Sex Differentiation from Human Scent Chemical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Cleaning of the Sampling Material
2.3. Method for Scent Samples Handling
2.4. Analysis of Scent Samples Using HS-GC/MS
2.5. Data Preprocessing
2.6. Female/Male Classifiers
2.7. Cross-Validation Technique
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
acc | accuracy |
C | regularization parameter (in linear SVM method) |
D | number of uncorrelated PCA components (in QDA with data whitening method) |
GC/MS | Gas Chromatography/Mass Spectrometry |
H | number of significant compounds that differ between the males’ and females’ samples |
HS | Headspace |
LDA | Linear Discriminant Analysis |
PCA | Principal Component Analysis |
PDMS | Polydimethylsiloxane |
PLS-DA | Partial Least Squares Discriminant Analysis |
QDA | Quadratic Discriminant Analysis |
RR | Ridge Regression |
se | sensitivity |
se* | critical sensitivity (minimum of se and sp) |
sp | specificity |
SBSE | Stir Bar Sorptive Extraction |
SPME | Solid Phase MicroExtraction |
SVM | Support Vector Machine |
VOCs | Volatile Organic Compounds |
WMW | Wilcoxon-Mann–Whitney test |
α | significance level |
μ | ratio estimate of the data noise variance and prior weight variance (in RR method) |
References
- Prada, P.A.; Curran, A.M.; Furton, K.G. Human Scent Evidence; CRC Press: New York, NY, USA, 2014. [Google Scholar]
- Colón-Crespo, L.J.; Herrera-Hernández, D.; Holness, H.; Furton, K.G. Determination of VOC marker combinations for the classification of individuals by gender and race/ethnicity. Forensic Sci. Int. 2017, 270, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Penn, D.J.; Oberzaucher, E.; Grammer, K.; Fischer, G.; Soini, H.A.; Wiesler, D.; Novotny, M.V.; Dixon, S.J.; Xu, Y.; Brereton, R.G. Individual and gender fingerprints in human body odour. J. R. Soc. Interface 2007, 4, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Prokop-Prigge, K.A.; Greene, K.; Varallo, L.; Wysocki, C.J.; Preti, G. The Effect of Ethnicity on Human Axillary Odorant Production. J. Chem. Ecol. 2016, 42, 33–39. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef]
- Zeng, X.N.; Leyden, J.J.; Lawley, H.; Sawano, K.; Nohara, I.; Preti, G. Analysis of characteristic odors from human male axillae. J. Chem. Ecol. 1991, 17, 1469–1492. [Google Scholar] [CrossRef]
- Zeng, X.N.; Leyden, J.J.; Spielman, A.I.; Preti, G. Analysis of characteristic human female axillary odors: Qualitative comparison to males. J. Chem. Ecol. 1996, 22, 237–257. [Google Scholar] [CrossRef]
- Curran, A.M.; Rabin, S.I.; Prada, P.A.; Furton, K.G. Comparasion of the Volatile Organic Compounds Present in Human Odor Using SPME-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619. [Google Scholar] [CrossRef]
- Dixon, S.J.; Xu, Y.; Brereton, R.G.; Soini, H.A.; Novotny, M.V.; Oberzaucher, E.; Grammer, K.; Penn, D.J. Pattern recognition of gas chromatography mass spectrometry of human volatiles in sweat to distinguish the sex of subjects and determine potential discriminatory marker peaks. Chemom. Intell. Lab. Syst. 2007, 87, 161–172. [Google Scholar] [CrossRef]
- Plutowska, B.; Wardencki, W. Aromagrams—Aromatic profiles in appreciation of food quality. Food Chem. 2007, 101, 845–872. [Google Scholar] [CrossRef]
