Comparative Analysis of Acid Leaching for the Efficient Recovery of Lanthanum and Cerium from Phosphate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis Methods
2.3. Experimental Procedure
3. Results and Discussion
ΔG25°C = −97.45 kJ
ΔG25°C = −36.04 kJ
ΔG25°C = −51.4 kJ
ΔG25°C = −7.96 kJ
3.1. The Effect of Nitric Acid on the Leaching of Lanthanum and Cerium from Phosphates
3.2. Study of the Influence of Sulfuric Acid on the Leaching of Lanthanum and Cerium from Phosphates
3.3. Study of the Effect of Hydrochloric Acid on the Leaching of Lanthanum and Cerium from Phosphates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dutta, T.; Kim, K.H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.H.; Deep, A.; Yun, S.T. Global demand for rare earth resources and strategies for green mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef]
- Eggert, R.G.; Wadia, C.; Anderson, C.; Bauer, D.; Fields, F.; Meinert, L.; Taylor, P. Rare earths: Market disruption, innovation, and global supply chains. Annu. Rev. Environ. Resour. 2016, 41, 199–222. [Google Scholar] [CrossRef]
- Lafrenière, M.-C.; Lapierre, J.-F.; Ponton, D.E.; Guillemette, F.; Amyot, M. Rare Earth Elements (REEs) Behavior in a Large River across a Geological and Anthropogenic Gradient. Geochim. Cosmochim. Acta 2023, 353, 129–141. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Fan, H.-R.; Zhou, L.; Yang, K.-F.; She, H.-D. Carbonatite-related REE deposits: An overview. Minerals 2020, 10, 965. [Google Scholar] [CrossRef]
- Tamayo-Soriano, D.A.; Soria-Aguilar, M.d.J.; Picazo-Rodríguez, N.G.; Martínez-Luévanos, A.; Carrillo-Pedroza, F.R.; Figueroa-López, U.; Valenzuela García, J.L. Acid Leaching of La and Ce from Ferrocarbonatite-Related REE Ores. Minerals 2024, 14, 504. [Google Scholar] [CrossRef]
- Yang, J.; Song, W.; Liu, Y.; Zhu, X.; Kynicky, J.; Chen, Q. Mineralogy and Element Geochemistry of the Bayan Obo (China) Carbonatite Dykes: Implications for REE Mineralization. Ore Geol. Rev. 2024, 165, 105873. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, L.; Wang, Z.; Zhang, Y.; Chi, R. Effect of Surfactant Addition on Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ores with Magnesium Sulfate. Int. J. Min. Sci. Technol. 2023, 33, 1045–1053. [Google Scholar] [CrossRef]
- Yang, B.; He, J. New Insights into Selective Depression Mechanism of Tamarindus indica Kernel Gum in Flotation Separation of Fluorapatite and Calcite. Sep. Purif. Technol. 2025, 354, 128787. [Google Scholar] [CrossRef]
- Yu, A.; Ding, Z.; Yuan, J.; Feng, Q.; Wen, S.; Bai, S. Process Mineralogy Characteristics and Flotation Optimization of a Low-Grade Oxidized Lead and Zinc Ore from Lanping Mine. Minerals 2023, 13, 1167. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on Hydrometallurgical Recovery of Rare Earth Metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Tan, X.; Liu, M.; He, K. Study of Long-Term Determination Accuracy for REEs in Geological Samples by Inductively Coupled Plasma Quadrupole Mass Spectrometry. Molecules 2021, 26, 290. [Google Scholar] [CrossRef] [PubMed]
