Separation of (2E,4E)-deca-2,4-dienal from a Biocatalytic Reaction Mixture Using Hydrophobic Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biocatalytic Reaction Mixture Preparation
2.3. Batch Adsorption Experiments
2.4. Column Experiments
2.5. Analytical Methods
2.6. Evaluation of Separation Efficiency
3. Results
3.1. Adsorbent Screening
3.2. Desorbent Selection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vermeulen, N.; Czerny, M.; Gänzle, M.G.; Schieberle, P.; Vogel, R.F. Reduction, of (E)-2-nonenal and (E,E)-2,4-decadienal during sourdough fermentation. J. Cereal Sci. 2007, 45, 78–87. [Google Scholar] [CrossRef]
- Sun, H.; Peng, X.; Li, C.; Zhang, W.M.; Cao, J. Determination of 2,4-decadienal in edible oils using reversed-phase liquid chromatography and its application as an alternative indicator of lipid oxidation. J. Food Sci. 2020, 85, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Opdyke, D.L.J. Monographs on Fragrance Raw Materials. Food Cosmet. Toxicol. 1979, 17, 357–390. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Yen, G.C. Preventive effect of adding antioxidants on mutagenic compound formation in fumes of cooking oil. J. Sci. Food Agric. 2004, 84, 459–464. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lin, P. Trans, trans-2,4-decadienal induced cell proliferation via p27 pathway in human bronchial epithelial cells. Toxicol. Appl. Pharmacol. 2008, 228, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Boskou, G.; Salta, F.N.; Chiou, A.; Troullidou, E.; Andrikopoulos, N.K. Content of trans,trans-2,4-decadienal in deep-fried and pan-fried potatoes. Eur. J. Lipid Sci. Technol. 2006, 108, 109–115. [Google Scholar] [CrossRef]
- Carvalho, V.M.; Asahara, F.; Di Masciol, P.; De Arruda, I.P.; Jean, C.; Medeiros, M.H.G. Trans, trans-2, 4-decadienal and trans-2-octenal characterization of etheno-2-deoxyguanosine adducts from 2, 4-decadienal and 2-octenal. Biol. React. Intermed. 2001, 6, 229–232. [Google Scholar]
- Chang, L.W.; Lo, W.S.; Lin, P. Trans, Trans-2, 4-decadienal, a product found in cooking oil fumes, induces cell proliferation and cytokine production due to reactive oxygen species in human bronchial epithelial cells. Toxicol. Sci. 2005, 87, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Yen, G.; Sheu, F. Mutagenicity and Identication of Mutagenic Compounds of fumes obtained from heating peanut oil. J. Food Protect. 2001, 64, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Boonprab, K.; Matsui, K.; Akakabe, Y.; Yotsokura, N.; Kajiwara, T. 11-Hydroperoxide eicosanoid-mediated 2(E),4(E)-decadienal production from arachidonic acid in the brown algae, Saccharina angustata. J. Appl. Phycol. 2019, 31, 2719–2727. [Google Scholar] [CrossRef]
- Nielsen, G.S.; Larsen, L.M.; Poll, L. Formation of volatile compounds in model experiments with crude leek (Allium ampeloprasum var. Lancelot) enzyme extract and linoleic acid or linolenic acid. J. Agric Food Chem. 2004, 52, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- Almosnino, A.M.; Bensoussan, M.; Belin, J.M. Unsaturated fatty acid bioconversion by apple pomace enzyme system. Factors influencing the production of aroma compounds. Food Chem. 1996, 55, 327–332. [Google Scholar] [CrossRef]
- Watson, S.B. Aquatic taste and odor: A primary signal of drinking-water integrity. J. Toxicol. Environ. Health Part A 2004, 67, 1779–1795. [Google Scholar] [CrossRef] [PubMed]
