Body Volatilome Study Strategy for COVID-19 Biomarker Identification Considering Exogenous Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.2. Sampling
2.3. TD-GC×GC/TOF MS Analysis
2.4. Data Processing and Biomarker Research Methodology
2.5. Quantification
3. Results and Discussion
3.1. Search for Biomarkers
3.1.1. Cosmetic Influence
Identified Compound | Trade Name | RT 1D | RT 2D | FC1′ |
---|---|---|---|---|
Octanal, 2-(phenylmethylene)- | Jasmonal A® | 2834.8 | 2.13 | 16.5 |
Octanal, 2-(phenylmethylene)- | Jasmonal A® | 2885.8 | 2.05 | 16.5 |
Benzenemethanol, α-(trichloromethyl)-, acetate | Rosacetol® | 2417.8 | 2.08 | 14.3 |
Amberonne (isomer 1) | Amberonne® | 2639.8 | 1.99 | 11.2 |
Cyclopenta[g]-2-benzopyran, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl- | Galaxolide® | 3050.8 | 1.89 | 10.4 |
3-Buten-2-one,4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | Β-Ionone | 2252.9 | 2.1 | 24.4 |
Cedrol | Cedrol | 2519.8 | 2.02 | 12.0 |
α Isomethyl ionone | Isoraldeine 70® | 2234.9 | 2.02 | 26.5 |
Benzoic acid, 2-hydroxy-, 2-methylbutyl ester | / | 2453.8 | 1.99 | 17.5 |
Cyclopenta[g]-2-benzopyran, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl- | Galaxolide® | 3158.8 | 1.93 | 29.2 |
Cyclopenta[g]-2-benzopyran, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl- | Galaxolide® | 3095.8 | 1.93 | 64.7 |
4,7-Methano-1H-indenol, hexahydro- | Cyclacet | 1712.9 | 2.27 | 11.3 |
Cyclopenta[g]-2-benzopyran, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl- | Galaxolide® | 3137.8 | 1.92 | 12.5 |
3.1.2. Environmental Influence
Identified Compounds | RT 1D | RT 2D | FC1′ |
---|---|---|---|
Benzene, (1-ethylnonyl)- | 2657.8 | 1.59 | 15.5 |
Benzene, (1-pentylheptyl)- | 2795.8 | 1.56 | 16.7 |
Decane | 977.9 | 1.38 | 12.6 |
Benzene, (1-pentylhexyl)- | 2585.8 | 1.56 | 10.7 |
Benzene, (1-methyldecyl)- | 2738.8 | 1.61 | 12.2 |
Benzene, (1-ethyldecyl)- | 2873.8 | 1.59 | 13.9 |
Benzene, (1-methylnonyl)- | 2513.8 | 1.61 | 12.7 |
3.2. COVID-19 Volatile Biomarkers
Biomarker | RT 1D; RT 2D (s) | Quantification in Covid(+) (ng) | Quantification in Covid(−) (ng) | FC1 | FC1′ | Mean Area in Overexpressed Group (106) | Mean Area in Hospital Air (106) |
---|---|---|---|---|---|---|---|
Hexanoic acid, 2-ethyl- ^ | 1295.9; 2.54 | 16.4 | 6.5 | 19.4 | / | 104 | 3.81 |
Nonanoic acid ^* | 1712.9; 2.56 | 29.2 | 10.0 | 193 | 186 | ||
B3 ^ | 687; 0.79 | / | / | 10.1 | / | 5140 | 1890 |
B4 ^ | 2573.8; 1.78 | / | / | 11.9 | / | 181 | 5.4 |
B5 ˅ | 2969.8; 1.85 | / | / | / | 32.5 | 118 | / |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K. Human body-odor components and their determination. Trends Anal. Chem. 2011, 30, 13. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef]
- Honig, P.J.; Frieden, I.J.; Kim, H.J.; Yan, A.C. Streptococcal intertrigo: An underrecognized condition in children. Pediatrics 2003, 112, 1427–1429. [Google Scholar] [CrossRef]
- Liddell, K. Smell as a diagnostic marker. Postgrad. Med. J. 1976, 52, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Stitt, W.Z.; Goldsmith, A. Scratch and sniff. The dynamic duo. Arch. Dermatol. 1995, 131, 997–999. [Google Scholar] [CrossRef]
