Solid–Liquid Extraction of Bioactive Molecules from White Grape Skin: Optimization and Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Grape Skin
2.1.2. Chemicals
2.2. Methods
2.2.1. Solid–Liquid Extraction
2.2.2. Physical Properties of the Extracts
2.2.3. Total Phenolic Content and Antioxidant Activity of the Extracts
2.2.4. Near-Infrared Spectroscopy
2.2.5. Data Analysis and Modelling
2.2.6. Design of Experiments and Extraction Optimization
2.2.7. Near-Infrared Red Data Analysis and Modeling
3. Results and Discussion
3.1. Physical and Chemical Properties of the Grape Skin Aqueous Extracts
3.2. Extraction Process Optimization
3.3. Near-Infrared Spectra Analysis and Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perra, M.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Castangia, I.; Rajha, H.N.; Manca, M.L.; Manconi, M. An Outlook on Modern and Sustainable Approaches to the Management of Grape Pomace by Integrating Green Processes, Biotechnologies and Advanced Biomedical Approaches. J. Funct. Foods 2022, 98, 105276. [Google Scholar] [CrossRef]
- Mendes, J.A.S.; Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Towards Comprehensive Utilization of Winemaking Residues: Characterization of Grape Skins from Red Grape Pomaces of Variety Touriga Nacional. Ind. Crop. Prod. 2013, 43, 25–32. [Google Scholar] [CrossRef]
- Gerardi, C.; D’amico, L.; Migoni, D.; Santino, A.; Salomone, A.; Carluccio, M.A.; Giovinazzo, G. Strategies for Reuse of Skins Separated from Grape Pomace as Ingredient of Functional Beverages. Front. Bioeng. Biotechnol. 2020, 8, 645. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Vamanu, E.; Gatea, F.; Pelinescu, D.R. Bioavailability and Bioactivities of Polyphenols Eco Extracts from Coffee Grounds after in Vitro Digestion. Foods 2020, 9, 1281. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Giovanna, B.; Giulio, F.; Cristina, M.; Carini, M.; Paolo, M.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol. Molecules 2021, 26, 5454. [Google Scholar]
- Castellanos-Gallo, L.; Ballinas-Casarrubias, L.; Espinoza-Hicks, J.C.; Hernández-Ochoa, L.R.; Muñoz-Castellanos, L.N.; Zermeño-Ortega, M.R.; Borrego-Loya, A.; Salas, E. Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes 2022, 10, 469. [Google Scholar] [CrossRef]
- Amendola, D.; De Faveri, D.M.; Spigno, G. Grape Marc Phenolics: Extraction Kinetics, Quality and Stability of Extracts. J. Food Eng. 2010, 97, 384–392. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Vuong, Q.V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants 2014, 3, 700–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martiny, T.R.; Dotto, G.L.; Raghavan, V.; de Moraes, C.C.; da Rosa, G.S. Freezing Effect on the Oleuropein Content of Olive Leaves Extracts Obtained from Microwave-Assisted Extraction. Int. J. Environ. Sci. Technol. 2021, 19, 10375–10380. [Google Scholar] [CrossRef]
- Valinger, D.; Kušen, M.; Benković, M.; Jurina, T.; Panić, M.; Redovniković, I.R.; Kljusurić, J.G.; Tušek, A.J. Enhancement of the Green Extraction of Bioactive Molecules from Olea Europaea Leaves. Separations 2022, 9, 33. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Jurina, T.; Belščak-Cvitanović, A.; Gajdoš Kljusurić, J. Optimizing Bioactive Compounds Extraction from Different Medicinal Plants and Prediction through Nonlinear and Linear Models. Ind. Crop. Prod. 2018, 126, 449–458. [Google Scholar] [CrossRef]
