Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma
Abstract
:1. Introduction
2. Experimental
2.1. Chemical and Reagents
2.2. LC-MS/MS System
2.3. Preparation of Calibration Curve and Quality Control (QC) Samples
2.4. Sample Preparation
2.5. Pre-Study Validation
2.6. Application to Pharmacokinetic Study
3. Results and Discussion
3.1. Method Development and Optimization
3.1.1. Liquid Chromatography
3.1.2. Mass Spectrometry
3.2. In-Study Validation
3.2.1. Specificity and Selectivity
3.2.2. Calibration Curve
3.2.3. Lower Limits of Quantitation (LLOQ) and Detection (LLOD)
3.2.4. Accuracy and Precision
3.2.5. Extraction Recovery and Matrix Effect
3.2.6. Dilution Integrity
3.2.7. Sample Stability and Carry-Over
3.3. Pharmacokinetics in Rats
3.4. Comparison with Previous Methodologies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fostea, R.M.; Arkenau, H. Trifluridine/tipiracil in the treatment of gastric cancer. Future Oncol. 2022, 18, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Colorectal Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 20 October 2023).
- Reynolds, J.E.F. Martindale: The Extra Pharmacopoeia, 31st ed.; Pharmaceutical Press: London, UK, 1996. [Google Scholar]
- Leighton, J.K. Centre for drug evaluation and research application pharmacology review, Lonsurf (trifluridine and tipiracil). 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/207981Orig1s009.pdf (accessed on 20 October 2023).
- Temmink, O.H.; Emura, T.; de Bruin, M.; Fukushima, M.; Peters, G.J. Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Sci. 2007, 98, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Montes, A.; Vazquez Rivera, F.; Martinez Lago, N.; Covela Rúa, M.; Cousillas Castineiras, A.; Gonzalez Villarroel, P.; de la Cámara Gómez, J.; Mendez Mendez, J.C.; Salgado Fernandez, M.; Candamio Folgar, S.; et al. Efficacy and safety of trifluridine/tipiracil in third-line and beyond for the treatment of patients with metastatic colorectal cancer in routine clinical practice: Patterns of use and prognostic nomogram. Clin. Transl. Oncol. 2020, 22, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Alnasser, A.I.; Hefnawy, M.M.; Al-Hossaini, A.M.; Bin Jardan, Y.B.; El-Azab, A.S.; Abdel-Aziz, A.M.; Al-Obaid, A.M.; Al-Suwaidan, I.A.; Attwa, M.W.; El-Gendy, M.A. LC–MS/MS method for the quantitation of decitabine and venetoclax in rat plasma after SPE: Application to pharmacokinetic study. Saudi. Pharm. J. 2023, 31, 101693. [Google Scholar] [CrossRef]
- Hefnawy, M.M.; Alanazi, M.M.; Al-Hossaini, A.M.; Alnasser, A.I.; El-Azab, A.S.; Bin Jardan, Y.A.; Attwa, M.W.; El-Gendy, M.A. A Rapid and Sensitive Liquid Chromatography-Tandem Mass Spectrometry Bioanalytical Method for the Quantification of Encorafenib and Binimetinib as a First-Line Treatment for Advanced (Unresectable or Metastatic) Melanoma—Application to a Pharmacokinetic Study. Molecules 2023, 28, 79–92. [Google Scholar]
- Alnasser, A.I.; Hefnawy, M.M.; Alanazi, M.M.; Al-Hossaini, A.M.; Bin Jardan, Y.B.; El-Azab, A.S.; Abdel-Aziz, A.M.; Attwa, M.W.; El-Gendy, M.A. Applicable pharmacokinetic study: Development and validation of bioanalytical LC-MS/MS method for the simultaneous quantification of cytarabine and glasdegib used for the treatment of acute myeloid leukemia. Arab. J. Chem. 2023, 16, 105117. [Google Scholar] [CrossRef]