- Piryaei, M. Direct thermal desorption technique as a very fast, easy and low-cost method for analysis of volatile components compounds by gas chromatography with mass spectrometry. Sep. Sci. Plus 2019, 2, 416–421. [Google Scholar] [CrossRef]
- Kanavouras, A.; Kiritsakis, A.; Hernandez, R.J. Comparative study on volatile analysis of extra virgin olive oil by dynamic headspace and solid phase micro-extraction. Food Chem. 2005, 90, 69–79. [Google Scholar] [CrossRef]
- Pojmanová, P.; Ladislavová, N.; Škeříková, V.; Kania, P.; Urban, Š. Human scent samples for chemical analysis. Chem. Pap. 2020, 74, 1383–1393. [Google Scholar] [CrossRef]
- Doležal, P.; Furton, K.G.; Lněničková, J.; Kyjaková, P.; Škeříková, V.; Valterová, I.; Pinc, L.; Urban, Š. Multiplicity of human scent signature. Egypt. J. Forensic Sci. 2019, 9, 7. [Google Scholar] [CrossRef]
- Doležal, P.; Kyjaková, P.; Valterová, I.; Urban, Š. Qualitative analyses of less-volatile organic molecules from female skin scents by comprehensive two dimensional gas chromatography–time of flight mass spectrometry. J. Chromatogr. A 2017, 1505, 77–86. [Google Scholar] [CrossRef]
- Ramotowski, R.S. Composition of Latent Print Residue. In Advances inf Fingerprint Technology; Lee, H.C., Gaensslen, R.E., Eds.; CRC Press: New York, NY, USA, 2001; pp. 63–104. [Google Scholar]
- Curran, A.M.; Ramirez, C.F.; Schoon, A.A.; Furton, K.G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B 2007, 846, 86–97. [Google Scholar] [CrossRef]
- Brown, J.S.; Prada, P.A.; Curran, A.M.; Furton, K.G. Applicability of emanating volatile organic compounds from various forensic specimens for individual differentiation. Forensic Sci. Int. 2013, 226, 173–182. [Google Scholar] [CrossRef]
- Moldoveanu, S.C.; David, V. Chapter 9—Headspace Sampling Techniques in Gas Chromatography. In Journal of Chromatography Library; Moidoveanu, S.C., David, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 65, pp. 267–285. [Google Scholar] [CrossRef]
- Stein, S.; Linstrom, P.; Mirokhin, Y.; Tchekhovskoi, D.; Yang, X. NIST Mass Spectral Search Program (Version 2.0g); NIST (National Institute of Standards and Technology): Gaithersburg, MD, USA, 2011. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 2010, 4, 1. [Google Scholar] [CrossRef]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science+Business Media: New York, NY, USA, 2008. [Google Scholar]
- Golub, G.; Heath, M.; Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21, 215–223. [Google Scholar] [CrossRef]
- Etemad, K.; Chellappa, R. Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 1997, 14, 1727–1733. [Google Scholar] [CrossRef]
- Kessy, A.; Lewin, A.; Strimmer, K. Optimal Whitening and Decorrelation. Am. Stat. 2018, 72, 309–314. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002. [Google Scholar]
- Stone, M. Asymptotics for and against cross-validation. Biometrika 1977, 64, 29–35. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Caroprese, A.; Gabbanini, S.; Beltramini, C.; Lucchi, E.; Valgimigli, L. HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations. Ski. Res. Technol. 2009, 15, 503–510. [Google Scholar] [CrossRef]
