Separation and Characterization of Wenjin Tongluo San Essential Oil with a Comprehensive Chromatographic Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents and Chemicals
2.3. Sample Preparation
2.4. 1D Countercurrent Chromatographic Analysis
2.5. 2D Gas Chromatographic Analysis
2.6. GC-Mass Analysis
2.7. Data Analysis
2.7.1. Chromatograms and Comprehensive Two-Dimensional Contour Map
2.7.2. Peak Capacity
2.7.3. Spatial Coverage
3. Results
3.1. Optimization of Separation Conditions
3.1.1. Optimization of Separation Conditions of GC
3.1.2. Optimization of Separation Conditions of CCC
3.2. Comprehensive Two-Dimensional CCC × GC Analysis of the Wenjing Tongluo San Essential Oil
3.3. Orthogonality Evaluation of Comprehensive Two-Dimensional CCC × GC Analysis of the Wenjing Tongluo San Essential Oil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potterat, O.; Hamburger, M. Concepts and Technologies for Tracking Bioactive Compounds in Natural Product Extracts: Generation of Libraries, and Hyphenation of Analytical Processes with Bioassays. Nat. Prod. Rep. 2013, 30, 546. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid.-Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, D.M.; Serag, A.; Abdel Shakour, Z.T.; Farag, M. Novel Trends and Applications of Multidimensional Chromatography in the Analysis of Food, Cosmetics and Medicine Bearing Essential Oils. Talanta 2021, 223, 121710. [Google Scholar] [CrossRef] [PubMed]
- Beccaria, M.; Siqueira, A.L.M.; Maniquet, A.; Giusti, P.; Piparo, M.; Stefanuto, P.; Focant, J. Advanced Mono- and Multi-dimensional GC–Mass Spectrometry Techniques for Oxygen-containing Compound Characterization in Biomass and Biofuel Samples. J. Sep. Sci. 2021, 44, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Complementary Use of Multi-Dimensional GC and Proton Transfer Reaction Mass Spectrometry for Identification of Rapeseed Oil Quality Indicators. Food Anal. Methods 2018, 11, 3417–3424. [Google Scholar] [CrossRef]
- Magagna, F.; Valverde-Som, L.; Ruíz-Samblás, C.; Cuadros-Rodríguez, L.; Reichenbach, S.E.; Bicchi, C.; Cordero, C. Combined Untargeted and Targeted Fingerprinting with Comprehensive Two-Dimensional Chromatography for Volatiles and Ripening Indicators in Olive Oil. Anal. Chim. Acta 2016, 936, 245–258. [Google Scholar] [CrossRef]
- Cacciola, F. Dwight R. Stoll and Peter W. Carr (Eds.): Multi-Dimensional Liquid Chromatography: Principles, Practice, and Applications. Anal. Bioanal. Chem. 2023, 415, 3055–3056. [Google Scholar] [CrossRef]
- Dixon, S.P.; Pitfield, I.D.; Perrett, D. Comprehensive Multi-dimensional Liquid Chromatographic Separation in Biomedical and Pharmaceutical Analysis: A Review. Biomed. Chromatogr. 2006, 20, 508–529. [Google Scholar] [CrossRef]
- Shah, P.A.; Shrivastav, P.S.; Sharma, V. Multidimensional Chromatography Platforms: Status and Prospects. Bioanalysis 2021, 13, 1083–1086. [Google Scholar] [CrossRef]
- Pirok, B.W.J.; Gargano, A.F.G.; Schoenmakers, P.J. Optimizing Separations in Online Comprehensive Two-dimensional Liquid Chromatography. J. Sep. Sci. 2018, 41, 68–98. [Google Scholar] [CrossRef]
- Shi, X.; Wang, S.; Yang, Q.; Lu, X.; Xu, G. Comprehensive Two-Dimensional Chromatography for Analyzing Complex Samples: Recent New Advances. Anal. Methods 2014, 6, 7112–7123. [Google Scholar] [CrossRef]