- Abaffy, T.; Duncan, R.; Riemer, D.D.; Tietje, O.; Elgart, G.; Milikowski, C.; DeFazio, R.A. Differential Volatile Signatures from Skin, Naevi and Melanoma: A Novel Approach to Detect a Pathological Process. PLoS ONE 2010, 5, e13813. [Google Scholar] [CrossRef]
- Abaffy, T.; Möller, M.G.; Riemer, D.D.; Milikowski, C.; De Fazio, R.A. Comparative analysis of volatile metabolomics signals from melanoma and benign skin: A pilot study. Metabolomics 2013, 9, 998–1008. [Google Scholar] [CrossRef]
- Kwak, J.; Gallagher, M.; Ozdener, M.H.; Wysocki, C.J.; Goldsmith, B.R.; Isamah, A.; Faranda, A.; Fakharzadeh, S.S.; Herlyn, M.; Johnson, A.T.C.; et al. Volatile biomarkers from human melanoma cells. J. Chromatogr. B 2013, 931, 90–96. [Google Scholar] [CrossRef]
- Trivedi, D.K.; Sinclair, E.; Xu, Y.; Sarkar, D.; Walton-Doyle, C.; Liscio, C.; Banks, P.; Milne, J.; Silverdale, M.; Kunath, T.; et al. Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum. ACS Cent. Sci. 2019, 5, 599–606. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; D’Arcangelo, G.; Comandini, P.; Pennazza, G.; Martinelli, E.; Rullo, S.; Roscioni, M.C.; Roscioni, C.; Finazzi-Agrò, A.; et al. Identification of schizophrenic patients by examination of body odor using gas chromatography-mass spectrometry and a cross-selective gas sensor array. Med. Sci. Monit. 2005, 11, CR366–CR375. [Google Scholar] [PubMed]
- Monedeiro, F.; Reis, R.B.D.; Peria, F.M.; Sares, C.T.G.; Martinis, B.S.D. Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS. J. Breath Res. 2020, 14, 026009. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus: Chiffres Clés et Evolution de la COVID-19 en France et dans le Monde. Available online: https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-chiffres-cles-et-evolution-de-la-covid-19-en-france-et-dans-le-monde (accessed on 23 August 2024).
- Rabaan, A.A.; Smajlović, S.; Tombuloglu, H.; Ćordić, S.; Hajdarević, A.; Kudić, N.; Al Mutai, A.; Turkistani, S.A.; Al-Ahmed, S.H.; Al-Zaki, N.A.; et al. SARS-CoV-2 infection and multi-organ system damage: A review. Biomol. Biomed. 2023, 23, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14. [Google Scholar] [CrossRef]
- Snitz, K.; Andelman-Gur, M.; Pinchover, L.; Weissgross, R.; Weissbrod, A.; Mishor, E.; Zoller, R.; Linetsky, V.; Medhanie, A.; Shushan, S.; et al. Proof of concept for real-time detection of SARS CoV-2 infection with an electronic nose. PLoS ONE 2021, 16, e0252121. [Google Scholar] [CrossRef]
- Shekhawat, J.K.; Banerjee, M. Role of Breath Biopsy in COVID-19. J. Appl. Lab. Med. 2022, 7, 1175–1188. [Google Scholar] [CrossRef]
- Subali, A.D.; Wiyono, L.; Yusuf, M.; Zaky, M.F.A. The potential of volatile organic compounds-based breath analysis for COVID-19 screening: A systematic review & meta-analysis. Diagn. Microbiol. Infect. Dis. 2022, 102, 115589. [Google Scholar] [CrossRef]
- Grandjean, D.; Sarkis, R.; Lecoq-Julien, C.; Benard, A.; Roger, V.; Levesque, E.; Bernes-Luciani, E.; Maestracci, B.; Morvan, P.; Gully, E.; et al. Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study. PLoS ONE 2020, 15, e0243122. [Google Scholar] [CrossRef]
- Sakr, R.; Ghsoub, C.; Rbeiz, C.; Lattouf, V.; Riachy, R.; Haddad, C.; Zoghbi, M. COVID-19 detection by dogs: From physiology to field application—A review article. Postgrad. Med. J. 2021, 98, 212–218. [Google Scholar] [CrossRef]