- Valinger, D.; Jurina, T.; Benković, M.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Mathematical Modelling and Optimisation in Solid-Liquid Extractions of Bioactives from Medicinal Plants. In Medicinal Plants; Semwal, D.K., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2021; p. 63117. ISBN 9781624170713. [Google Scholar]
- Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Endrini, S.; Fatmawati, S. Optimization of Extraction Conditions of Phytochemical Compounds and Anti-Gout Activity of Euphorbia hirta L. (Ara Tanah) Using Response Surface Methodology and Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis. Evid. -Based Complement. Altern. Med. 2020, 2020, 4501261. [Google Scholar] [CrossRef] [Green Version]
- Cong-Cong, X.; Bing, W.; Yi-Qiong, P.; Jian-Sheng, T.; Tong, Z. Advances in Extraction and Analysis of Phenolic Compounds from Plant Materials. Chin. J. Nat. Med. 2017, 15, 721–731. [Google Scholar] [CrossRef]
- Tsibranska, I.; Tylkowski, B. Solid-Liquid Extraction of Bioactive Compounds: Effect of Polydispersity and Particle Size Evolution. J. Chem. Technol. Metall. 2016, 51, 489–499. [Google Scholar]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [Green Version]
- Yusnaini, R.; Ikhsan, I.; Idroes, R.; Munawar, A.A.; Arabia, T.; Saidi, N.; Nasution, R. Near-Infrared Spectroscopy (NIRS) as an Integrated Approach for Rapid Classification and Bioactive Quality Evaluation of Intact Feronia Limoni. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 012028. [Google Scholar] [CrossRef]
- Tadmor Shalev, N.; Ghermandi, A.; Tchernov, D.; Shemesh, E.; Israel, A.; Brook, A. NIR Spectroscopy and Artificial Neural Network for Seaweed Protein Content Assessment In-Situ. Comput. Electron. Agric. 2022, 201, 107304. [Google Scholar] [CrossRef]
- Wulandari, L.; Retnaningtyas, Y.; Nuri; Lukman, H. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics. J. Anal. Methods Chem. 2016, 2016, 4696803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Daniels, A.J.; Poblete-Echeverría, C.; Nieuwoudt, H.H.; Botha, N.; Opara, U.L. Classification of Browning on Intact Table Grape Bunches Using Near-Infrared Spectroscopy Coupled with Partial Least Squares-Discriminant Analysis and Artificial Neural Networks. Front. Plant Sci. 2021, 12, 768046. [Google Scholar] [CrossRef] [PubMed]
- Curto, B.; Moreno, V.; García-Esteban, J.A.; Blanco, F.J.; González, I.; Vivar, A.; Revilla, I. Accurate Prediction of Sensory Attributes of Cheese Using Near-Infrared Spectroscopy Based on Artificial Neural Network. Sensors 2020, 20, 3566. [Google Scholar] [CrossRef]
- Ali, K.A.; Moses, W.J. Application of a PLS-Augmented ANN Model for Retrieving Chlorophyll-a from Hyperspectral Data in Case 2 Waters of the Western Basin of Lake Erie. Remote Sens. 2022, 14, 3729. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA; Arlington, VA, USA, 1998. [Google Scholar]
- Jurinjak Tušek, A.; Benković, M.; Belščak Cvitanović, A.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J. Kinetics and Thermodynamics of the Solid-Liquid Extraction Process of Total Polyphenols, Antioxidants and Extraction Yield from Asteraceae Plants. Ind. Crop. Prod. 2016, 91, 205–214. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of Solid-Liquid Extraction Kinetics of Total Polyphenols from Grape Seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Librán, C.M.; Mayor, L.; Garcia-Castello, E.M.; Vidal-Brotons, D. Polyphenol Extraction from Grape Wastes: Solvent and PH Effect. Agric. Sci. 2013, 04, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Chañi-Paucar, L.O.; Silva, J.W.L.; Maciel, M.I.S.; de Lima, V.L.A.G. Simplified Process of Extraction of Polyphenols from Agroindustrial Grape Waste. Food Sci. Technol. 2021, 41, 723–731. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, G.; Nabiyar, H.; Sadrjavadi, K.; Shahlaei, M. Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation-Emission Matrix Fluorescence Spectroscopy. Iran. J. Pharm. Res. 2018, 17, 864–882. [Google Scholar]