- Aly, A.A.; Muller, M.; de Villiers, A.; Pirok, B.W.J.; Górecki, T. Parallel Gradients in Comprehensive Multidimensional Liquid Chromatography Enhance Utilization of the Separation Space and the Degree of Orthogonality When the Separation Mechanisms Are Correlated. J. Chromatogr. A 2020, 1628, 461452. [Google Scholar] [CrossRef] [PubMed]
- Mommers, J.; van der Wal, S. Two Metrics for Measuring Orthogonality for Two-Dimensional Chromatography. J. Chromatogr. A 2019, 1586, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, S.; Wang, C.; Sun, W.; Jin, Y.; Gong, X.; Tong, S. Off-line Comprehensive Two-dimensional Reversed-phase CCC with High-performance Liquid Chromatography: Orthogonality in Separation of Polygonum Cuspidatum Sieb. et Zucc. J. Sep. Sci. 2020, 43, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Camenzuli, M.; Schoenmakers, P.J. A New Measure of Orthogonality for Multi-Dimensional Chromatography. Anal. Chim. Acta 2014, 838, 93–101. [Google Scholar] [CrossRef]
- Lin, T.; Zhu, B.; Wen, M.; Ma, C.; Tong, S. Retention Correlation and Orthogonality between Reversed Phase CCC and Liquid Chromatography Based on Solvent Strength. J. Chromatogr. A 2023, 1707, 464322. [Google Scholar] [CrossRef]
- Brandão, P.F.; Duarte, A.C.; Duarte, R.M.B.O. Comprehensive Multidimensional Liquid Chromatography for Advancing Environmental and Natural Products Research. TrAC Trends Anal. Chem. 2019, 116, 186–197. [Google Scholar] [CrossRef]
- Friesen, J.B.; McAlpine, J.B.; Chen, S.-N.; Pauli, G.F. Countercurrent Separation of Natural Products: An Update. J. Nat. Prod. 2015, 78, 1765–1796. [Google Scholar] [CrossRef]
- Song, H.; Lin, J.; Zhu, X.; Chen, Q. Developments in High-Speed CCC and Its Applications in the Separation of Terpenoids and Saponins. J. Sep. Sci. 2016, 39, 1574–1591. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Yang, T.; Sun, B. High-Speed CCC as an Efficient Technique for Large Separation of Plant Polyphenols: A Review. Food Res. Int. 2022, 153, 110956. [Google Scholar] [CrossRef]
- Kapp, T.; Vetter, W. Offline Coupling of High-Speed Counter-Current Chromatography and GC/Mass Spectrometry Generates a Two-Dimensional Plot of Toxaphene Components. J. Chromatogr. A 2009, 1216, 8391–8397. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Xu, P.; Xiang, H.; Wen, M.; Ye, X.; Chu, C.; Tong, S. Comprehensive Two-Dimensional CCC × GC Characterization of Artemisia Argyi Essential Oil. Anal. Chim. Acta 2023, 1237, 340614. [Google Scholar] [CrossRef] [PubMed]
- Inui, T.; Wang, Y.; Pro, S.M.; Franzblau, S.G.; Pauli, G.F. Unbiased Evaluation of Bioactive Secondary Metabolites in Complex Matrices. Fitoterapia 2012, 83, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhou, Z.; Yin, C.; Chen, M.; Li, Y.; Zhong, F. Analysis of the Volatiles and Pyrolysis Products in Artemisia Argyi Leaves Extract by Comprehensive Two-Dimensional GC Coupled to Time-of-Flight Mass Spectrometry. Fine Chem. 2013, 30, 45–50. [Google Scholar]
- Zhang, H.; Chen, Z.; Fang, C. Analysis of Chemical Components in the Essential Oil of Lycopodium fargesii by GC-MS. J. Chin. Med. Mater. 2016, 39, 2785–2789. [Google Scholar] [CrossRef]
- Gan, C.; Yin, B.; Zhang, J.; Gao, Y.; Zhao, Z. Effects of the Extraction of Essential Oil from Folium A. argyi on the Activity Components of the Related Water Extraction and the Comparison of Their Antibacterial Activity. J. Food Sci. Biotechnol. 2015, 134, 1327–1331. [Google Scholar]