- Devillier, P.; Gallet, C.; Salvator, H.; Lecoq-Julien, C.; Naline, E.; Roisse, D.; Levert, C.; Breton, E.; Galtat, A.; Decourtray, S.; et al. Biomedical detection dogs for the identification of SARS-CoV-2 infections from axillary sweat and breath samples. J. Breath Res. 2022, 16, 037101. [Google Scholar] [CrossRef]
- Guest, C.; Dewhirst, S.Y.; Lindsay, S.W.; Allen, D.J.; Aziz, S.; Baerenbold, O.; Bradley, J.; Chabildas, U.; Chen-Hussey, V.; Clifford, S.; et al. Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: An observational study. J. Travel Med. 2022, 29, taac043. [Google Scholar] [CrossRef] [PubMed]
- Tungkijanansin, N.; Phusrisom, S.; Chatdarong, K.; Torvorapanit, P.; Sirinara, P.; Nhujak, T.; Kulsing, C. Gas chromatography-flame ionization detector for sweat based COVID-19 screening. Anal. Chim. Acta 2023, 1280, 341878. [Google Scholar] [CrossRef] [PubMed]
- Fathizadeh, H.; Taghizadeh, S.; Safari, R.; Khiabani, S.S.; Babak, B.; Hamzavi, F.; Ganbarov, K.; Esposito, S.; Zeinalzadeh, E.; Dao, S.; et al. Study presence of COVID-19 (SARS-CoV-2) in the sweat of patients infected with Covid-19. Microb. Pathog. 2020, 149, 104556. [Google Scholar] [CrossRef] [PubMed]
- Thaveesangsakulthai, I.; Jongkhumkrong, J.; Chatdarong, K.; Torvorapanit, P.; Sukbangnop, W.; Sooksimuang, T.; Kulsing, C.; Tomapatanaget, B. A fluorescence-based sweat test sensor in a proof-of-concept clinical study for COVID-19 screening diagnosis. Analyst 2023, 148, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Tungkijanansin, N.; Giebelhaus, R.T.; Schmidt, S.A.; Nhujak, T.; Chatdarong, K.; Torvorapanit, P.; Harynuk, J.J.; Kulsing, C. Identification of coronavirus disease marker compounds in sweat with comprehensive two dimensional gas chromatography using multiloop splitter-based non-cryogenic artificial trapping modulation system. J. Chromatogr. Open 2024, 5, 100113. [Google Scholar] [CrossRef]
- Chuachaina, S.; Thaveesangsakulthai, I.; Sinsukudomchai, P.; Somboon, P.; Traipattanakul, J.; Torvorapanit, P.; Chatdarong, K.; Kulsing, C.; Nhujak, T. Identification of Volatile Markers in Sweat for COVID-19 Screening by Gas Chromatography-Mass Spectrometry. ChemistrySelect 2024, 9, e202304388. [Google Scholar] [CrossRef]
- Phusrisom, S.; Tungkijanansin, N.; Sirinara, P.; Kulsing, C. Using Gas Chromatography-Ion Mobility Spectrometry to Investigate Volatile Compound Profiles in Human Sweat during COVID-19 Vaccination. ChemistrySelect 2024, 9, e202303353. [Google Scholar] [CrossRef]
- Hilaire, F.; Basset, E.; Bayard, R.; Gallardo, M.; Thiebaut, D.; Vial, J. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis. J. Chromatogr. A 2017, 1524, 222–232. [Google Scholar] [CrossRef]
- Franchina, F.A.; Zanella, D.; Dubois, L.M.; Focant, J. The role of sample preparation in multidimensional gas chromatographic separations for non-targeted analysis with the focus on recent biomedical, food, and plant applications. J. Sep. Sci. 2021, 44, 188–210. [Google Scholar] [CrossRef]
- Boudard, E. Etude des conditions de prélèvement du volatolome corporel cutané pour son analyse discriminante par chromatographie en phase gazeuse intégralement bidimensionnelle en vue de l’identification de biomarqueurs. 2024. Université Paris Sciences et Lettres.
