Fer]−, 461 [(M − H) − Fer − Hex]−, 371 [(M − H) − Fer − Hex − 90]−, 343 [(M − H) − Fer − Hex − 90 − CO]−, 341 [(M − H) − Fer − Hex − 120]−, 313 [(M − H) − Fer − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside-O-ferulate [52,58] | 1 |
40 | 17.31 | 270, 325 | 727 [M − H]−, 551 [(M − H) − Fer]−, 461 [(M − H) − Fer − 90]−, 433 [(M − H) − Fer − 90 − CO]−, 431 [(M − H) − Fer − 120]−, 403 [(M − H) − Fer − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene)-O-ferulate [15,25,52] | 1 |
41 | 17.48 | 255, 270, 330 | 593 [M − H]−, 417 [(M − H) − Fer]−, 357 [(M − H) − Fer − 60]−, 329 [(M − H) − Fer − 60 − CO]−, 327 [(M − H) − Fer − 90]−, 299 [(M − H) − Fer − 90 − CO]− | Luteolin-C-pentosyl-O-ferulate [56] | 1 |
42 | 17.69 | 270, 325 | 769 [M − H]−, 593 [(M − H) − Fer]−, 551 [(M − H) − Fer − Ac]−, 461 [(M − H) − Fer − Ac − 90]−, 433 [(M − H) − Fer − Ac − 90 − CO]−, 431 [(M − H) − Fer − Ac − 120]−, 403 [(M − H) − Fer − Ac − 120 − CO]− | Apigenin-C-hexoside-C-(4-hydroxy-1-ethylbenzene)-O-ferulate-O-acetate [15,25,52] | 1 |
43 | 17.91 | 268, 330 | 841 [(M − H)]−, 665 [(M − H) − Fer]−, 623 [(M − H) − Fer − Ac]−, 461 [(M − H) − Fer − Ac − Hex]−, 371 [(M − H) − Fer − Ac − Hex − 90]−, 343 [(M − H) − Fer − Ac − Hex − 90 − CO]−, 341 [(M − H) − Fer − Ac − Hex − 120]−, 313 [(M − H) − Fer − Ac − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside-O-ferulate-O-acetate [52,58] | 1 |
44 | 18.03 | 268, 330 | 799 [(M − H)]−, 623 [(M − H) − Fer]−, 461 [(M − H) − Fer − Glc]−, 371 [(M − H) − Fer − Glc − 90]−, 343 [(M − H) − Fer − Hex − 90 − CO]−, 341 [(M − H) − Fer − Hex − 120]−, 313 [(M − H) − Fer − Hex − 120 − CO]− | Chrysoeriol-C-hexoside-O-hexoside-O-ferulate [52,58] | 1 |
45 | 18.33 | 266, 328 | 607 [(M − H)]−, 431 [(M − H) − Fer]−, 341 [(M − H) − Fer − 90]−, 313 [(M − H) − Fer − 90 − CO]−, 311 [(M − H) − Fer − 120]−, 283 [(M − H) − Fer − 120 − CO]− | Apigenin-C-hexoside-O-ferulate [52,58] | 1 |
46 | 18.58 | 266, 328 | 607 [(M − H)]−, 431 [(M − H) − Fer]−, 341 [(M − H) − Fer − 90]−, 313 [(M − H) − Fer − 90 − CO]−, 311 [(M − H) − Fer − 120]−, 283 [(M − H) − Fer − 120 − CO]− | Apigenin-C-hexoside-O-ferulate [52,58] | 1 |
47 | 19.43 | 253, 265, 333 | 637 [(M − H)]−, 461 [(M − H) − Fer]−, 371 [(M − H) − Fer − 90]−, 343 [(M − H) − Fer − 90 − CO]−, 341 [(M − H) − Fer − 120]−, 313 [(M − H) − Fer − 120 − CO]− | Chrysoeriol-C-hexoside-O-ferulate [52,58] | 1 |
Comp. a | Flavonoid Content in Cultivars b, mg/g of Dry Plant Weight ± S.D. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
7 | 1.53 ± 0.03 | 1.27 ± 0.02 | 1.48 ± 0.03 | 1.92 ± 0.05 | 1.02 ± 0.02 | 1.89 ± 0.04 | 1.11 ± 0.02 | 0.93 ± 0.02 | 1.53 ± 0.04 | 1.27 ± 0.02 |
12 | 0.93 ± 0.02 | 0.90 ± 0.02 | 0.72 ± 0.02 | 0.52 ± 0.01 | 1.04 ± 0.02 | 1.14 ± 0.02 | 1.27 ± 0.02 | 0.90 ± 0.02 | 1.25 ± 0.03 | 1.18 ± 0.02 |