- Reven, C.G.; Montano, M.; Samaniego, J.O.; Tanciongco, A.R.N.; Quierrez, R.N. Comparative Study on Determination of Selected Rare Earth Elements (REEs) in Ion Adsorption Clays Using Handheld LIBS and ICP-MS. Philipp. J. Sci. 2022, 151, 1599–1604. [Google Scholar] [CrossRef]
- Cai, H.; Guan, B.; Xu, L. Low-cost ferrite PM-assisted synchronous reluctance machine for electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 5741–5748. [Google Scholar] [CrossRef]
- Takano, M.; Asano, S.; Goto, M. Recovery of Nickel, Cobalt, and Rare-Earth Elements from Spent Nickel–Metal-Hydride Battery: Laboratory Tests and Pilot Trials. Hydrometallurgy 2022, 209, 105826. [Google Scholar] [CrossRef]
- Mazurek, K.; Białowicz, K.; Trypuć, M. Recovery of Vanadium, Potassium, and Iron from a Spent Catalyst Using Urea Solution. Hydrometallurgy 2010, 103, 19–24. [Google Scholar] [CrossRef]
- Yu, G.; Ni, S.; Gao, Y.; Mo, D.; Zeng, Z.; Sun, X. Recovery of Rare Earth Metal Oxides from NdFeB Magnet Leachate by Hydrophobic Deep Eutectic Solvent Extraction, Oxalate Stripping, and Calcination. Hydrometallurgy 2024, 223, 106209. [Google Scholar] [CrossRef]
- Chen, W.; Honghui, H.; Bai, T.; Jiang, S. Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources 2017, 6, 51. [Google Scholar] [CrossRef]
- Brückner, L.; Elwert, T.; Schirmer, T. Extraction of Rare Earth Elements from Phospho-Gypsum: Concentrate Digestion, Leaching, and Purification. Metals 2020, 10, 131. [Google Scholar] [CrossRef]
- Bazin, C.; Boulanger, J.-F. Investigation of the Flotation of an Ore Containing Bastnaesite and Monazite: Kinetic Study and Process Flowsheet Simulation. Minerals 2024, 14, 906. [Google Scholar] [CrossRef]
- ALCONIX. Comprehensive Operations in Non-Ferrous Metals from Distribution and Sales to Manufacturing. Available online: https://www.alconix.com/en/business/ (accessed on 10 January 2024).
- Kenzhaliyev, B.; Surkova, T.; Berkinbayeva, A.; Baltabekova, Z.; Smailov, K. Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals 2024, 14, 699. [Google Scholar] [CrossRef]
- Chen, L.; He, X.; Dang, X.; Wang, X.; Liu, W.; Zhang, D.; Yang, T. Rare earth dissolution from polishing powder waste in H2O2-H2SO4 system: Condition optimization and leaching mechanism. Hydrometallurgy 2024, 224, 106248. [Google Scholar] [CrossRef]
- Balinski, A.; Atanasova, P.; Wiche, O.; Kelly, N.; Reuter, M.; Scharf, C. Recovery of REEs, Zr(+Hf), Mn and Nb by H2SO4 leaching of eudialyte concentrate. Hydrometallurgy 2019, 186, 176–186. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, C.; Pan, J.; Zhang, N.; Liu, C.; Cao, S.; Hu, T.; Ji, W. Study on extraction of rare earth elements from coal fly ash through alkali fusion—Acid leaching. Miner. Eng. 2019, 136, 36–42. [Google Scholar] [CrossRef]