- Hemmateenejad, B.; Safarpour, M.A.; Miri, R.; Nesari, N. Toward an Optimal Procedure for PC-ANN Model Building: Prediction of the Carcinogenic Activity of a Large Set of Drugs. J. Chem. Inf. Model. 2005, 45, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Yeler, H.B.; Nas, S. Optimization of Extraction Time and Temperature for Natural Antioxidants of Öküzgözü Grape Pomace Using Various Solvent Ratios. Food Sci. Technol. 2021, 41, 127–135. [Google Scholar] [CrossRef]
- Beulah, G.; Divya, D.; Kumar, N.S.S.; Sravya, M.V.N.; Rao, K.G.; Chintagunta, A.D.; Divya, G.; Chandana, S.H.; Blessy, B.D.; Simhachalam, G. Purification and Characterization of Bioactive Compounds Extracted from Suaeda Maritima Leaf and Its Impact on Pathogenicity of Pseudomonas Aeruginosa in Catla Catla Fingerlings. AMB Express 2021, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, A.M.; Jurina, T.; Valinger, D.; Jurinjak Tušek, A.; Benković, M.; Gajdoš Kljusurić, J. The Estimation of Kinetic Parameters of the Solid-Liquid Extraction Process of the Lavender Flower (Lavandula x Hybrida L.). Croat. J. Food Sci. Technol. 2018, 10, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Jurinjak Tušek, A.; Benković, M.; Malešić, E.; Marić, L.; Jurina, T.; Gajdoš Kljusurić, J.; Valinger, D. Rapid Quantification of Dissolved Solids and Bioactives in Dried Root Vegetable Extracts Using near Infrared Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120074. [Google Scholar] [CrossRef]
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J.M. CIELAB Color Coordinates versus Relative Proportions of Myoglobin Redox Forms in the Description of Fresh Meat Appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yammine, S.; Delsart, C.; Vitrac, X.; Peuchot, M.M.; Ghidossi, R. Characterisation of Polyphenols and Antioxidant Potential of Red and White Pomace By-Product Extracts Using Subcritical Water Extraction. Oeno One 2020, 54, 263–278. [Google Scholar] [CrossRef]
- Guerrero, M.S.; Torres, J.S.; Nuñez, M.J. Extraction of Polyphenols from White Distilled Grape Pomace: Optimization and Modelling. Bioresour. Technol. 2008, 99, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Çam, M.; Aaby, K. Optimization of Extraction of Apple Pomace Phenolics with Water by Response Surface Methodology. J. Agric. Food Chem. 2010, 58, 9103–9111. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Carranza, P.; Ávila-Sosa, R.; Guerrero-Beltrán, J.A.; Navarro-Cruz, A.R.; Corona-Jiménez, E.; Ochoa-Velasco, C.E. Optimization of Antioxidant Compounds Extraction from Fruit By-Products: Apple Pomace, Orange and Banana Peel. J. Food Process. Preserv. 2016, 40, 103–115. [Google Scholar] [CrossRef]
- Flórez, M.; Cazón, P.; Vázquez, M. Antioxidant Extracts of Nettle (Urtica Dioica) Leaves: Evaluation of Extraction Techniques and Solvents. Molecules 2022, 27, 15. [Google Scholar] [CrossRef]
- Le Man, H.; Behera, S.K.; Park, H.S. Optimization of Operational Parameters for Ethanol Production from Korean Food Waste Leachate. Int. J. Environ. Sci. Technol. 2010, 7, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Gironi, F.; Piemonte, V. Temperature and Solvent Effects on Polyphenol Extraction Process from Chestnut Tree Wood. Chem. Eng. Res. Des. 2011, 89, 857–862. [Google Scholar] [CrossRef]