- Parsons, B.A.; Marney, L.C.; Siegler, W.C.; Hoggard, J.C.; Wright, B.W.; Synovec, R.E. Tile-Based Fisher Ratio Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry (GC × GC–TOFMS) Data Using a Null Distribution Approach. Anal. Chem. 2015, 87, 3812–3819. [Google Scholar] [CrossRef]
- Schöneich, S.; Ochoa, G.S.; Monzón, C.M.; Synovec, R.E. Minimum variance optimized Fisher ratio analysis of comprehensive two-dimensional gas chromatography / mass spectrometry data: Study of the pacu fish metabolome. J. Chromatogr. A 2022, 1667, 462868. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Hart, A. Mann-Whitney test is not just a test of medians: Differences in spread can be important. BMJ 2001, 323, 391–393. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; McMeniman, C.J. A headspace collection chamber for whole body volatilomics. Analyst 2022, 147, 5210–5222. [Google Scholar] [CrossRef]
- Haertl, T.; Owsienko, D.; Schwinn, L.; Hirsch, C.; Eskofier, B.M.; Lang, R.; Wirtz, S.; Loos, H.M. Exploring the interrelationship between the skin microbiome and skin volatiles: A pilot study. Front. Ecol. Evol. 2023, 11, 1107463. [Google Scholar] [CrossRef]
- Penn, D.J.; Oberzaucher, E.; Grammer, K.; Fischer, G.; Soini, H.A.; Wiesler, D.; Novotny, M.V.; Dixon, S.J.; Xu, Y.; Brereton, R.G. Individual and gender fingerprints in human body odour. J. R. Soc. Interface 2007, 4, 331–340. [Google Scholar] [CrossRef]
- ScenTree—La Nouvelle Classification Collaborative des Ingrédients de la Parfumerie. Available online: https://www.scentree.co/fr/map/G%C3%A9n%C3%A9ral (accessed on 7 August 2024).
- INCI Beauty—Analysez la Composition de Vos Cosmétiques. Available online: https://incibeauty.com/ (accessed on 7 August 2024).
- The Good Scents Company Information System. Available online: https://www.thegoodscentscompany.com/ (accessed on 7 August 2024).
- Lucchi, G.; Crépin, M.; Chambaron, S.; Peltier, C.; Gilbert, L.; Guéré, C.; Vié, K. Effects of psychological stress on the emission of volatile organic compounds from the skin. Sci. Rep. 2024, 14, 7238. [Google Scholar] [CrossRef] [PubMed]
- de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Bessonneau, V.; Thomas, O. VOC Contamination in Hospital, from Stationary Sampling of a Large Panel of Compounds, in View of Healthcare Workers and Patients Exposure Assessment. PLoS ONE 2013, 8, e55535. [Google Scholar] [CrossRef]
- LeBouf, R.F.; Virji, M.A.; Saito, R.; Henneberger, P.K.; Simcox, N.; Stefaniak, A.B. Exposure to volatile organic compounds in healthcare settings. Occup. Environ. Med. 2014, 71, 642–650. [Google Scholar] [CrossRef]
- Samon, S.M.; Hammel, S.C.; Stapleton, H.M.; Anderson, K.A. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. Environ. Int. 2022, 169, 107339. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Povedano, M.M.; Calderón-Santiago, M.; Priego-Capote, F.; de Castro, M.D.L. Development of a method for enhancing metabolomics coverage of human sweat by gas chromatography–mass spectrometry in high resolution mode. Anal. Chim. Acta 2016, 905, 115–125. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudard, E.; Moumane, N.; Dugay, J.; Vial, J.; Thiébaut, D. Body Volatilome Study Strategy for COVID-19 Biomarker Identification Considering Exogenous Parameters. Separations 2024, 11, 336. https://doi.org/10.3390/separations11120336
Boudard E, Moumane N, Dugay J, Vial J, Thiébaut D. Body Volatilome Study Strategy for COVID-19 Biomarker Identification Considering Exogenous Parameters. Separations. 2024; 11(12):336. https://doi.org/10.3390/separations11120336
Chicago/Turabian StyleBoudard, Elsa, Nabil Moumane, José Dugay, Jérôme Vial, and Didier Thiébaut. 2024. "Body Volatilome Study Strategy for COVID-19 Biomarker Identification Considering Exogenous Parameters" Separations 11, no. 12: 336. https://doi.org/10.3390/separations11120336
APA StyleBoudard, E., Moumane, N., Dugay, J., Vial, J., & Thiébaut, D. (2024). Body Volatilome Study Strategy for COVID-19 Biomarker Identification Considering Exogenous Parameters. Separations, 11(12), 336. https://doi.org/10.3390/separations11120336