- Al-Shehri, M.; Hefnawy, M.; Abuelizz, H.; Alzamil, A.; Mohammed, M.; Alsaif, N.; Almehizia, A.; Alkahtani, H.; Abounassif, M. Development and validation of an UHPLC-MS/MS method for simultaneous determination of palbociclib, letrozole and its metabolite carbinol in rat plasma and pharmacokinetic study application. Arab. J. Chem. 2020, 13, 4024–4034. [Google Scholar] [CrossRef]
- Mastanamma, S.K.; Nagaraju, K.; Reehana, S.K. Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of trifluridine and tipiracilin bulk and their combined dosage form. Int. J. ChemTech Res. 2019, 12, 117–126. [Google Scholar] [CrossRef]
- Sahu, S.; Akula, G. Development and validation of a RP-HPLC-PDA method for simultaneous determination of trifluridine and tipiracil in pure and pharmaceutical dosage form. Int. J. Nov. Trends Pharm. Sci. 2017, 7, 233–242. [Google Scholar]
- Kusuma, J.K.; Rao, M.; Raju, R. An effective and sensitive stability indicating chromatographic approach based on RP-HPLC for trifluridine and tipiracil in bulk and pharmaceutical dosage form. Int. J. Res. Pharm. Chem. 2017, 7, 63–70. [Google Scholar]
- Goday, S.; Abdulrahaman, S.; Prameelarani, A. Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of combination drugs trifluridine and tipiracil in bulk and pharmaceutical dosage forms. Int. J. Res. Appl. 2017, 5, 93–104. [Google Scholar]
- Rizwan, M.; Bhameshan, K.; Sultana, A. Analytical method development and validation for the simultaneous determination of tipiracil and trifluridine in bulk and capsule dosage form by RP-HPLC method. Int. J. Innov. Pharm. Sci. Res. 2017, 5, 32–42. [Google Scholar]
- Paw, B.; Misztal, G. Determination of trifluridine in eye drops by high-performance liquid chromatography. Pharmazie 2017, 52, 551–552. [Google Scholar]
- Hazra, B.; Vageesh, N.; Kistayya, C.; Shahanaz, M. Analytical method development and validation for simultaneous estimation of trifluridine and tipiracil in pure and pharmaceutical dosage form. Innov. Int. J. Med. Pharm. Sci. 2018, 3, 245–256. [Google Scholar]
- Prathap, B.; Hari Baskar, V.; Kumar, V.; Raghu, P.S.; Reddy, S.B. Method development and validation for the simultaneous estimation of trifluridine and tipiracil in tablet dosage form by RP-HPLC method. J. Global Trends Pharm. Sci. 2017, 8, 4514–4521. [Google Scholar]
- Phani, R.S.; Prasad, K.R.S.; Mallu, U.R. New bio-analytical method development and validation for the simultaneous estimation of trifluridine and tipiracil in spiked human plasma. Res. J. Pharm. Technol. 2017, 10, 4264–4270. [Google Scholar]
- Shelke, R.U.; Rishipathak, D.D. Bioanalytical method development for quantification of trifluridine with its metabolites and tipiracil in spiked human plasma by solid-phase extraction (SPE) and HPLC with PDA detection. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- U.S. FDA. Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm070107.pdf (accessed on 20 October 2023).