- Che Sulaiman, I.S.; Basri, M.; Fard Masoumi, H.R.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of Temperature, Time, and Solvent Ratio on the Extraction of Phenolic Compounds and the Anti-Radical Activity of Clinacanthus Nutans Lindau Leaves by Response Surface Methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Mazza, K.E.L.; Santiago, M.C.P.A.; do Nascimento, L.S.M.; Godoy, R.L.O.; Souza, E.F.; Brígida, A.I.S.; Borguini, R.G.; Tonon, R.V. Syrah Grape Skin Valorisation Using Ultrasound-Assisted Extraction: Phenolic Compounds Recovery, Antioxidant Capacity and Phenolic Profile. Int. J. Food Sci. Technol. 2019, 54, 641–650. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Grabska, J.; Beć, K.B.; Ueno, N.; Huck, C.W. Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review. Foods 2023, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, T.; Wei, J.; Li, X.; Deng, F.; Niu, X.; Wang, Y.; Kan, J.; Zhang, W.; Yun, Y.-H.; et al. Potential of Near-Infrared Spectroscopy (NIRS) for Efficient Classification Based on Postharvest Storage Time, Cultivar and Maturity in Coconut Water. Foods 2023, 12, 2415. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef] [Green Version]
- Valinger, D.; Kušen, M.; Jurinjak Tušek, A.; Panić, M.; Jurina, T.; Benković, M.; Radojčić Redovniković, I.; Gajdoš Kljusurić, J. Development of near Infrared Spectroscopy Models for Quantitative Prediction of the Content of Bioactive Compounds in Olive Leaves. Chem. Biochem. Eng. Q. 2018, 32, 535–543. [Google Scholar] [CrossRef]
Exp. | t (min) | T (°C) | S/L (g/L) | rpm (1/min) | pH | S (μS/cm) | TDS (mg/L) | Y (%) |
---|---|---|---|---|---|---|---|---|
1. | 60 | 40 | 20 | 500 | 3.89 ± 0.01 | 313.33 ± 2.08 | 152.80 ± 2.52 | 0.2332 ± 0.03 |
2. | 90 | 40 | 20 | 500 | 3.93 ± 0.01 | 254.33 ± 1.53 | 128.87 ± 1.71 | 0.2219 ± 0.04 |
3. | 60 | 80 | 20 | 500 | 3.84 ± 0.01 | 379.33 ± 5.13 | 186.67 ± 0.90 | 0.4160 ± 0.07 |
4. | 90 | 80 | 20 | 500 | 3.95 ± 0.01 | 335.33 ± 1.53 | 169.57 ± 1.10 | 0.3338 ± 0.02 |
5. | 75 | 60 | 10 | 250 | 3.88 ± 0.02 | 219.00 ± 2.65 | 106.77 ± 1.62 | 0.1359 ± 0.03 |
6. | 75 | 60 | 30 | 250 | 3.81 ± 0.01 | 329.00 ± 1.00 | 163.27 ± 0.91 | 0.4101 ± 0.04 |
7. | 75 | 60 | 10 | 750 | 3.79 ± 0.01 | 230.33 ± 7.64 | 112.83 ± 2.63 | 0.2245 ± 0.01 |
8. | 75 | 60 | 30 | 750 | 3.76 ± 0.01 | 379.67 ± 3.21 | 191.40 ± 0.26 | 0.5113 ± 0.01 |
9. | 75 | 60 | 20 | 500 | 3.94 ± 0.01 | 239.67 ± 0.58 | 122.67 ± 3.76 | 0.2825 ± 0.04 |
10. | 60 | 60 | 20 | 250 | 3.87 ± 0.00 | 219.00 ± 1.73 | 108.67 ± 0.23 | 0.1923 ± 0.00 |
11. | 90 | 60 | 20 | 250 | 4.00 ± 0.01 | 197.93 ± 0.21 | 99.30 ± 0.44 | 0.2357 ± 0.04 |
12. | 60 | 60 | 20 | 750 | 3.90 ± 0.02 | 227.67 ± 0.58 | 113.67 ± 0.06 | 0.2193 ± 0.05 |
13. | 90 | 60 | 20 | 750 | 3.86 ± 0.01 | 311.33 ± 0.58 | 154.97 ± 0.51 | 0.4154 ± 0.01 |
14. | 75 | 40 | 10 | 500 | 4.07 ± 0.01 | 193.07 ± 9.48 | 93.73 ± 5.61 | 0.1610 ± 0.01 |
15. | 75 | 80 | 10 | 500 | 3.95 ± 0.00 | 218.33 ± 0.58 | 109.33 ± 0.21 | 0.2465 ± 0.08 |
16. | 75 | 40 | 30 | 500 | 3.76 ± 0.00 | 242.67 ± 1.15 | 121.33 ± 0.58 | 0.2338 ± 0.00 |
17. | 75 | 80 | 30 | 500 | 3.78 ± 0.01 | 378.00 ± 1.00 | 187.97 ± 2.66 | 0.4515 ± 0.01 |
18. | 75 | 60 | 20 | 500 | 3.85 ± 0.01 | 296.00 ± 3.61 | 141.93 ± 3.88 | 0.3330 ± 0.04 |
19. | 60 | 60 | 10 | 500 | 3.94 ± 0.03 | 162.00 ± 1.00 | 81.27 ± 0.93 | 0.1889 ± 0.00 |