- Curran, A.M.; Prada, P.A.; Furton, K.G. The Differentiation of the Volatile Organic Signatures of Individuals Through SPME-GC⁄MS of Characteristic Human Scent Compounds. J. Forensic Sci. 2010, 55, 50–57. [Google Scholar] [CrossRef]
- Prada, P.A.; Curran, A.M.; Furton, K.G. The evaluation of human hand odor volatiles on various textiles: A comparison between contact and noncontact sampling methods. J. Forensic Sci. 2011, 56, 866–881. [Google Scholar] [CrossRef]
- Syed, Z.; Leal, W.S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. USA 2009, 106, 18803–18808. [Google Scholar] [CrossRef]
- DeGreeff, L.E.; Curran, A.M.; Furton, K.G. Evaluation of selected sorbent materials for the collection of volatile organic compounds related to human scent using non-contact sampling mode. Forensic Sci. Int. 2011, 209, 133–142. [Google Scholar] [CrossRef]
- Caraballo, N.I.; Mendel, J.; Holness, H.; La Salvia, J.; Moroose, T.; Eckenrode, B.; Stockham, R.; Furton, K.; Mills, D. An investigation into the concurrent collection of human scent and epithelial skin cells using a non-contact sampling device. Forensic Sci. Int. 2016, 266, 148–159. [Google Scholar] [CrossRef]
- Snellings, Y.; Herrera, B.; Wildemann, B.; Beelen, M.; Zwarts, L.; Wenseleers, T.; Callaerts, P. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci. Rep. 2018, 8, 4996. [Google Scholar] [CrossRef]
- Pulliainen, U.; Bos, N.; d’Ettorre, P.; Sundström, L. The Scent of Ant Brood: Caste Differences in Surface Hydrocarbons of Formica exsecta Pupae. J. Chem. Ecol. 2021, 47, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, K.; Rolke, D. Advertisement of unreceptivity—Perfume modifications of mason bee females (Osmia bicornis and O. cornuta) and a non-existing antiaphrodisiac. PLoS ONE 2019, 14, e0215925. [Google Scholar] [CrossRef] [PubMed]
- Omura, H.; Yanai, N.; Honda, K. Sexual dimorphism in scent substances and cuticular lipids of adult Papilio protenor butterflies. Z. Für Nat. C 2012, 67, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Woidtke, L.; Dreßler, J.; Babian, C. Individual human scent as a forensic identifier using mantrailing. Forensic Sci. Int. 2018, 282, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.D.; Carrell, C.A.; Miethe, T.D.; Krauss, D.A. Gold versus platinum: Do jurors recognize the superiority and limitations of DNA evidence compared to other types of forensic evidence? Psychol. Public Policy Law 2008, 14, 27–62. [Google Scholar] [CrossRef]
- Sierksma, G.; Zwols, Y. Linear and Integer Optimization: Theory and Practice, 3rd ed.; CRC Press: New York, NY, USA, 2015. [Google Scholar]
No. | Compounds | Retention Indices | No. | Compounds | Retention Indices |
---|---|---|---|---|---|
Hydrocarbons | Acids | ||||
1 | Undecane | 1100 | 26 | Hexanoic acid a | 970 |
2 | Dodecane | 1200 | 27 | Octanoic acid a | 1168 |
3 | Tridecane | 1300 | 28 | Nonanoic acid a,b | 1271 |
4 | Tetradecane | 1400 | 29 | Decanoic acid a | 1367 |
5 | Hexadecane | 1600 | 30 | Dodecanoic acid a | 1562 |
6 | Eicosane | 2000 | 31 | Tetradecanoic acid a,b | 1761 |
7 | Heneicosane a | 2100 | 32 | x-Pentadecenoic acid | 1838 |
8 | Docosane a,b | 2200 | 33 | Pentadecanoic acid a | 1860 |
9 | Tricosane a,b | 2300 | 34 | 9-Hexadecenoic acid a | 1940 |