- Chen, X.; Guo, F.; Chen, Q.; Liu, X.; Zhao, Z. Leaching tungsten and rare earth elements from scheelite through H2SO4–H3PO4 mixed acid decomposition. Miner. Eng. 2020, 156, 106526. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.S.; Choi, E.; Nieman, C.L.; Joo, J.H.; Lin, F.R.; Gitlin, L.N.; Han, H.-R. Effects of community-based health worker interventions to improve chronic disease management and care among vulnerable populations: A systematic review. Am. J. Public Health 2016, 106, e3–e28. [Google Scholar] [CrossRef]
- Abhilash; Sinha, S.; Sinha, M.K.; Pandey, B.D. Study on the Leaching Conditions of Rare Earth Elements from Uranium Sorption Tails. Energy Sav. Resour. Sav. 2014, 127, 70–73. [Google Scholar] [CrossRef]
- Rao, M.; Xia, H.; Xu, Y.; Jiang, G.; Zhang, Q.; Yuan, Y.; Zhang, L. Study on Ultrasonic Assisted Intensive Leaching of Germanium from Germanium Concentrate Using HCl/NaOCl. Hydrometallurgy 2024, 230, 106385. [Google Scholar] [CrossRef]
- Shen, X.; Finn, E.S.; Scheinost, D.; Rosenberg, M.D.; Chun, M.M.; Papademetris, X.; Constable, R.T. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 2017, 12, 506–518. [Google Scholar] [CrossRef]
- Akcil, A.; Swami, K.R.; Gardas, R.L.; Hazrati, E.; Dembele, S. Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud. Minerals 2024, 14, 587. [Google Scholar] [CrossRef]
- He, J.; Tang, H.; Guo, C.; Zhu, L.; Huang, S.; Yang, B. Synergist Enhancement of Effective Desilication of Graphite Ore by Rotary Triboelectric Separation and Surface Modification. Powder Technol. 2024, 444, 119965. [Google Scholar] [CrossRef]
- Zhu, L.; He, J.; Chen, L.; Yang, B. Efficient Extraction of Rare Earth Elements from Coal-Series Kaolin by Combining Alkali Fusion and Sulfamic Acid Leaching. Process Saf. Environ. Prot. 2024, 191, 122–130. [Google Scholar] [CrossRef]
- Ultarakova, A.; Karshyga, Z.; Lokhova, N.; Yessengaziyev, A.; Kassymzhanov, K.; Mukangaliyeva, A. Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide. Materials 2022, 15, 8314. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Z.; Liu, H.; Zhu, W.; Wei, B.; Zhong, X.; Wang, R.; Zeng, Y. Hydrochloric Acid Leaching of Rare Earth Elements from a Novel Source of Deep-Sea Sediments and Advantage of Reduction with H2O2. Hydrometallurgy 2024, 230, 106383. [Google Scholar] [CrossRef]
- Ultarakova, A.; Karshigina, Z.B.; Lokhova, N.G.; Yessengaziyev, A.M.; Kassymzhanov, K.K.; Tolegenova, S.S. Extraction of amorphous silica from waste dust of electrowinning of ilmenite concentrate. Metalurgija 2022, 61, 377–380. [Google Scholar]
- Xu, D.; Shah, Z.; Cui, Y.; Jin, L.; Peng, X.; Zhang, H.; Sun, G. Recovery of Rare Earths from Nitric Acid Leach Solutions of Phosphate Ores Using Solvent Extraction with a New Amide Extractant (TODGA). Hydrometallurgy 2018, 180, 132–138. [Google Scholar] [CrossRef]
- Dzulqornain, A.M.; Cueva-Sola, A.B.; Chung, K.W.; Lee, J.-Y.; Jyothi, R.K. Strategy for Possible Separation of Light Rare Earth Elements (La, Ce, Pr, Nd) from Synthetic Chloride Solutions by Oxidative Precipitation, Solvent Extraction, and Stripping. Hydrometallurgy 2024, 224, 106242. [Google Scholar] [CrossRef]