- Liu, J.; Wan, Y.; Zhao, Z.; Chen, H. Determination of the content of rosmarinic acid by HPLC and analytical comparison of volatile constituents by GC-MS in different parts of Perilla frutescens (L.) . Britt. Chem. Cent. J. 2013, 7, 61. [Google Scholar] [CrossRef]
- Xu, C.; Liang, Y.; Song, Y.; Li, J. Resolution of the Essential Constituents of Ramulus cinnamomi by an Evolving Chemometric Approach. Fresenius J. Anal. Chem. 2001, 371, 331–336. [Google Scholar] [CrossRef]
- Qian, C.; Chen, X.; Xiao, X.; Zhou, X.; Wang, Y.; Xiang, Z. Analysis of Volatile Components in Radix Angelicae Pubescentis Essential Oils by Comprehensive Two-Dimensional Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. J. Instrum. Anal. 2022, 41, 78–90. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Luo, Q. Application of HS-SPME-GC-MS Analysis Combined with Principal Component Analysis (PCA) in Volatile Oil of Baizhi (Angelica dahurica). Liaoning J. Tradit. Chin. Med. 2023, 50, 178–181. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, S.; Zhang, X.; Yang, J.; Zhong, M. Analysis of the Essential Oils from Cortex Acanthopanacis by Gas Chromatography-Mass Spectrometry. Chin. J. Drug Econ. 2013, 1, 28–30. [Google Scholar]
- Kim, I.H.; Kim, S.H.; Kwon, J.H. Fermentation Characteristics of Yakju Added with Acanthopanacis Cortex. J. Korean Soc. Food Sci. Nutr. 2008, 37, 521–527. [Google Scholar] [CrossRef]
- Liao, F.; Xin, L.; Chen, H.; Xia, Z. Analysis of the Constituents of Volatile Oil from Fructus Aurantii Immaturus and Fructus Aurantii as Traditional Chinese Medicine. J. Chongqing Univ. 2004, 27, 38–40. [Google Scholar]
- Xu, P.; Wang, X.; Lin, T.; Shao, Q.; Peng, J.; Chu, C.; Tong, S. A Strategy for Pinpointing Natural Bioactive Components Using Two-Dimensional Bioassay Profilings Combined with Comprehensive Two-Dimensional CCC × High-Performance Liquid Chromatography. Anal. Chem. 2022, 94, 12715–12722. [Google Scholar] [CrossRef]
- Stoll, D.R.; Wang, X.; Carr, P.W. Comparison of the Practical Resolving Power of One- and Two-Dimensional High-Performance Liquid Chromatography Analysis of Metabolomic Samples. Anal. Chem. 2008, 80, 268–278. [Google Scholar] [CrossRef]
- Semard, G.; Peulon-Agasse, V.; Bruchet, A.; Bouillon, J.-P.; Cardinaël, P. Convex Hull: A New Method to Determine the Separation Space Used and to Optimize Operating Conditions for Comprehensive Two-Dimensional GC. J. Chromatogr. A 2010, 1217, 5449–5454. [Google Scholar] [CrossRef]
- van den Heuvel, E.; Zhan, Z. Myths About Linear and Monotonic Associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ. Am. Stat. 2022, 76, 44–52. [Google Scholar] [CrossRef]
- Rutan, S.C.; Davis, J.M.; Carr, P.W. Fractional Coverage Metrics Based on Ecological Home Range for Calculation of the Effective Peak Capacity in Comprehensive Two-Dimensional Separations. J. Chromatogr. A 2012, 1255, 267–276. [Google Scholar] [CrossRef]
No. | Compounds | Formula | MF | RMF | CAS | ID | Retention Time (min) |
---|---|---|---|---|---|---|---|
1 | Cyclotetrasiloxane, octamethyl | C8H24O4Si4 | 850 | 910 | 556-67-2 | 41370 | 13.003 |
2 | Cyclopentasiloxane, decamethyl | C10H30O5Si5 | 881 | 901 | 541-02-6 | 296357 | 22.247 |
3 | Cyclohexasiloxane, dodecamethyl | C12H36O6Si6 | 830 | 927 | 540-97-6 | 12776 | 33.26 |
4 | Cycloheptasiloxane, tetradecamethyl | C14H42O7Si7 | 662 | 843 | 107-50-6 | 41361 | 43.72 |
No. | Compounds | Formula | MF | RMF | CAS | ID | Retention Time (min) |
---|---|---|---|---|---|---|---|
