Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Phosphate Release Experiments
2.3. Fluoron-Ion Leaching Test
2.4. Sample Analysis and Data Evaluation
3. Results and Discussion
3.1. Humic Acid Efficiently Promotes the Release of SRP and F− from Phosphate Ore
3.2. Characterization of Phosphate Ore S1
3.3. Humic Acid Alters the Surface Properties and Enhances Dispersion Stability of Phosphate Ore by Adsorption
3.4. Possible Path of the Effects of Humic Acid on Phosphate Ore
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morgane, L.M.; Chantal, G.O.; Alain, M.; Yves, S.; Claire, É.; Alix, L.; Florentina, M.; Alexandrine, P.; Philippe, S.; Alain, L.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Reyes, E.; Anex, R.P. A life cycle impact assessment method for freshwater eutrophication due to the transport of phosphorus from agricultural production. J. Clean. Prod. 2018, 177, 474–482. [Google Scholar] [CrossRef]
- Li, B.; Brett, M.T. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environ. Pollut. 2013, 182, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.M.; Wurtsbaugh, W.A. Control of Lacustrine Phytoplankton by Nutrients: Erosion of the Phosphorus Paradigm. Int. Rev. Hydrobiol. 2008, 93, 446–465. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.-c.; Ridoutt, B.G.; Wang, X.-c.; Ren, P.-a. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H. Mitigation of lake eutrophication: Loosen nitrogen control and focus on phosphorus abatement. Prog. Nat. Sci. 2009, 19, 1445–1451. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, S.; Wang, Y. Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China. Environ. Pollut. 2016, 219, 537–544. [Google Scholar] [CrossRef]
- Amir, T.; Ronald, L.D. Pollution loads in urban runoff and sanitary wastewater. Sci. Total Environ. 2004, 327, 175–184. [Google Scholar]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Stone, R. China aims to turn tide against toxic lake pollution. Science 2011, 333, 1210. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Lin, D.; Shan, K.; Luo, Y.; Zhao, L.; Tan, Z.; Song, L. The relationships of meteorological factors and nutrient levels with phytoplankton biomass in a shallow eutrophic lake dominated by cyanobacteria, Lake Dianchi from 1991 to 2013. Environ. Sci. Pollut. Res. 2016, 23, 15616. [Google Scholar] [CrossRef]
- Liu, X. The identification of nutrient limitations on eutrophication in Dianchi Lake, China. Water Environ. J. 2017, 31, 45–54. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 12–17. [Google Scholar] [CrossRef]
- Yan, K.; Yuan, Z.; Goldberg, S. Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China’s most eutrophicated lakes. Sci. Total Environ. 2019, 689, 1336–1347. [Google Scholar] [CrossRef]
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Howden, N.J.K.; Jarvie, H.P.; Yang, L.; Peterson, H.M. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 2016, 9, 353–356. [Google Scholar] [CrossRef]
- Peng, J.; Xu, Y.Q.; Cai, Y.L.; Xiao, H.L. The role of policies in land use/cover change since the 1970s in ecologically fragile karst areas of Southwest China: A case study on the Maotiaohe watershed. Environ. Sci. 2011, 14, 408–418. [Google Scholar] [CrossRef]
- Jiang, L.; Liang, B.; Xue, Q.; Yin, C. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China. Chemosphere 2016, 150, 130–138. [Google Scholar] [CrossRef]
- Allan, P.; Gabriele, E.S. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environ. Sci. Technol. 2014, 48, 8946–8962. [Google Scholar]
- Nebbioso, A.; Piccolo, A. Molecular characterization of dissolved organic matter (DOM): A critical review. Anal. Bioanal. Chem. 2013, 405, 109–124. [Google Scholar] [CrossRef]
- Schulze, W.X. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us—A perspective. Biogeosciences 2005, 2, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Wiley, J.D.; Kieber, R.J.; Eyman, M.S.; Avery, G.B. Rainwater dissolved organic carbon: Concentrations and global flux. Glob. Biogeochem. Cycles 2000, 14, 139–148. [Google Scholar] [CrossRef]
- Aiken, G.R.; Hsu-Kim, H.; Ryan, J.N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.G.; William, P.I. Kinetics of octacalcium phosphate crystal growth in the presence of organic acids. Geochim. Cosmochim. Ac. 1992, 56, 1955–1961. [Google Scholar]