- Ultarakova, A.; Lokhova, N.; Karshyga, Z.; Toishybek, A.; Yessengaziyev, A.; Kassymzhanov, K.; Mukangaliyeva, A. Studies of Niobium Sorption from Chloride Solutions with the Use of Anion-Exchange Resins. Processes 2023, 11, 1288. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds; Mir: Moscow, Russia, 1966; p. 412. [Google Scholar]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society: London, UK, 1974; p. 539. [Google Scholar]
- Pechkovsky, V.V.; Melnikova, R.Y.; Dzyuba, E.D.; Barannikova, T.I.; Nikanovich, M.V. Atlas of Infrared Spectra of Phosphates. In Orthophosphates; Nauka: Moscow, Russia, 1981; p. 248. [Google Scholar]
- Anosov, V.Y.; Ozerova, M.I.; Fialkov, Y.Y. Fundamentals of Physical-Chemical Analysis; Nauka: Moscow, Russia, 1976; p. 503. [Google Scholar]
- Moldoveanu, G.A.; Kolliopoulos, G.; Judge, W.D.; Ng, K.L.; Azimi, G.; Papangelakis, V.G. Solubilities of Individual Light Rare Earth Sulfates (Lanthanum to Europium) in Water and H2SO4 Solutions (Neodymium Sulfate). Hydrometallurgy 2024, 223, 106194. [Google Scholar] [CrossRef]
- Ultarakova, A.; Lokhova, N.; Karshyga, Z.; Yessengaziyev, A.; Kassymzhanov, K.; Mukangaliyeva, A. Recovery of Niobium Pentaoxide and Ammonium Sulfate from Titanium-Magnesium Production Waste. J. Ecol. Eng. 2023, 24, 227–235. [Google Scholar] [CrossRef]
- Yatsemirsky, K.B. Chemistry of Rare Earth Element Complex Compounds; Institute of General and Inorganic Chemistry: Kiev, Ukraine, 1996; p. 196. [Google Scholar]
- Ospanov, K.K. Thermodynamics and Kinetics of Heterogeneous (Nonequilibrium) Chemical Processes; Komplex: Almaty, Kazakhstan, 2006; p. 328. [Google Scholar]
- Baigenzhenov, O.S.; Chepushtanova, T.A.; Altmyshbayeva, A.Z.; Temirgali, I.A.; Maldybayev, G.; Sharipov, R.H.; Altaibayev, B.T.; Dagubayeva, A.T. Investigation of thermodynamic and kinetic regularities of asbestos waste leaching processes. Results Eng. 2024, 21, 102000. [Google Scholar] [CrossRef]
- Dolivo-Dobrovolsky, V.V. Assessment of Selectivity in Dissolution of Mineral Substances. Ore Benef. 1964, 5, 38–41. [Google Scholar]
- Kostromina, N.A. Complexonates of Rare Earth Elements; Nauka: Moscow, Russia, 1980; p. 219. [Google Scholar]
- Grinberg, A.A. Introduction to the Chemistry of Complex Compounds; Chemistry: Leningrad, Russia, 1966; p. 632. [Google Scholar]
Concentration of HNO3, g-mol/dm3 | Temperature, °C | |||
---|---|---|---|---|
25 | 60 | |||
La | Ce | La | Ce | |
2.28 | 1.11 | 0.93 | 9.03 | 7.40 |
2.55 | 1.31 | 1.11 | 12.63 | 10.48 |
2.96 | 1.59 | 1.32 | 19.62 | 16.88 |
3.31 | 2.19 | 1.82 | 28.81 | 24.49 |
4.37 | 3.48 | 2.89 | 56.07 | 48.78 |
4.97 | 4.93 | 4.04 | 73.32 | 63.05 |
5.84 | 7.06 | 6.07 | 100.51 | 88.45 |
7.45 | 17.12 | 14.38 | 142.19 | 118.02 |
8.42 | 34.89 | 29.65 | 166.83 | 140.14 |
9.41 | 78.63 | 72.24 | 198.24 | 172.69 |
The Concentration of Nitric Acid, mol/dm3 | Temperature, °C | |||
---|---|---|---|---|
