Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices
Abstract
:1. Introduction
2. Ongoing Progress in Recovery of Phenolic Fractions from Food Systems via NF
2.1. Flavonoids
- Flavonols: quercetin, kaempferol, myricetin, isorhamnetin;
- Flavan-3-ols: catechins, epicatechins, epicatechin3-gallate, epigallocatechin, epigallocatechin 3-gallate, gallocatechin, theaflavin, theaflavin 3-3′-digallate, theaflavin 3′-gallate, theaflavin 3-gallate, thearubigins;
- Flavones: apigenin, luteolin;
- Flavanones: hesperetin, naringenin, eriodictyol;
- Anthocyanidins: cyanidin, delphinidin, malvidin, pelargonidin, peonidin, petunidin.
2.2. Non-Flavonoids
3. Nanofiltration Membranes for the Extraction of Carotenoids
3.1. Carotenoids
3.2. Xanthopylls
4. Navigating Challenges in Bioactive Molecule Recovery
5. Conclusions and Future Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Castro-Muñoz, R.; Zamidi Ahmad, M.; Malankowska, M.; Coronas, J. A New Relevant Membrane Application: CO2 Direct Air Capture (DAC). Chem. Eng. J. 2022, 446, 137047. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. A Critical Review on Electrospun Membranes Containing 2D Materials for Seawater Desalination. Desalination 2023, 555, 116528. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Agrawal, K.V.; Lai, Z.; Coronas, J. Towards Large-Scale Application of Nanoporous Materials in Membranes for Separation of Energy-Relevant Gas Mixtures. Sep. Purif. Technol. 2023, 308, 122919. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Retention Profile on the Physicochemical Properties of Maize Cooking By-Product Using a Tight Ultrafiltration Membrane. Chem. Eng. Commun. 2019, 207, 887–895. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Gutiérrez-Macías, P.; Orozco-Álvarez, C.; Castro-Muñoz, R. Fractionation of Stevia Rebaudiana Aqueous Extracts via Two-Step Ultrafiltration Process: Towards Rebaudioside a Extraction. Food Bioprod. Process. 2020, 123, 111–122. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro-Muñoz, R. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food by-Products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef]
- Chiu, M.C.; de Morais Coutinho, C.; Gonçalves, L.A.G. Carotenoids Concentration of Palm Oil Using Membrane Technology. Desalination 2009, 245, 783–786. [Google Scholar] [CrossRef]
- Conidi, C.; Castro-Muñoz, R.; Cassano, A. Membrane-Based Operations in the Fruit Juice Processing Industry: A Review. Beverages 2020, 6, 18. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Díaz-Montes, E.; Cassano, A.; Gontarek, E. Membrane Separation Processes for the Extraction and Purification of Steviol Glycosides: An Overview. Crit. Rev. Food Sci. Nutr. 2020, 4, 2152–2174. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Gontarek-Castro, E.; Jafari, S.M. Up-to-Date Strategies and Future Trends towards the Extraction and Purification of Capsaicin: A Comprehensive Review. Trends Food Sci. Technol. 2022, 123, 161–171. [Google Scholar] [CrossRef]
- Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Plata-Gryl, M.; Castro-Muñoz, R. A Comprehensive Review on Ginger (Zingiber Officinale) as a Potential Source of Nutraceuticals for Food Formulations: Towards the Polishing of Gingerol and Other Present Biomolecules. Food Chem. 2023, 413, 135629. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Analyzing the Phenolic Enriched Fractions from Nixtamalization Wastewater (Nejayote) Fractionated in a Three-Step Membrane Process. Curr. Res. Food Sci. 2022, 5, 1–10. [Google Scholar] [CrossRef]
- Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.; Xue, H. Extraction and Purification of Anthocyanins: A Review. J. Agric. Food Res. 2022, 8, 100306. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal Interactions, Absorption, Splanchnic Metabolism and Pharmacokinetics of Orally Ingested Phenolic Compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Santamaría, B.; Salazar, G.; Beltrán, S.; Cabezas, J.L. Membrane Sequences for Fractionation of Polyphenolic Extracts from Defatted Milled Grape Seeds. Desalination 2002, 148, 103–109. [Google Scholar] [CrossRef]
- Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J.C. Ultra- and Nanofiltration of Aqueous Extracts from Distilled Fermented Grape Pomace. J. Food Eng. 2009, 91, 587–593. [Google Scholar] [CrossRef]
- Giacobbo, A.; Bernardes, A.M.; de Pinho, M.N. Nanofiltration for the Recovery of Low Molecular Weight Polysaccharides and Polyphenols from Winery Effluents. Sep. Sci. Technol. 2013, 48, 2524–2530. [Google Scholar] [CrossRef]
- Giacobbo, A.; Bernardes, A.M.; de Pinho, M.N. Sequential Pressure-Driven Membrane Operations to Recover and Fractionate Polyphenols and Polysaccharides from Second Racking Wine Lees. Sep. Purif. Technol. 2017, 173, 49–54. [Google Scholar] [CrossRef]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Mitrouli, S.T.; Karabelas, A.J. Tartaric Acid and Polyphenols Recovery from Winery Waste Lees Using Membrane Separation Processes. J. Chem. Technol. Biotechnol. 2017, 92, 2934–2943. [Google Scholar] [CrossRef]
- Giacobbo, A.; Bernardes, A.M.; Rosa, M.J.F.; De Pinho, M.N. Concentration Polarization in Ultrafiltration/Nanofiltration for the Recovery of Polyphenols from Winery Wastewaters. Membranes 2018, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.-S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Ricarte, G.N.; Coelho, M.A.Z.; Marrucho, I.M.; Ribeiro, B.D. Enzyme-Assisted Extraction of Carotenoids and Phenolic Compounds from Sunflower Wastes Using Green Solvents. 3 Biotech 2020, 10, 405. [Google Scholar] [CrossRef]
- Viñas-Ospino, A.; López-Malo, D.; Esteve, M.J.; Frígola, A.; Blesa, J. Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023, 12, 863. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, X.; Chen, X.; Rao, S.; Ju, T.; Li, J.; Yang, Z. Extraction and Recovery of Bioactive Soluble Phenolic Compounds from Brocade Orange (Citrus sinensis) Peels: Effect of Different Extraction Methods Thereon. LWT 2023, 173, 114337. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Cassano, A.; Conidi, C.; Giorno, L.; Drioli, E. Fractionation of Olive Mill Wastewaters by Membrane Separation Techniques. J. Hazard. Mater. 2013, 248–249, 185–193. [Google Scholar] [CrossRef]
- Baghoth, S.A.; Sharma, S.K.; Amy, G.L. Tracking Natural Organic Matter (NOM) in a Drinking Water Treatment Plant Using Fluorescence Excitation-Emission Matrices and PARAFAC. Water Res. 2011, 45, 797–809. [Google Scholar] [CrossRef]
- Fernández, J.F.; Jastorff, B.; Störmann, R.; Stolte, S.; Thöming, J. Thinking in Terms of Structure-Activity-Relationships (T-SAR): A Tool to Better Understand Nanofiltration Membranes. Membranes 2011, 1, 162–183. [Google Scholar] [CrossRef]
- Butnariu, M. Methods of Analysis (Extraction, Separation, Identification and Quantification) of Carotenoids from Natural Products. J. Ecosyst. Ecography 2016, 6, 1000193. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Silva, A.M.S.; Carvalho, F.; Fernandes, E. Antioxidant and Pro-Oxidant Activities of Carotenoids and Their Oxidation Products. Food Chem. Toxicol. 2018, 120, 681–699. [Google Scholar] [CrossRef]
- Galanakis, C.M. Separation of Functional Macromolecules and Micromolecules: From Ultrafiltration to the Border of Nanofiltration. Trends Food Sci. Technol. 2015, 42, 44–63. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Serna-Vázquez, J.; García-Depraect, O. Current evidence in high throughput ultrafiltration toward the purification of monoclonal antibodies (mAbs) and biotechnological protein-type molecules. Crit. Rev. Biotechnol. 2022, 42, 827–837. [Google Scholar] [CrossRef]