20. | 90 | 60 | 10 | 500 | 4.03 ± 0.01 | 172.70 ± 0.10 | 86.47 ± 0.06 | 0.1740 ± 0.01 |
21. | 60 | 60 | 30 | 500 | 3.84 ± 0.02 | 280.33 ± 0.58 | 139.0. ± 1.00 | 0.2875 ± 0.08 |
22. | 90 | 60 | 30 | 500 | 3.82 ± 0.00 | 291.33 ± 0.58 | 145.93 ± 0.21 | 0.2944 ± 0.01 |
23. | 75 | 40 | 20 | 250 | 3.93 ± 0.01 | 152.27 ± 8.95 | 81.97 ± 0.70 | 0.2350 ± 0.17 |
24. | 75 | 80 | 20 | 250 | 3.79 ± 0.01 | 229.67 ± 0.58 | 114.67 ± 0.58 | 0.3160 ± 0.04 |
25. | 75 | 40 | 20 | 750 | 3.83 ± 0.01 | 208.00 ± 1.00 | 106.57 ± 1.80 | 0.2008 ± 0.04 |
26. | 75 | 80 | 20 | 750 | 3.69 ± 0.01 | 311.00 ± 5.57 | 158.47 ± 0.58 | 0.4133 ± 0.04 |
27. | 75 | 60 | 20 | 500 | 3.82 ± 0.01 | 225.00 ± 1.73 | 114.13 ± 0.81 | 0.1241 ± 0.05 |
28. | 75 | 60 | 20 | 500 | 3.77 ± 0.01 | 245.67 ± 0.58 | 123.57 ± 0.06 | 0.2882 ± 0.02 |
29. | 75 | 60 | 20 | 500 | 3.72 ± 0.00 | 242.33 ± 0.58 | 121.27 ± 0.64 | 0.2848 ± 0.02 |
30. | 75 | 60 | 20 | 500 | 3.73 ± 0.01 | 241.67 ± 0.58 | 121.33 ± 0.58 | 0.2755 ± 0.04 |
Exp. | t (min) | T (°C) | S/L (g/L) | rpm (1/min) | L | a | b | Chroma | Hue |
---|---|---|---|---|---|---|---|---|---|
1. | 60 | 40 | 20 | 500 | 42.77 ± 0.00 | 0.08 ± 0.01 | 0.70 ± 0.01 | 0.71 ± 0.01 | 83.38 ± 1.00 |
2. | 90 | 40 | 20 | 500 | 42.07 ± 0.01 | 0.03 ± 0.01 | 0.68 ± 0.01 | 0.68 ± 0.01 | 87.77 ± 0.61 |
3. | 60 | 80 | 20 | 500 | 40.81 ± 0.04 | 0.13 ± 0.01 | 0.58 ± 0.01 | 0.60 ± 0.01 | 77.32 ± 0.70 |
4. | 90 | 80 | 20 | 500 | 42.64 ± 0.81 | 0.02 ± 0.06 | 0.90 ± 0.31 | 0.90 ± 0.31 | 87.63 ± 3.76 |
5. | 75 | 60 | 10 | 250 | 44.13 ± 0.01 | −0.15 ± 0.00 | 1.02 ± 0.01 | 1.03 ± 0.01 | 98.50 ± 0.05 |
6. | 75 | 60 | 30 | 250 | 43.95 ± 8.70 | −0.13 ± 0.00 | 1.15 ± 0.01 | 1.16 ± 0.01 | 96.46 ± 0.19 |
7. | 75 | 60 | 10 | 750 | 43.75 ± 0.01 | −0.10 ± 0.01 | 1.11 ± 0.01 | 1.11 ± 0.01 | 95.10 ± 0.38 |
8. | 75 | 60 | 30 | 750 | 46.81 ± 0.02 | −0.82 ± 0.02 | 0.82 ± 0.01 | 1.16 ± 0.02 | 134.81 ± 0.54 |
9. | 75 | 60 | 20 | 500 | 43.80 ± 0.01 | −0.03 ± 0.01 | 1.13 ± 0.01 | 1.13 ± 0.01 | 91.27 ± 0.55 |
10. | 60 | 60 | 20 | 250 | 43.87 ± 0.01 | −0.12 ± 0.00 | 1.06 ± 0.01 | 1.07 ± 0.01 | 96.61 ± 0.03 |
11. | 90 | 60 | 20 | 250 | 44.28 ± 0.02 | −0.17 ± 0.01 | 0.95 ± 0.01 | 0.97 ± 0.01 | 100.03 ± 0.52 |
12. | 60 | 60 | 20 | 750 | 43.75 ± 0.07 | −0.09 ± 0.02 | 1.12 ± 0.01 | 1.13 ± 0.01 | 94.63 ± 0.66 |
13. | 90 | 60 | 20 | 750 | 43.86 ± 0.01 | −0.07 ± 0.01 | 1.13 ± 0.01 | 1.13 ± 0.01 | 93.61 ± 0.37 |
14. | 75 | 40 | 10 | 500 | 44.21 ± 0.01 | −0.17 ± 0.00 | 0.99 ± 0.01 | 1.01 ± 0.01 | 99.54 ± 0.22 |
15. | 75 | 80 | 10 | 500 | 43.98 ± 0.00 | −0.06 ± 0.01 | 1.16 ± 0.01 | 1.16 ± 0.01 | 92.93 ± 0.59 |
16. | 75 | 40 | 30 | 500 | 44.26 ± 0.03 | −0.13 ± 0.01 | 1.00 ± 0.01 | 1.01 ± 0.01 | 97.33 ± 0.51 |
17. | 75 | 80 | 30 | 500 | 43.38 ± 0.01 | −0.04 ± 0.01 | 1.27 ± 0.01 | 1.27 ± 0.01 | 91.75 ± 0.21 |
18. | 75 | 60 | 20 | 500 | 46.98 ± 0.01 | −0.78 ± 0.01 | 0.81 ± 0.01 | 1.12 ± 0.01 | 133.64 ± 0.23 |
19. | 60 | 60 | 10 | 500 | 47.15 ± 0.02 | −0.80 ± 0.01 | 0.66 ± 0.02 | 1.04 ± 0.02 | 140.69 ± 0.37 |
20. | 90 | 60 | 10 | 500 | 47.06 ± 0.01 | −0.81 ± 0.01 | 0.68 ± 0.00 | 1.06 ± 0.01 | 140.06 ± 0.52 |
21. | 60 | 60 | 30 | 500 | 47.00 ± 0.01 | −0.77 ± 0.01 | 0.82 ± 0.01 | 1.12 ± 0.00 | 133.07 ± 0.68 |
22. | 90 | 60 | 30 | 500 | 47.01 ± 0.01 | −0.82 ± 0.01 | 0.77 ± 0.01 | 1.12 ± 0.01 | 136.77 ± 0.02 |
23. | 75 | 40 | 20 | 250 | 47.27 ± 0.02 | −0.85 ± 0.01 | 0.63 ± 0.01 | 1.06 ± 0.01 | 143.73 ± 0.32 |
24. | 75 | 80 | 20 | 250 | 47.03 ± 0.02 | −0.77 ± 0.01 | 0.90 ± 0.01 | 1.19 ± 0.02 | 130.53 ± 0.07 |