Reaction Rate, mol/L·s | Rate Constant of the Reaction, mol/L·s | |||
La | Ce | La | Ce | |
3.0 | 2.5 × 10−5 | 1.7 × 10−5 | 2.22 × 10−2 | 1.03 × 10−2 |
6.0 | 1.0 × 10−4 | 7.2 × 10−5 | 1.87 × 10−1 | 5.42 × 10−2 |
8.5 | 1.0 × 10−4 | 2.8 × 10−4 | 1.96 × 10−1 | 1.43 × 10−1 |
10.0 | 1.2 × 10−4 | 7.2 × 10−5 | 3.89 ×10−2 | 1.35 × 10−1 |
12.5 | 4.4 × 10−4 | 8.9 × 10−5 | 6.67 × 10−2 | 3.68 × 10−2 |
“The Concentration of Sulfuric Acid, mol/dm3” | Rate Constant, mol/L·s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
20 °C | 40 °C | 60 °C | 80 °C | 95 °C | ||||||
La | Ce | La | Ce | La | Ce | La | Ce | La | Ce | |
1.0 | 1.83 × 10−9 | 4.30 × 10−10 | 2.59 × 10−9 | 6.51 × 10−10 | 3.07 × 10−9 | 7.03 × 10−10 | 3.11 × 10−9 | 1.35 × 10−9 | 4.08 × 10−9 | 1.93 × 10−9 |
1.5 | 1.89 × 10−9 | 4.86 × 10−10 | 2.44 × 10−9 | 7.59 × 10−10 | 3.23 × 10−9 | 1.06 × 10−9 | 3.96 × 10−9 | 1.56 × 10−9 | 5.43 × 10−9 | 2.79 × 10−9 |
2.0 | 2.11 × 10−9 | 7.59 × 10−10 | 2.60 × 10−9 | 1.10 × 10−9 | 3.60 × 10−9 | 2.12 × 10−9 | 4.56 × 10−9 | 2.48 × 10−9 | 5.51 × 10−9 | 3.39 × 10−9 |
2.5 | 1.84 × 10−9 | 7.59 × 10−10 | 2.44 × 10−9 | 1.35 × 10−9 | 3.07 × 10−9 | 1.81 × 10−9 | 4.37 × 10−9 | 2.68 × 10−9 | 5.89 × 10−9 | 3.37 × 10−9 |
3.0 | 2.07 × 10−9 | 9.09 × 10−10 | 2.67 × 10−9 | 1.30 × 10−9 | 3.82 × 10−9 | 2.00 × 10−9 | 5.05 × 10−9 | 2.88 × 10−9 | 7.26 × 10−9 | 4.24 × 10−9 |
The Concentration of Sulfuric Acid, mol/dm3 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
La | Ce | La | Ce | La | Ce | La | Ce | La | Ce | |
Activation energy, kJ/mol | 40.0 | 45.9 | 31.9 | 41.8 | 28.1 | 40.0 | 22.3 | 25.5 | 15.7 | 16.0 |
Temperature, °C | La | Ce | ||
---|---|---|---|---|
Rate Constant, mol/L⋅s | Activation Energy, kJ/mol | Rate Constant, mol/L⋅s | Activation Energy, kJ/mol−1 | |
20 | 3.36 × 10−9 | 22.2 | 2.42 × 10−9 | 22.8 |
40 | 5.04 × 10−9 | 4.82 × 10−9 | ||
60 | 8.20 × 10−9 | 6.32 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulvaliyev, R.; Ultarakova, A.; Mukangaliyeva, A.; Lokhova, N.; Kassymzhanov, K. Comparative Analysis of Acid Leaching for the Efficient Recovery of Lanthanum and Cerium from Phosphate. Separations 2024, 11, 288. https://doi.org/10.3390/separations11100288
Abdulvaliyev R, Ultarakova A, Mukangaliyeva A, Lokhova N, Kassymzhanov K. Comparative Analysis of Acid Leaching for the Efficient Recovery of Lanthanum and Cerium from Phosphate. Separations. 2024; 11(10):288. https://doi.org/10.3390/separations11100288
Chicago/Turabian StyleAbdulvaliyev, Rinat, Almagul Ultarakova, Arailym Mukangaliyeva, Nina Lokhova, and Kaisar Kassymzhanov. 2024. "Comparative Analysis of Acid Leaching for the Efficient Recovery of Lanthanum and Cerium from Phosphate" Separations 11, no. 10: 288. https://doi.org/10.3390/separations11100288
APA StyleAbdulvaliyev, R., Ultarakova, A., Mukangaliyeva, A., Lokhova, N., & Kassymzhanov, K. (2024). Comparative Analysis of Acid Leaching for the Efficient Recovery of Lanthanum and Cerium from Phosphate. Separations, 11(10), 288. https://doi.org/10.3390/separations11100288