- Mérian, T.; Goddard, J.M. Advances in Nonfouling Materials: Perspectives for the Food Industry. J. Agric. Food Chem. 2012, 60, 2943–2957. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Melgoza, L.L.; García-Depraect, O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere 2021, 270, 129421. [Google Scholar] [CrossRef]
- Saha, N.K.; Balakrishnan, M.; Ulbricht, M. Fouling Control in Sugarcane Juice Ultrafiltration with Surface Modified Polysulfone and Polyethersulfone Membranes. Desalination 2009, 249, 1124–1131. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tornbergb, E.; Gekasc, V. Recovery and Preservation of Phenols from Olive Waste in Ethanolic Extracts. J. Chem. Technol. Biotechnol. 2010, 85, 1148–1155. [Google Scholar] [CrossRef]
- Cassano, A.; Donato, L.; Conidi, C.; Drioli, E. Recovery of Bioactive Compounds in Kiwifruit Juice by Ultrafiltration. Innov. Food Sci. Emerg. Technol. 2008, 9, 556–562. [Google Scholar] [CrossRef]
- Crespo, J.; Brazinha, C. Membrane Processing: Natural Antioxidants from Winemaking by-Products. Filtr. Sep. 2010, 47, 32–35. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic Compounds Recovered from Agro-Food by-Products Using Membrane Technologies: An Overview. Food Chem. 2016, 213, 753–762. [Google Scholar] [CrossRef]
- Bravo, L.; Abia, R.; Saura-Calixto, F. Polyphenols as dietary fiber associated compounds. Comparative study on in vivo and in vitro properties. J. Agric. Food Chem. 1994, 42, 1481–1487. [Google Scholar] [CrossRef]
- Cassano, A.; Figoli, A.; Tagarelli, A.; Sindona, G.; Drioli, E. Integrated Membrane Process for the Production of Highly Nutritional Kiwifruit Juice. Desalination 2006, 189, 21–30. [Google Scholar] [CrossRef]
- Vatanpour, V.; Yuksekdag, A.; Ağtaş, M.; Mehrabi, M.; Salehi, E.; Castro-Muñoz, R.; Koyuncu, I. Zeolitic Imidazolate Framework (ZIF-8) Modified Cellulose Acetate NF Membranes for Potential Water Treatment Application. Carbohydr. Polym. 2023, 299, 120230. [Google Scholar] [CrossRef]
- Cassano, A.; Marchio, M.; Drioli, E. Clarification of Blood Orange Juice by Ultrafiltration: Analyses of Operating Parameters, Membrane Fouling and Juice Quality. Desalination 2007, 212, 15–27. [Google Scholar] [CrossRef]
- Astudillo-Castro, C.L. Limiting Flux and Critical Transmembrane Pressure Determination Using an Exponential Model: The Effect of Concentration Factor, Temperature, and Cross-Flow Velocity during Casein Micelle Concentration by Microfiltration. Ind. Eng. Chem. Res. 2015, 54, 414–425. [Google Scholar] [CrossRef]
- Todisco, S.; Tallarico, P.; Gupta, B.B. Mass Transfer and Polyphenols Retention in the Clarification of Black Tea with Ceramic Membranes. Innov. Food Sci. Emerg. Technol. 2002, 3, 255–262. [Google Scholar] [CrossRef]
- Conidi, C.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M.; Cassano, A. Purification of Artichoke Polyphenols by Using Membrane Filtration and Polymeric Resins. Sep. Purif. Technol. 2015, 144, 153–161. [Google Scholar] [CrossRef]
- Escobar, I.C.; Van Der Bruggen, B. Microfiltration and Ultrafiltration Membrane Science and Technology. J. Appl. Polym. Sci. 2015, 132, e42002. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Chen, J.B.; Zhao, C.N.; Liu, X.J.; Chen, Y.Y.; Liang, J.J.; Cao, J.P.; Wang, Y.; Sun, C. De Advances in Extraction and Purification of Citrus Flavonoids. Food Front. 2023, 4, 750–781. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- de la Cerda-Carrasco, A.; López-Solís, R.; Nuñez-Kalasic, H.; Peña-Neira, Á.; Obreque-Slier, E. Phenolic Composition and Antioxidant Capacity of Pomaces from Four Grape Varieties (Vitis vinifera L.). J. Sci. Food Agric. 2015, 95, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; De Freitas, V. Wine Flavonoids in Health and Disease Prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, A.; Pasqualotto, I.F.; Machado Filho, R.C.d.C.; Minhalma, M.; Bernardes, A.M.; Pinho, M.N.d. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute—Membrane Interactions. Membranes 2023, 13, 743. [Google Scholar] [CrossRef] [PubMed]