25. | 75 | 40 | 20 | 750 | 47.20 ± 8.70 | −0.83 ± 0.01 | 0.63 ± 0.01 | 1.04 ± 0.01 | 142.59 ± 0.50 |
26. | 75 | 80 | 20 | 750 | 46.73 ± 0.00 | −0.63 ± 0.02 | 1.07 ± 0.01 | 1.24 ± 0.01 | 120.61 ± 0.63 |
27. | 75 | 60 | 20 | 500 | 46.55 ± 0.01 | −0.82 ± 0.01 | 0.74 ± 1.36 | 1.10 ± 0.01 | 137.85 ± 0.31 |
28. | 75 | 60 | 20 | 500 | 46.83 ± 0.02 | −0.71 ± 0.01 | 0.79 ± 0.02 | 1.05 ± 0.02 | 131.98 ± 0.49 |
29. | 75 | 60 | 20 | 500 | 46.76 ± 0.01 | −0.77 ± 0.00 | 0.83 ± 0.01 | 1.13 ± 0.01 | 132.79 ± 0.36 |
30. | 75 | 60 | 20 | 500 | 47.23 ± 0.01 | −0.25 ± 0.88 | 0.77 ± 0.01 | 1.09 ± 0.01 | 134.65 ± 0.62 |
Exp. | t (min) | T (°C) | S/L (g/L) | rpm (1/min) | TPC (mgGAE/gd.m.) | DPPH (mmolTrolox/gd.m.) | |
---|---|---|---|---|---|---|---|
1. | 60 | 40 | 20 | 500 | 1.47 ± 0.00 | 0.0009 ± 0.0001 | 0.0082 ± 0.0002 |
2. | 90 | 40 | 20 | 500 | 2.54 ± 0.32 | 0.0007 ± 0.0001 | 0.0098 ± 0.0021 |
3. | 60 | 80 | 20 | 500 | 3.85 ± 0.06 | 0.0046 ± 0.0010 | 0.0295 ± 0.0002 |
4. | 90 | 80 | 20 | 500 | 2.94 ± 0.16 | 0.0022 ± 0.0005 | 0.0287 ± 0.0006 |
5. | 75 | 60 | 10 | 250 | 1.20 ± 0.06 | 0.0005 ± 0.0000 | 0.0059 ± 0.0002 |
6. | 75 | 60 | 30 | 250 | 3.43 ± 0.06 | 0.0012 ± 0.0003 | 0.0192 ± 0.0005 |
7. | 75 | 60 | 10 | 750 | 1.31 ± 0.01 | 0.0005 ± 0.0001 | 0.0050 ± 0.0001 |
8. | 75 | 60 | 30 | 750 | 4.02 ± 0.06 | 0.0012 ± 0.0001 | 0.0431 ± 0.0013 |
9. | 75 | 60 | 20 | 500 | 3.28 ± 0.16 | 0.0008 ± 0.0001 | 0.0088 ± 0.0006 |
10. | 60 | 60 | 20 | 250 | 3.28 ± 0.04 | 0.0007 ± 0.0001 | 0.0155 ± 0.0012 |
11. | 90 | 60 | 20 | 250 | 2.19 ± 0.06 | 0.0008 ± 0.0001 | 0.0133 ± 0.0026 |
12. | 60 | 60 | 20 | 750 | 2.10 ± 0.02 | 0.0007 ± 0.0000 | 0.0200 ± 0.0005 |
13. | 90 | 60 | 20 | 750 | 2.30 ± 0.34 | 0.0007 ± 0.0001 | 0.0264 ± 0.0001 |
14. | 75 | 40 | 10 | 500 | 1.09 ± 0.04 | 0.0004 ± 0.0001 | 0.0028 ± 0.0002 |
15. | 75 | 80 | 10 | 500 | 1.29 ± 0.03 | 0.0015 ± 0.0008 | 0.0129 ± 0.0004 |
16. | 75 | 40 | 30 | 500 | 3.08 ± 0.03 | 0.0009 ± 0.0001 | 0.0253 ± 0.0014 |
17. | 75 | 80 | 30 | 500 | 8.24 ± 0.21 | 0.0301 ± 0.0009 | 0.0483 ± 0.0001 |
18. | 75 | 60 | 20 | 500 | 2.93 ± 0.24 | 0.0008 ± 0.0001 | 0.0105 ± 0.0001 |
19. | 60 | 60 | 10 | 500 | 1.98 ± 0.05 | 0.0003 ± 0.0000 | 0.0030 ± 0.0003 |
20. | 90 | 60 | 10 | 500 | 1.96 ± 0.14 | 0.0003 ± 0.0000 | 0.0037 ± 0.0002 |
21. | 60 | 60 | 30 | 500 | 4.74 ± 0.06 | 0.0021 ± 0.0004 | 0.0297 ± 0.0016 |
22. | 90 | 60 | 30 | 500 | 4.30 ± 0.03 | 0.0010 ± 0.0001 | 0.025 ± 0.0011 |
23. | 75 | 40 | 20 | 250 | 4.04 ± 0.32 | 0.0007 ± 0.0000 | 0.0055 ± 0.0007 |
24. | 75 | 80 | 20 | 250 | 5.05 ± 0.04 | 0.0046 ± 0.0024 | 0.0236 ± 0.0004 |
25. | 75 | 40 | 20 | 750 | 4.00 ± 0.38 | 0.0010 ± 0.0000 | 0.0088 ± 0.0000 |
26. | 75 | 80 | 20 | 750 | 5.96 ± 0.32 | 0.0273 ± 0.0015 | 0.0314 ± 0.0007 |
27. | 75 | 60 | 20 | 500 | 2.47 ± 0.22 | 0.0012 ± 0.0005 | 0.0144 ± 0.0010 |
28. | 75 | 60 | 20 | 500 | 2.20 ± 0.04 | 0.0008 ± 0.0003 | 0.0183 ± 0.0002 |
29. | 75 | 60 | 20 | 500 | 2.67 ± 0.18 | 0.0008 ± 0.0000 | 0.0160 ± 0.0001 |
30. | 75 | 60 | 20 | 500 | 2.57 ± 0.04 | 0.0008 ± 0.0000 | 0.0173 ± 0.0001 |
Extraction Substrate | Extraction Solvent | Results | Reference |
---|---|---|---|
Distilled white grape pomace | Ethanol, water | Extraction yield was higher using water as a solvent | [45] |
Olive leaves | Water | Optimal conditions for water extraction: T = 90 °C; t = 70 min; S/L = 16 mg/mL | [13] |
Optimal conditions for water extraction: T = 80 °C; t = 15 min; rpm = 500 min−1 | [15] | ||
Apple pomace | Water | A broad range of apple pomace antioxidants were extracted using water | [46] |