- Kim, H.; Kang, J. Matrix effects: Hurdle for development and validation of bioanalytical LC-MS methods in biological samples analyses. Biodesign 2016, 14, 46–58. [Google Scholar]
- Eeckhaut, A.; Lanckmans, K.; Sarre, S.; Smolders, I.; Michotte, Y. Validation of bioanalytical LC-MS/MS assays: Evaluation of matrix effects. J. Chromatogr. B 2009, 877, 2198–2207. [Google Scholar] [CrossRef]
- Quintela, O.; Sauvage, F.; Charvier, F.; Gaulier, J.; Lachâtre, G.; Marquet, P. Liquid chromatography-tandem mass spectrometry for detection of low concentrations of 21 benzodiazepines, metabolites, and analogs in urine: Method with forensic applications. Clin. Chem. 2006, 52, 1346–1355. [Google Scholar] [CrossRef]
- Gouma, E.; Simos, Y.; Verginadis, I.; Lykoudis, E.; Evangelou, A.; Karkabounas, S. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Lab. Anim. 2012, 46, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhoua, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 4th ed.; Prentice Hall: Harlow, UK, 2000. [Google Scholar]
- AGAH Working Group Pharmacokinetics. “A Collection of Terms, Symbols, Equations, and Explanations of Common Pharmacokinetic and Pharmacodynamic Parameters and Some Statistical Functions” (PDF). Arbeitsgemeinschaft für Angewandte Humanpharmakologie (AGAH) (Association for Applied Human Pharmacology). 16 February 2004. Available online: http://www.agah.eu/fileadmin/_migrated/content_uploads/PK-glossary_PK_working_group_2004.pdf (accessed on 20 October 2023).
- Human Use (CHMP). Assessment Report of Lonsurf (International Non-Proprietary Name: Trifluridine/Tipiracil). EMA/CHMP/287846. 25 February 2016. Procedure No. EMEA/H/C/003897/0000. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/lonsurf (accessed on 20 October 2023).
Analytes | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) | Desolvation Temp. (°C) | Ion Mode |
---|---|---|---|---|---|---|
FTD | 296.96 | 116.86 | 36 | 18 | 150 | ES+ |
FTY | 180.98 | 139.85 | 50 | 16 | 150 | ES+ |
5CDU | 272.96 | 156.86 | 10 | 20 | 150 | ES+ |
TIP | 242.96 | 182.88 | 24 | 20 | 150 | ES+ |
PAR (IS) | 151.97 | 92.68 | 30 | 22 | 150 | ES+ |
Parameters | FTD | FTY | 5CDU | TIP |
Concentration range (ng/mL) | 5–4000 | 5–4000 | 5–4000 | 5–1000 |
Slope (b) | 4.12 × 10−2 | 4.50 × 10−2 | 8.18 × 10−2 | 5.28 × 10−2 |
Intercept (a) | 1.33 × 10−3 | 5.03 × 10−3 | 1.04 × 10−3 | 1.14 × 10−3 |
Correlation of determination (r2) | 0.997 | 0.998 | 0.997 | 0.998 |
Sa a | 1.18 × 10−3 | 1.19 × 10−3 | 2.21 × 10−3 | 2.61 × 10−3 |