14 | 0.29 ± 0.00 | 0.31 ± 0.00 | 0.14 ± 0.00 | 0.25 ± 0.00 | 0.38 ± 0.01 | 0.32 ± 0.00 | 0.37 ± 0.01 | 0.28 ± 0.00 | 0.14 ± 0.00 | 0.08 ± 0.00 |
18 | 0.10 ± 0.00 | 0.08 ± 0.00 | 0.15 ± 0.00 | 0.20 ± 0.00 | 0.11 ± 0.00 | 0.18 ± 0.00 | 0.12 ± 0.00 | 0.08 ± 0.00 | 0.11 ± 0.00 | 0.15 ± 0.00 |
20 | 2.63 ± 0.05 | 3.07 ± 0.06 | 1.89 ± 0.04 | 1.52 ± 0.03 | 2.93 ± 0.06 | 3.24 ± 0.06 | 3.18 ± 0.06 | 2.43 ± 0.05 | 3.02 ± 0.06 | 2.63 ± 0.06 |
24 | 0.45 ± 0.01 | 0.32 ± 0.00 | 0.40 ± 0.01 | 0.25 ± 0.00 | 0.20 ± 0.00 | 0.44 ± 0.01 | 0.35 ± 0.01 | 0.39 ± 0.01 | 0.47 ± 0.01 | 0.22 ± 0.00 |
27 | 2.04 ± 0.04 | 2.53 ± 0.05 | 2.83 ± 0.05 | 1.42 ± 0.03 | 2.57 ± 0.05 | 3.01 ± 0.07 | 3.22 ± 0.06 | 1.57 ± 0.03 | 1.93 ± 0.05 | 2.73 ± 0.05 |
34 | 0.68 ± 0.01 | 0.73 ± 0.02 | 0.50 ± 0.01 | 0.58 ± 0.01 | 0.79 ± 0.02 | 0.75 ± 0.02 | 0.53 ± 0.01 | 0.42 ± 0.01 | 0.59 ± 0.01 | 0.63 ± 0.01 |
37 | 0.31 ± 0.00 | 0.25 ± 0.00 | 0.20 ± 0.00 | 0.27 ± 0.00 | 0.31 ± 0.00 | 0.25 ± 0.00 | 0.11 ± 0.00 | 0.18 ± 0.00 | 0.25 ± 0.00 | 0.29 ± 0.00 |
Total | 8.96 | 9.46 | 8.31 | 6.94 | 9.37 | 11.23 | 10.26 | 7.18 | 9.29 | 9.19 |
Compound | Lipase Source | |
---|---|---|
Porcine Pancreatic Lipase | Human Pancreatic Lipase | |
Orientin | 35.60 ± 1.10 e | 36.22 ± 1.11 e |
Isoorientin | 22.63 ± 0.70 c | 15.32 ± 0.45 b |
Isoorientin-7-O-glucoside | 49.54 ± 1.57 g | 38.62 ± 1.16 e |
Isoorientin-4′-O-glucoside | 63.18 ± 1.93 i | 77.11 ± 2.39 i |
Isoorientin-2″-O-glucoside | 12.68 ± 0.41 b | 10.06 ± 0.35 a |
Isoorientin-6″-O-glucoside | 22.15 ± 0.69 c | 30.63 ± 0.91 d |
Isoscoparin-7-O-glucoside | >100 | >100 |
Isoscoparin-2″-O-glucoside | 85.19 ± 2.56 j | 92.53 ± 2.77 j |
Juncein | 67.11 ± 2.09 i | 60.30 ± 1.83 h |
Cucumerin A | 40.27 ± 1.22 f | 37.56 ± 1.12 e |
Cucumerin B | 25.63 ± 0.77 d | 20.89 ± 0.63 c |
Cucumerin C | 45.83 ± 1.40 g | 47.14 ± 1.45 f |
Cucumerin D | 12.53 ± 0.34 b | 10.35 ± 0.30 a |
Saponarin-6″-O-ferulate | 56.29 ± 1.69 h | 52.60 ± 1.57 g |
Orlistat (reference substance) | 10.18 ± 0.31 a | 15.83 ± 0.48 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N. Separation, Characterization and Mammal Pancreatic Lipase Inhibitory Potential of Cucumber Flower Flavonoids. Separations 2023, 10, 255. https://doi.org/10.3390/separations10040255
Olennikov DN. Separation, Characterization and Mammal Pancreatic Lipase Inhibitory Potential of Cucumber Flower Flavonoids. Separations. 2023; 10(4):255. https://doi.org/10.3390/separations10040255
Chicago/Turabian StyleOlennikov, Daniil N. 2023. "Separation, Characterization and Mammal Pancreatic Lipase Inhibitory Potential of Cucumber Flower Flavonoids" Separations 10, no. 4: 255. https://doi.org/10.3390/separations10040255
APA StyleOlennikov, D. N. (2023). Separation, Characterization and Mammal Pancreatic Lipase Inhibitory Potential of Cucumber Flower Flavonoids. Separations, 10(4), 255. https://doi.org/10.3390/separations10040255