Orange and banana peel | Water | Longer time (12 h) and higher temperature (60 °C) resulted in higher polyphenol content | [47] |
Dried nettle leaves | Methanol, ethanol, or water | The extracts in water media produced higher concentrations of polyphenols | [48] |
t | T | S/L | rpm | pH | S | TDS | Y | L | a | b | Chroma | Hue | TPC | DPPH | FRAP | |
t | 1.00 | |||||||||||||||
T | 0.00 | 1.00 | ||||||||||||||
S/L | 0.00 | 0.00 | ||||||||||||||
rpm | 0.00 | 0.00 | 0.00 | 1.00 | ||||||||||||
pH | 0.14 | −0.28 | −0.52 | −0.26 | 1.00 | |||||||||||
S | 0.01 | 0.42 | 0.62 | 0.28 | −0.50 | 1.00 | ||||||||||
TDS | −0.02 | 0.42 | 0.60 | 0.27 | −0.48 | 1.00 | 1.00 | |||||||||
Y | 0.07 | 0.45 | 0.54 | 0.23 | −0.46 | 0.78 | 0.77 | 1.00 | ||||||||
L | 0.04 | −0.09 | 0.06 | 0.04 | −0.26 | −0.34 | −0.36 | −0.08 | 1.00 | |||||||
a | −0.03 | 0.07 | −0.08 | −0.05 | 0.20 | 0.25 | 0.26 | 0.06 | −0.88 | 1.00 | ||||||
b | 0.05 | 0.34 | 0.06 | 0.04 | −0.08 | 0.16 | 0.17 | 0.20 | −0.32 | 0.44 | 1.00 | |||||
Chroma | 0.07 | 0.29 | 0.14 | 0.11 | −0.31 | −0.07 | −0.08 | 0.17 | 0.56 | −0.39 | 0.58 | 1.00 | ||||
Hue | 0.05 | −0.13 | 0.06 | 0.04 | −0.22 | −0.33 | −0.35 | −0.11 | 0.97 | −0.90 | −0.50 | 0.41 | 1.00 | |||
TPC | −0.04 | 0.38 | 0.66 | 0.02 | −0.49 | 0.51 | 0.49 | 0.56 | 0.17 | −0.21 | 0.11 | 0.34 | 0.16 | 1.00 | ||
DPPH | −0.03 | 0.49 | 0.28 | 0.17 | −0.40 | 0.47 | 0.45 | 0.46 | −0.04 | 0.04 | 0.35 | 0.32 | −0.10 | 0.78 | 1.00 | |
FRAP | 0.01 | 0.52 | 0.73 | 0.24 | −0.58 | 0.81 | 0.79 | 0.74 | −0.08 | 0.04 | 0.26 | 0.23 | −0.10 | 0.73 | 0.60 | 1.00 |
pH | S | TDS | Y | TPC | DPPH | FRAP | ||
t | 60 | 3.87 ± 0.04 a | 263.61 ± 72.48 a | 130.35 ± 34.93 a | 0.256 ± 0.085 a | 2.905 ± 1.186 a | 0.0023 ± 0.0016 a | 0.0179 ± 0.0103 a |
75 | 3.82 ± 0.09 a | 254.51 ± 59.89 a | 127.38 ± 29.49 a | 0.284 ± 0.116 a | 3.267 ± 1.789 a | 0.0049 ± 0.0009 a | 0.0179 ± 0.0126 a | |
90 | 3.92 ± 0.08 a | 260.49 ± 60.59 a | 130.85 ± 30.52 a | 0.279 ± 0.083 a | 2.705 ± 0.807 a | 0.0018 ± 0.0007 a | 0.0181 ± 0.0097 a | |
T | 40 | 3.89 ± 0.09 a | 227.28 ± 52.57 b | 114.21 ± 24.14 b | 0.214 ± 0.051 b | 2.700 ± 1.178 b | 0.0016 ± 0.0004 a | 0.0103 ± 0.0074 a |
60 | 3.85 ± 0.08 a | 250.59 ± 54.12 b | 124.89 ± 29.93 b | 0.271 ± 0.101 b | 2.719 ± 0.957 b | 0.0017 ± 0.0006 a | 0.0168 ± 0.0101 b | |
80 | 3.82 ± 0.09 b | 308.61 ± 66.37 a | 154.44 ± 30.62 a | 0.363 ± 0.105 a | 4.555 ± 2.286 a | 0.0013 ± 0.0012 b | 0.0293 ± 0.0109 a | |
S/L | 10 | 3.94 ± 0.09 a | 199.24 ± 26.42 c | 98.40 ± 12.49 c | 0.188 ± 0.044 c | 1.472 ± 0.374 c | 0.0010 ± 0.0004 b | 0.0056 ± 0.0036 c |
20 | 3.84 ± 0.08 b | 257.19 ± 55.08 b | 128.93 ± 26.22 b | 0.279 ± 0.086 b | 3.102 ± 1.108 b | 0.0036 ± 0.0061 b | 0.0173 ± 0.0079 b | |
30 | 3.79 ± 0.03 c | 316.83 ± 52.01 a | 158.16 ± 26.22 a | 0.364 ± 0.125 a | 4.634 ± 1.752 a | 0.0073 ± 0.0110 a | 0.0322 ± 0.0107 a | |
rpm | 250 | 3.87 ± 0.07 a | 224.48 ± 54.76 b | 112.43 ± 25.68 b | 0.254 ± 0.101 a | 3.198 ± 1.279 a | 0.0022 ± 0.0016 a | 0.0141 ± 0.0068 a |
500 | 3.86 ± 0.09 a | 261.72 ± 60.98 b | 130.42 ± 29.88 b | 0.268 ± 0.093 a | 2.977 ± 1.606 a | 0.0036 ± 0.0068 a | 0.0176 ± 0.0117 a | |
750 | 3.80 ± 0.07 b | 278.00 ± 62.75 a | 139.65 ± 31.89 a | 0.331 ± 0.125 a | 3.282 ± 1.606 a | 0.0060 ± 0.0110 a | 0.0227 ± 0.0134 a |
Model Output | RSM Equation | R2 |
---|---|---|
TDS | 131.72 + 0.50·X1 + 40.23·X2 + 59.76·X3 + 27.21·X4 − 4.04·X12 − 9.69·X22 − 0.55·X32 + 2.79·X42 + 3.41·X1 X2 + 0.85·X1 X3 + 25.33·X1 X4 + 25.52·X2 X3 + 9.60·X2 X4 + 11.03·X3 X4 | 0.75 |