10 | Tetracosane a,b | 2400 | 35 | Hexadecanoic acid a,b | 1960 |
11 | Hexacosane a | 2600 | 36 | Heptadecanoic acid | 2064 |
12 | Nonacosane | 2900 | 37 | x-Octadecenoic acid | 2143 |
13 | Squalene a | 2814 | 38 | Octadecanoic acid a | 2151 |
Aldehydes | Esters | ||||
14 | Benzaldehyde | 964 | 39 | Isopropyl myristate | 1820 |
15 | Octanal a | 1001 | 40 | 2-Ethylhexyl 4-methoxycinnamate | 2166 |
16 | Nonanal a,b | 1102 | 41 | 1-Octyl 4-methoxycinnamate a | 2326 |
17 | Decanal a | 1204 | 42 | Dodecyl benzoate | 2207 |
18 | Undecanal a,b | 1307 | 43 | Tridecyl benzoate a | 2312 |
19 | Dodecanal a | 1408 | 44 | Tetradecyl benzoate a | 2417 |
20 | Tridecanal | 1509 | Others | ||
Ketones | 45 | 2-Pentylfuran a | 987 | ||
21 | 2-Decanone a | 1189 | 46 | 1-Chlordodecane a | 1472 |
22 | 2-Undecanone | 1290 | 47 | 1-Chlortetradecane | 1676 |
23 | 2-Dodecanone | 1392 | 48 | Ethylene glycol monododecyl ether | 1725 |
24 | 2-Tridecanone | 1493 | |||
25 | 6,10-Dimethyl-5,9-undecadien-2-one a | 1447 |
α (a) | Number of Compounds (H) | The Variance of PCA [%] | ||
---|---|---|---|---|
First | Second | Third | ||
0.000001 | 8 | 94.63 | 3.48 | 1.12 |
0.0000035 | 13 | 85.82 | 9.61 | 3.06 |
0.00001 | 17 | 76.04 | 18.15 | 2.86 |
0.0001 | 32 | 81.47 | 12.33 | 3.81 |
0.001 | 40 | 97.93 | 1.55 | 0.31 |
0.01 | 58 | 96.17 | 1.65 | 1.18 |
0.1 | 95 | 95.34 | 1.64 | 1.16 |
0.2 | 126 | 88.75 | 7.10 | 1.49 |
0.5 | 302 | 88.03 | 7.10 | 1.49 |
1 | 314 | 87.90 | 7.10 | 1.49 |
α | C | acc | se | sp | se* | H |
---|---|---|---|---|---|---|
0.000001 | 15 | 86.96 | 86.67 | 87.50 | 86.67 | 7 |
0.00001 | 2 | 85.51 | 84.44 | 87.50 | 84.44 | 4 |
0.0001 | 25 | 81.16 | 84.44 | 75.00 | 75.00 | 18 |
0.001 | 20 | 89.86 | 91.11 | 87.50 | 87.50 | 16 |
0.01 | 3 | 85.51 | 84.44 | 87.50 | 84.44 | 13 |
0.1 | 2 | 85.51 | 84.44 | 87.50 | 84.44 | 14 |
0.2 | 2 | 89.86 | 88.89 | 91.67 | 88.89 | 13 |
0.5 | 2 | 86.96 | 84.44 | 91.67 | 84.44 | 19 |
1 | 3 | 88.41 | 86.67 | 91.67 | 86.67 | 15 |
α | μ | acc | se | sp | se* | H |
---|---|---|---|---|---|---|
0.000001 | 0.02 | 88.41 | 86.67 | 91.67 | 86.67 | 8 |
0.0000035 | 0.1 | 86.96 | 86.67 | 87.50 | 86.67 | 13 |
0.00001 | 0.1 | 88.41 | 86.67 | 91.67 | 86.67 | 17 |
0.0001 | 0.2 | 88.41 | 84.44 | 95.83 | 84.44 | 32 |
0.001 | 0.5 | 88.41 | 84.44 | 95.83 | 84.44 | 40 |
0.01 | 0.005 | 91.30 | 88.89 | 95.83 | 88.89 | 58 |
0.1 | 0.5 | 88.41 | 88.89 | 87.50 | 87.50 | 95 |
0.2 | 0.5 | 91.30 | 91.11 | 91.67 | 91.11 | 126 |
0.5 | 0.5 | 84.06 | 80.00 | 91.67 | 80.00 | 302 |
1 | 0.5 | 85.51 | 80.00 | 95.83 | 80.00 | 314 |
α | D | acc | se | sp | se* | H |
---|---|---|---|---|---|---|
0.000001 | 7 | 85.51 | 82.22 | 91.67 | 82.22 | 8 |
0.0000035 | 10 | 86.96 | 86.67 | 87.50 | 86.67 | 13 |
0.00001 | 11 | 82.61 | 84.44 | 79.17 | 79.17 | 17 |
0.0001 | 10 | 78.26 | 77.78 | 79.17 | 77.78 | 32 |
0.001 | 8 | 81.16 | 80.00 | 83.33 | 80.00 | 40 |
0.01 | 11 | 75.36 | 75.56 | 75.00 | 75.00 | 58 |
0.1 | 13 | 78.26 | 80.00 | 75.00 | 75.00 | 95 |
0.2 | 8 | 79.71 | 73.33 | 91.67 | 73.33 | 126 |
0.5 | 12 | 84.06 | 84.44 | 83.33 | 83.33 | 302 |
1 | 12 | 84.06 | 84.44 | 83.33 | 83.33 | 314 |