Sb b | 2.11 × 10−3 | 2.42 × 10−3 | 2.14 × 10−3 | 1.59 × 10−3 |
Sy/x c | 2.98 × 10−4 | 2.93 × 10−4 | 2.95 × 10−4 | 2.58 × 10−4 |
LLOQ (ng/mL) | 5 | 5 | 5 | 5 |
LLOD (ng/mL) | 1.5 | 1.5 | 1.5 | 1.0 |
Analyte | Nominal Conc. (ng/mL) | Measured Conc. (ng/mL) | CV (%) | Error (%) | |
---|---|---|---|---|---|
FTD | Intra-day | 5 | 4.93 ± 0.32 | 6.49 | −1.40 |
15 | 13.52 ± 0.73 | 5.43 | −9.86 | ||
2000 | 2050.20 ± 28.08 | 1.37 | 2.51 | ||
3900 | 3792.73 ± 44.37 | 1.17 | −2.75 | ||
Inter-day | 5 | 4.58 ± 0.31 | 6.59 | −8.40 | |
15 | 15.52 ± 0.65 | 4.17 | 3.45 | ||
2000 | 2049.80 ± 29.30 | 5.43 | 2.49 | ||
3900 | 3804.45 ± 37.40 | 4.15 | −2.45 | ||
FTY | Intra-day | 5 | 4.82 ± 0.27 | 5.64 | 3.60 |
15 | 13.92 ± 0.65 | 4.67 | −7.20 | ||
2000 | 1956.30 ± 34.61 | 3.77 | −2.19 | ||
3900 | 3826.18 ± 122.14 | 1.19 | −1.88 | ||
Inter-day | 5 | 4.88 ± 0.31 | 6.39 | −2.41 | |
15 | 15.26 ± 0.65 | 4.28 | 1.73 | ||
2000 | 2094.00 ± 61.35 | 2.93 | 4.70 | ||
3900 | 3947.19 ± 77.75 | 1.64 | 1.21 | ||
5CDU | Intra-day | 5 | 4.81 ± 0.44 | 6.22 | −3.86 |
15 | 14.28 ± 0.34 | 2.39 | −4.80 | ||
2000 | 2067.80 ± 73.56 | 3.56 | 3.39 | ||
3900 | 3984.31 ± 92.03 | 2.31 | 2.29 | ||
Inter-day | 5 | 4.46 ± 0.36 | 6.84 | −10.80 | |
15 | 14.79 ± 0.84 | 5.68 | −1.40 | ||
2000 | 2055.80 ± 64.32 | 3.13 | 2.79 | ||
3900 | 4064.19 ± 85.75 | 2.11 | 4.21 | ||
TIP | Intra-day | 5 | 4.88 ± 0.32 | 6.76 | −2.40 |
15 | 14.14 ± 0.46 | 3.31 | −5.73 | ||
500 | 523.80 ± 9.27 | 1.77 | 4.76 | ||
980 | 991.47 ± 23.18 | 2.39 | 1.17 | ||
Inter-day | 5 | 4.81 ± 0.21 | 4.43 | −3.80 | |
15 | 14.74 ± 0.94 | 6.35 | −1.73 | ||
500 | 514.35 ± 13.51 | 2.63 | 2.87 | ||
980 | 1020.86 ± 20.20 | 1.98 | 4.17 |
Analyte | Nominal Conc. (ng/mL) | Measured Conc. (ng/mL) a | Recovery (%) | CV (%) | Matrix Effect (%) |
---|---|---|---|---|---|
FTD | 15 | 13.30 ± 2.2413 | 88.67 | 8.42 | 96.62 ± 3.24 |
2000 | 2164.20 ± 60.67 | 108.21 | 2.80 | 102.97 ± 4.74 | |
3900 | 3724.50 ± 81.89 | 95.50 | 2.19 | 99.10 ± 2.83 | |
FTY | 15 | 13.42 ± 1.89 | 89.50 | 7.03 | 102.90 ± 7.76 |
2000 | 2119.60 ± 81.05 | 105.98 | 3.82 | 99.10 ± 9.32 | |
3900 | 3834.87 ± 114.84 | 98.33 | 2.99 | 96.70 ± 6.22 | |
5CDU | 15 | 13.68 ± 2.47 | 91.20 | 9.03 | 98.95 ± 1.96 |
2000 | 2243.60 ± 77.98 | 112.18 | 3.47 | 95.15 ± 5.34 | |
3900 | 3827.17 ± 157.19 | 98.03 | 4.10 | 98.43 ± 2.56 | |
TIP | 15 | 13.96 ± 1.86 | 93.10 | 6.65 | 97.48 ± 4.10 |
500 | 537.85 ± 11.29 | 107.57 | 2.09 | 101.20 ± 6.43 | |
980 | 956.58 ± 14.17 | 97.61 | 1.48 | 101.15 ± 9.14 |
Drugs | Spiked Conc. (ng/mL) | Dilution Fold | Mean Recovery (%) ± RSD a | Er (%) b |