1 | 3,6-Heptadien-2-ol, 2,5,5-trimethyl-, (E)- | C10H18O | 782 | 880 | 26127-98-0 | 9037 | 12.837 |
2 | Bicyclo[3.1.1]heptan-3-ol, 6,6-dimethyl-2-methylene-, [1S-(1α,3α,5α)]- | C10H16O | 708 | 901 | 547-61-5 | 17309 | 20.495 |
3 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, trans | C10H18O | 751 | 851 | 29803-81-4 | 17434 | 20.642 |
4 | Camphor | C10H16O | 828 | 904 | 76-22-2 | 18060 | 20.842 |
5 | p-Mentha-1,5-dien-8-ol | C10H16O | 586 | 808 | 1686-20-0 | 35243 | 21.181 |
6 | endo-Borneol | C10H18O | 877 | 906 | 507-70-0 | 85143 | 22.185 |
7 | α-Terpineol | C10H18O | 662 | 803 | 98-55-5 | 9091 | 23.833 |
8 | Naphthalene, 1,2,3,4,4a,5,6,7-octahydro-4a-methyl | C11H18 | 659 | 758 | 13943-77-6 | 148898 | 24.949 |
9 | 2-Cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)-, cis | C10H16O | 708 | 799 | 1197-06-4 | 21593 | 25.649 |
10 | (Z)-3-Phenylacrylaldehyde | C9H8O | 948 | 953 | 57194-69-1 | 143344 | 28.78 |
No. | Compounds | Formula | MF | RMF | CAS | ID | Retention Time (min) |
---|---|---|---|---|---|---|---|
1 | Linalool | C10H18O | 852 | 876 | 78-70-6 | 45273 | 18.376 |
2 | Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1S)- | C10H16O | 882 | 922 | 464-48-2 | 84807 | 20.843 |
3 | (+)-2-Bornanone | C10H16O | 897 | 922 | 464-49-3 | 18069 | 20.843 |
4 | Terpinen-4-ol | C10H18O | 849 | 888 | 562-74-3 | 11291 | 22.963 |
5 | α-Terpineol | C10H18O | 794 | 883 | 98-55-5 | 9091 | 23.845 |
6 | Perilla ketone | C10H14O2 | 715 | 847 | 553-84-4 | 85137 | 27.694 |
7 | 2-Cyclohexen-1-one, 3-methyl-6-(1-methylethyl)- | C10H16O | 906 | 933 | 89-81-6 | 21855 | 27.799 |
8 | 2-Penten-1-one, 1-(3-furanyl)-4-methyl | C10H12O2 | 801 | 838 | 34348-59-9 | 85362 | 30.961 |
9 | Decanoic acid, 1,1a,1b,4,4a,5,7a,7b,8,9-decahydro-4a,7b-dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl- | C40H64O9 | 518 | 564 | 24928-17-4 | 9246 | 34.566 |
No. | Compounds | Formula | MF | RMF | CAS | ID | Retention Time (min) |
---|---|---|---|---|---|---|---|
1 | 1,2-Benzenedicarboxylic acid, butyl octyl ester | C20H30O4 | 533 | 786 | 84-78-6 | 29683 | 71.39 |
2 | Osthole | C15H16O3 | 687 | 814 | 484-12-8 | 260376 | 74.93 |
3 | Hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester | C35H68O5 | 640 | 691 | 761-35-3 | 8529 | 81.01 |
4 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | C19H38O4 | 768 | 866 | 23470-00-0 | 8469 | 81.03 |
5 | Octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | C21H42O4 | 636 | 795 | 621-61-4 | 8534 | 84.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Han, X.; Zuo, G.; Feng, J. Separation and Characterization of Wenjin Tongluo San Essential Oil with a Comprehensive Chromatographic Separation. Separations 2024, 11, 292. https://doi.org/10.3390/separations11100292
Wang C, Han X, Zuo G, Feng J. Separation and Characterization of Wenjin Tongluo San Essential Oil with a Comprehensive Chromatographic Separation. Separations. 2024; 11(10):292. https://doi.org/10.3390/separations11100292
Chicago/Turabian StyleWang, Chaoyue, Xionggao Han, Guanglei Zuo, and Jinghui Feng. 2024. "Separation and Characterization of Wenjin Tongluo San Essential Oil with a Comprehensive Chromatographic Separation" Separations 11, no. 10: 292. https://doi.org/10.3390/separations11100292
APA StyleWang, C., Han, X., Zuo, G., & Feng, J. (2024). Separation and Characterization of Wenjin Tongluo San Essential Oil with a Comprehensive Chromatographic Separation. Separations, 11(10), 292. https://doi.org/10.3390/separations11100292