Authors | Number of Volunteers (Females/Males) | Body Sampling Area | Sampling Material | Extraction | Analysis | Significant VOCs | Multivariation and Statistic Method(s) | Classification Model(s) Accuracy (Accuracies) |
---|---|---|---|---|---|---|---|---|
Zeng et al. [6,7] | 6/6 | Armpit | Cotton gauze pads | 85:15 chloroform: methanol extract | GC/MS, GC/FTIR | C6-C11 acids, (E)-3-methyl-2-hexenoic acid (greater quantity in samples of the females) | none | none |
Curran et al. [8] | 4/4 | Armpit | Cotton gauze pads | 50/30 μm Divinylbenzene/Carboxen/Polydimethylsiloxane SPME fibers | SPME-GC/MS | Sex differences in ratio patterns of common compounds (e.g., aldehydes, alkanes, organic acids, esters, etc.). | none | none |
Colón-Crespo et al. [2] | 54/51 | Hands | Cotton gauze pads | 50/30 μm Divinylbenzene/Carboxen/Polydimethylsiloxane SPME fibers | SPME-GC/MS | methyl dodecanoate, methyl tridecanoate, homomenthyl salicylate, isoamyl salicylate, hexyl salicylate, isopropyl myristate, isopropyl palmitate, 1-hexadecanol, dodecanoic acid, pentadecane, octadecane, dioctyl ether, galaxolide | LDA | 71% |
Penn et al. [3] | 108/89 | Armpit | Twister PDMS-coated stir bars | No other step (SBSE) | TD-GC/MS | In the male samples, the following compounds were more prevalent than in the female ones: 6-phenylundecane, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, and methylhexadecanoic acid. The female scent samples contained more commonly nonadecane, docosane, isopropyl palmitate, 2-ethylhexyl-4-methoxycinnamate, 1-octyl-4-methoxycinnamate, and dialkyl ether. | Classification based on the presence and absence of 14 key markers | 75% |
Dixon et al. [9] | 99/83 | Armpit | Twister PDMS-coated stir bars | No other step (SBSE) | TD-GC/MS | 15 unspecified markers, according to published mass spectra probably aldehydes, esters, acids, alkanes, and squalene | PLS-DA | 84% (for optimum decision threshold) |
This paper | 4/2 | Hands | Sodium–calcium glass beads | No other step | HS-GC/MS | Differences in the representation of common compounds a: aldehydes (nonanal—QDA, RR), acids (C12—RR, SVM; C15:1—QDA, RR; C16- RR, SVM; C17:1—QDA, RR, SVM), hydrocarbons (C20—QDA, RR; C22—QDA, SVM; 2-pentylfuran—QDA, RR), esters (C13 and C14 benzoates—QDA, RR; 2-ethylhexyl-4-methoxycinnamate and 1-octyl-4-methoxycinnamate—QDA and RR). | Quadratic Discrimination Analysis (QDA) Linear SVM, Ridge Regression (RR) | 75–91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pojmanová, P.; Ladislavová, N.; Škeříková, V.; Kukal, J.; Urban, Š. Sex Differentiation from Human Scent Chemical Analysis. Separations 2023, 10, 293. https://doi.org/10.3390/separations10050293
Pojmanová P, Ladislavová N, Škeříková V, Kukal J, Urban Š. Sex Differentiation from Human Scent Chemical Analysis. Separations. 2023; 10(5):293. https://doi.org/10.3390/separations10050293
Chicago/Turabian StylePojmanová, Petra, Nikola Ladislavová, Veronika Škeříková, Jaromír Kukal, and Štěpán Urban. 2023. "Sex Differentiation from Human Scent Chemical Analysis" Separations 10, no. 5: 293. https://doi.org/10.3390/separations10050293
APA StylePojmanová, P., Ladislavová, N., Škeříková, V., Kukal, J., & Urban, Š. (2023). Sex Differentiation from Human Scent Chemical Analysis. Separations, 10(5), 293. https://doi.org/10.3390/separations10050293