- Satchwill, T.; Watson, S.B.; Dixon, E. Odourous algal-derived alkenes: Differences in stability and treatment responses in drinking water. Water Sci. Technol. 2007, 55, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, J.; Zhang, X.; Chen, C. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal. J. Environ. Sci. 2015, 32, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Obendorf, S.K.; Liu, H.; Tan, K.; Leonard, M.J.; Young, T.J.; Incorvia, M.J. Adsorption of aroma chemicals on cotton fabric in different aqueous environments. J. Surfactants Deterg. 2009, 12, 43–58. [Google Scholar] [CrossRef]
- Xu, Y.; Bi, S.; Xiong, C.; Dai, Y.; Zhou, Q.; Liu, Y. Identification of aroma active compounds in walnut oil by monolithic material adsorption extraction of RSC18 combined with gas chromatography-olfactory-mass spectrometry. Food Chem. 2023, 402, 134303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Adsorption kinetics and thermodynamics of yeast β-glucan for off-odor compounds in silver carp mince. Food Chem. 2020, 319, 126232. [Google Scholar] [CrossRef] [PubMed]
- Ostrihoňová, M.; Gramblička, M.; Polakovič, M. Industrial hydrophobic adsorbent screening for the separation of 1-phenylethanol and acetophenone, Food Bioproduct. Proc. 2023, 137, 124–134. [Google Scholar] [CrossRef]
- Ostrihoňová, M.; . Cabadaj, P.; Polakovič, M. Design of frontal chromatography separation of 1-phenylethanol and acetophenone using a hydrophobic resin. Separ. Purif. Technol. 2023, 314, 123578. [Google Scholar] [CrossRef]
Adsorbent | Pore Volume (mL/g) | Specific Surface (m2/g) | Density (g/cm3) | Particles Moisture (%) |
---|---|---|---|---|
Macronet MN200 | 0.30 | 1100 | 1.04 | 57–61 |
Macronet MN202 | 0.20 | 900 | 1.04 | 50–60 |
Macronet MN250 | 0.60 | 1100 | 1.04 | 50–58 |
Macronet MN270 | 0.50 | 1100 | 1.04 | 35–50 |
AmberLite XAD4 | 0.98 | 750 | 1.02 | 54–60 |
AmberLite XAD16N | 1.82 | 900 | 1.02 | 62–70 |
AmberLite XAD1180N | 1.68 | 600 | 1.02 | 61–67 |
AmberLite XAD7HP | 1.14 | 450 | 1.02 | 61–69 |
AmberLite FPX62 | 0.90 | 250 | 1.02 | 56–64 |
AmberLite FPX66 | 1.40 | 700 | 1.02 | 60–68 |
AmberLite FPX68 | 1.40 | 450 | 1.02 | 61–67 |
PuroSorb PAD350 | 0.60 | 550 | 1.05 | 58–64 |
PuroSorb PAD400 | 1.00 | 650 | 1.03 | 47–55 |
PuroSorb PAD428 | 1.00 | 700 | 1.04 | 47–55 |
PuroSorb PAD550 | 1.60 | 900 | 1.05 | 58–64 |
PuroSorb PAD600 | 1.30 | 800 | 1.04 | 58–64 |
PuroSorb PAD900 | 1.90 | 850 | 1.03 | 67–73 |
Component | ci,0 (g/L) |
---|---|
2,4-DDAL | 0.31 |
2-HAL | 0.13 |
Linoleic acid | 1.23 |
Oleic acid | 0.12 |
Palmitic acid | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrihoňová, M.; Antošová, M.; Dobiašová, H.; Čuchorová, J.; Vranková, K.; Polakovič, M. Separation of (2E,4E)-deca-2,4-dienal from a Biocatalytic Reaction Mixture Using Hydrophobic Adsorbents. Separations 2023, 10, 431. https://doi.org/10.3390/separations10080431
Ostrihoňová M, Antošová M, Dobiašová H, Čuchorová J, Vranková K, Polakovič M. Separation of (2E,4E)-deca-2,4-dienal from a Biocatalytic Reaction Mixture Using Hydrophobic Adsorbents. Separations. 2023; 10(8):431. https://doi.org/10.3390/separations10080431
Chicago/Turabian StyleOstrihoňová, Marta, Monika Antošová, Hana Dobiašová, Justína Čuchorová, Kvetoslava Vranková, and Milan Polakovič. 2023. "Separation of (2E,4E)-deca-2,4-dienal from a Biocatalytic Reaction Mixture Using Hydrophobic Adsorbents" Separations 10, no. 8: 431. https://doi.org/10.3390/separations10080431
APA StyleOstrihoňová, M., Antošová, M., Dobiašová, H., Čuchorová, J., Vranková, K., & Polakovič, M. (2023). Separation of (2E,4E)-deca-2,4-dienal from a Biocatalytic Reaction Mixture Using Hydrophobic Adsorbents. Separations, 10(8), 431. https://doi.org/10.3390/separations10080431