---|---|---|---|---|
FTD | 6000 | 1:2 | 101.90 ± 3.43 | 1.90 |
1:4 | 98.05 ± 1.91 | −0.95 | ||
FTY | 6000 | 1:2 | 97.65 ± 3.78 | −1.35 |
1:4 | 99.50 ± 1.09 | −0.50 | ||
5CDU | 6000 | 1:2 | 97.91 ± 3.33 | −1.09 |
1:4 | 99.05 ± 1.91 | −0.95 | ||
TIP | 1500 | 1:2 | 99.11 ± 4.41 | −0.91 |
1:4 | 96.05 ± 2.01 | −3.95 |
Mean Recovery (%) ± RSD a | |||||
---|---|---|---|---|---|
Drug | Conc. ng/mL | Auto-Sampler Stability (15 °C, 24 h) b | Short-Term Stability (25 °C, 6 h) c | Freeze-Thaw Stability (−80 °C, 3 cycles) d | Long-Term Stability (−80 °C, 30 days) e |
FTD | 15 | 95.32 ± 1.33 | 93.04 ± 1.42 | 94.00 ± 1.63 | 92.43 ± 2.12 |
4000 | 98.68 ± 0.41 | 95.6 ± 0.13 | 94.79 ± 1.94 | 93.10 ± 3.55 | |
FTY | 15 | 94.20 ± 0.28 | 97.70 ± 0.41 | 92.96 ± 4.30 | 89.53 ± 1.73 |
4000 | 98.80 ± 1.27 | 99.97 ± 1.48 | 96.71 ± 3.11 | 93.64 ± 4.28 | |
CDU | 15 | 93.53 ± 1.44 | 93.87 ± 2.13 | 94.14 ± 2.43 | 89.51 ± 6.29 |
4000 | 97.93 ± 2.32 | 99.96 ± 2.61 | 96.99 ± 3.05 | 94.30 ± 5.31 | |
TIP | 15 | 95.47 ± 3.25 | 95.69 ± 4.02 | 93.78 ± 5.90 | 91.41 ± 4.14 |
1000 | 98.90 ± 0.52 | 98.27 ± 4.21 | 97.91 ± 4.02 | 93.09 ± 4.56 |
Parameter | Unit | FTD | FTY | TIP |
---|---|---|---|---|
AUC0–24 a | ng·h/mL | 14,167.33 ± 953.03 | 6439.83 ± 769.54 | 2142.73 ± 72.27 |
AUC0–∞ b | ng·h/mL | 14,167.33 ± 953.03 | 6439.83 ± 769.54 | 2142.73 ± 72.27 |
Cmax c | ng/mL | 3520.43 ± 611.25 | 2114.67 ± 302.56 | 404.29 ± 29.68 |
Tmax d | h | 0.83 ± 0.29 | 1.0 ± 0.01 | 2.0 ± 0.02 |
t1/2 e | h | 1.6 | - | 2.07 |
Ke f | ng/mL | 0.41 | - | 0.34 |
Vd g | mL/g | 756.76 | - | 76.87 |
CL h | mL/min/kg | 5.46 | - | 25.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gendy, M.; Hefnawy, M.; Alzamil, A.; El-Azab, A.; Abdel-Aziz, A.; El Gamal, A. Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma. Separations 2024, 11, 10. https://doi.org/10.3390/separations11010010
El-Gendy M, Hefnawy M, Alzamil A, El-Azab A, Abdel-Aziz A, El Gamal A. Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma. Separations. 2024; 11(1):10. https://doi.org/10.3390/separations11010010
Chicago/Turabian StyleEl-Gendy, Manal, Mohamed Hefnawy, Adeeba Alzamil, Adel El-Azab, Alaa Abdel-Aziz, and Ali El Gamal. 2024. "Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma" Separations 11, no. 1: 10. https://doi.org/10.3390/separations11010010
APA StyleEl-Gendy, M., Hefnawy, M., Alzamil, A., El-Azab, A., Abdel-Aziz, A., & El Gamal, A. (2024). Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma. Separations, 11(1), 10. https://doi.org/10.3390/separations11010010