- Antonietti, M.; Yang, F.; Zhang, S.; Song, J.; Tarakina, N.V. Tackling the world’s phosphate problem: Synthetic humic acids solubilize otherwise insoluble phosphates for fertilization. Angew. Chem. Int. Ed. 2019, 58, 18813–18816. [Google Scholar]
- Zhou, X.Z.; Shu, L.; Zhao, H.B.; Guo, X.Y.; Wang, X.L.; Tao, S.; Xing, B.S. Suspending multi-walled carbon nanotubes by humic acids from a peat soil. Environ. Sci. Technol. 2012, 46, 1793–1802. [Google Scholar] [CrossRef]
- Yang, K.; Lin, D.H.; Xing, B.S. Interactions of humic acid with nanosized inorganic oxides. Langmuir 2009, 25, 3571–3576. [Google Scholar] [CrossRef]
- Wang, X.L.; Lu, J.L.; Xu, M.G.; Xing, B.S. Sorption of pyrene by regular and nanoscaled metal oxide particles: Influence of adsorbed organic matter. Environ. Sci. Technol. 2008, 42, 7267–7272. [Google Scholar] [CrossRef]
- Kang, S.; Xing, B.S. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ. Sci. Technol. 2005, 39, 134–140. [Google Scholar] [CrossRef]
- Chen, K.L.; Elimelech, M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309, 126–134. [Google Scholar] [CrossRef]
- Chen, K.L.; Elimelech, M. Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications. Environ. Sci. Technol. 2008, 42, 7607–7614. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, X.L.; Zhao, T.H.; Wang, H.; Wang, P.F. Magnetic nanoparticles interaction with humic acid: In the presence of surfactants. Environ. Sci. Technol. 2016, 50, 8640–8648. [Google Scholar] [CrossRef]
- Zhou, J.L.; Rowland, S.; Fauzi, R.; Mantoura, C.; Braven, J. The formation of humic coatings on mineral particles under simulated estuarine conditionsâ—A mechanistic study. Water Res. 1994, 28, 571–579. [Google Scholar] [CrossRef]
- Vermeer, A.W.P.; Koopal, L.K. Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte Adsorption. Langmuir 1998, 14, 4210–4216. [Google Scholar]
- Vermeer, A.W.P.; Riemsdijk, W.H.; Koopal, L.K. Adsorption of humic acids to mineral particles. 1. Specific and electrostatic interactions. Langmuir 1998, 14, 2810–2819. [Google Scholar]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005, 39, 9009–9015. [Google Scholar] [CrossRef]
- Chi, J.L.; Fan, Y.K.; Wang, L.J.; Putnis, C.V.; Zhang, W.J. Retention of soil organic matter by occlusion within soil minerals. Rev Environ. Sci. Bio. 2022, 21, 727–746. [Google Scholar] [CrossRef]
- Ren, W.; Xiong, L.; Nie, G.; Zhang, H.; Duan, X.; Wang, S. Insights into the Electron-Transfer Regime of Peroxydisulfate Activation on Carbon Nanotubes: The Role of Oxygen Functional Groups. Environ. Sci. Technol. 2019, 54, 1267–1275. [Google Scholar] [CrossRef]
- Huang, J.H.; Elzinga, E.J.; Brechbuehl, Y.; Voegelin, A.; Kretzschmar, R. Impacts of shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(Hydr)oxides. Environ. Sci. Technol. 2011, 45, 2804–2810. [Google Scholar] [CrossRef]
- Xing, B.; Graham, N.; Yu, W. Transformation of siderite to goethite by humic acid in the natural environment. Commun. Chem. 2020, 3, 7461–7469. [Google Scholar] [CrossRef] [Green Version]
- Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar] [CrossRef]
- Sollins, P.; Swanston, C.; Kramer, M. Stabilization and destabilization of soil organic matter—A new focus. Biogeochemistry 2007, 85, 1–7. [Google Scholar] [CrossRef]
- Smith, B.; Wepasnick, K.; Schrote, K.E.; Cho, H.H.; Ball, W.P.; Fairbrother, D.H. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure-property relationship. Langmuir 2009, 25, 9767–9776. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Liu, H.; Ma, Y.; Li, Y.; Tie, C.; Zhao, Q. Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore. Separations 2023, 10, 425. https://doi.org/10.3390/separations10080425
Zhang F, Liu H, Ma Y, Li Y, Tie C, Zhao Q. Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore. Separations. 2023; 10(8):425. https://doi.org/10.3390/separations10080425
Chicago/Turabian StyleZhang, Fengjiao, Huaying Liu, Yanqiong Ma, Yingjie Li, Cheng Tie, and Qilin Zhao. 2023. "Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore" Separations 10, no. 8: 425. https://doi.org/10.3390/separations10080425
APA StyleZhang, F., Liu, H., Ma, Y., Li, Y., Tie, C., & Zhao, Q. (2023). Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore. Separations, 10(8), 425. https://doi.org/10.3390/separations10080425