Y | 0.29 + 0.02·X1 + 0.15·X2 + 0.18·X3 + 0.08·X4 − 0.01·X12 − 0.02·X22 − 0.01·X32 − 0.03·X42 − 0.04·X1 X2 + 0.01·X1 X3 + 0.08·X1 X4 + 0.07·X2 X3 + 0.07·X2 X4 + 0.01·X3 X4 | 0.64 |
TPC | 3.34 − 0.20·X1 + 1.86·X2 + 3.16·X3 + 0.08·X4 − 0.32·X12 − 0.92·X22 − 0.05·X32 − 0.33·X42 − 0.99·X1 X2 − 0.22·X1 X3 + 0.64·X1 X4 + 2.48·X2 X3 + 0.47·X2 X4 + 0.24·X3 X4 | 0.87 |
DPPH | 0.005 − 0.001·X1 + 0.011·X2 + 0.006·X3 + 0.004·X4 + 0.002·X12 − 0.005·X22 − 0.001·X32 − 0.001·X42 − 0.001·X1 X2 − 0.001·X1 X3 − 0.001·X1 X4 + 0.014·X2 X3 + 0.011·X2 X4 + 0.001·X3 X4 | 0.75 |
FRAP | 0.020 − 0.002·X1 + 0.019·X2 + 0.027·X3 + 0.008·X4 − 0.001·X12 − 0.004·X22 − 0.002·X32 − 0.002·X42 − 0.001·X1 X2 − 0.002·X1 X3 − 0.004·X1 X4 + 0.006·X2 X3 + 0.002·X2 X4 + 0.012·X3 X4 | 0.95 |
Model Output | Optimal Extraction Conditions | RMSE-Predicted Value of Output Variable | Experimental Value of Output Variable |
---|---|---|---|
TDS | t = 75 min T = 80 °C S/L = 30 g/L rpm = 750 1/min | 218.16 | 217.96 ± 2.65 |
Y | 0.58 | 0.46 ± 0.29 | |
TPC | 8.14 | 8.38 ± 0.21 | |
DPPH | 0.032 | 0.029 ± 0.001 | |
FRAP | 0.059 | 0.055 ± 0.001 |
Model Output | ANN Structure | R2training/ RMSEtraning | R2test/ RMSEtest | R2validation/ RMSEvalidation | Input Activation Function | Output Activation Function |
---|---|---|---|---|---|---|
Physical properties (TDS and Y) | MLP 5-8-2 | 0.9533 0.0038 | 0.9507 0.0059 | 0.9189 0.0068 | Tanh | Logistic |
Chemical properties (TPC, DPPH, and FRAP) | MLP 5-9-3 | 0.9862 0.0018 | 0.9521 0.0023 | 0.9371 0.0026 | Tanh | Logistic |
Simultaneously predicted physical and chemical properties | MLP 5-7-5 | 0.9035 0.0150 | 0.8901 0.0222 | 0.8166 0.0246 | Logistic | Logistic |
ANN Structure | Model Output | R2training | R2test | R2validation |
---|---|---|---|---|
MLP 5-8-2 | TDS | 0.9936 | 0.9628 | 0.9617 |
Y | 0.9451 | 0.9077 | 0.8749 | |
MLP 5-9-3 | TPC | 0.9757 | 0.9687 | 0.9604 |
DPPH | 0.9957 | 0.9091 | 0.8588 | |
FRAP | 0.9868 | 0.9867 | 0.9841 | |
MLP 5-7-5 | TDS | 0.9506 | 0.9392 | 0.9275 |
Y | 0.9501 | 0.7897 | 0.7729 | |
TPC | 0.8869 | 0.7853 | 0.6909 | |
DPPH | 0.9918 | 0.8374 | 0.7488 | |
FRAP | 0.9394 | 0.9316 | 0.9285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokač Cvetnić, T.; Krog, K.; Benković, M.; Jurina, T.; Valinger, D.; Gajdoš Kljusurić, J.; Radojčić Redovniković, I.; Jurinjak Tušek, A. Solid–Liquid Extraction of Bioactive Molecules from White Grape Skin: Optimization and Near-Infrared Spectroscopy. Separations 2023, 10, 452. https://doi.org/10.3390/separations10080452
Sokač Cvetnić T, Krog K, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Radojčić Redovniković I, Jurinjak Tušek A. Solid–Liquid Extraction of Bioactive Molecules from White Grape Skin: Optimization and Near-Infrared Spectroscopy. Separations. 2023; 10(8):452. https://doi.org/10.3390/separations10080452
Chicago/Turabian StyleSokač Cvetnić, Tea, Korina Krog, Maja Benković, Tamara Jurina, Davor Valinger, Jasenka Gajdoš Kljusurić, Ivana Radojčić Redovniković, and Ana Jurinjak Tušek. 2023. "Solid–Liquid Extraction of Bioactive Molecules from White Grape Skin: Optimization and Near-Infrared Spectroscopy" Separations 10, no. 8: 452. https://doi.org/10.3390/separations10080452
APA StyleSokač Cvetnić, T., Krog, K., Benković, M., Jurina, T., Valinger, D., Gajdoš Kljusurić, J., Radojčić Redovniković, I., & Jurinjak Tušek, A. (2023). Solid–Liquid Extraction of Bioactive Molecules from White Grape Skin: Optimization and Near-Infrared Spectroscopy. Separations, 10(8), 452. https://doi.org/10.3390/separations10080452