- Filippou, P.; Mitrouli, S.T.; Vareltzis, P. Sequential Membrane Filtration to Recover Polyphenols and Organic Acids from Red Wine Lees: The Antioxidant Properties of the Spray-Dried Concentrate. Membranes 2022, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, A.; Bernardes, A.M. Membrane Separation Process in Wastewater and Water Purification. Membranes 2022, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Mitrouli, S.T.; Karabelas, A.J. Tartaric acid recovery from winery lees using cation exchange resin: Optimization by Response Surface Methodology. Sep. Purif. Technol. 2016, 165, 32–41. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Membranes–Future for Sustainable Gas and Liquid Separation? Curr. Res. Green Sustain. Chem. 2022, 5, 100326. [Google Scholar] [CrossRef]
- Yammine, S.; Rabagliato, R.; Vitrac, X.; Mietton-Peuchot, M.; Ghidossi, R. The Use of Nanofiltration membranes for the Fractionation of Polyphenols from Grape Pomace Extracts. Oeno One 2019, 52, 291–306. [Google Scholar] [CrossRef]
- Pichardo-Romero, D.; Garcia-Arce, Z.P.; Zavala-Ramírez, A.; Castro-Muñoz, R. Current advances in biofouling mitigation in membranes for water treatment: An overview. Processes 2020, 8, 182. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yanez-Fernandez, J. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process. Food Bioprod. Process. 2015, 95, 7–18. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Drioli, E. A Membrane-Based Study for the Recovery of Polyphenols from Bergamot Juice. J. Membr. Sci. 2011, 375, 182–190. [Google Scholar] [CrossRef]
- Chethan, S.; Malleshi, N.G. Finger Millet Polyphenols: Optimization of Extraction and the Effect of PH on Their Stability. Food Chem. 2007, 105, 862–870. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process. Membranes 2014, 4, 509–524. [Google Scholar] [CrossRef]
- Wu, T.; Grootaert, C.; Voorspoels, S.; Jacobs, G.; Pitart, J.; Kamiloglu, S.; Possemiers, S.; Heinonen, M.; Kardum, N.; Glibetic, M.; et al. Aronia (Aronia Melanocarpa) Phenolics Bioavailability in a Combined in Vitro Digestion/Caco-2 Cell Model Is Structure and Colon Region Dependent. J. Funct. Foods 2017, 38, 128–139. [Google Scholar] [CrossRef]
- Gilewicz-Łukasik, B.; Koter, S.; Kurzawa, J. Concentration of Anthocyanins by the Membrane Filtration. Sep. Purif. Technol. 2007, 57, 418–424. [Google Scholar] [CrossRef]
- Arend, G.D.; Adorno, W.T.; Rezzadori, K.; Di Luccio, M.; Chaves, V.C.; Reginatto, F.H.; Petrus, J.C.C. Concentration of Phenolic Compounds from Strawberry (Fragaria X Ananassa Duch) Juice by Nanofiltration Membrane. J. Food Eng. 2017, 201, 36–41. [Google Scholar] [CrossRef]
- Avram, A.M.; Morin, P.; Brownmiller, C.; Howard, L.R.; Sengupta, A.; Wickramasinghe, R. Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod. Process. 2017, 106, 91–101. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Sicari, V.; Ursino, C.; Manfredi, I.; Conidi, C.; Figoli, A.; Cassano, A. Concentration of Bioactive Compounds from Elderberry (Sambucus nigra L.) Juice by Nanofiltration Membranes. Plant Foods Human Nutr. 2018, 73, 336–343. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Caiazzo, F.; Drioli, E. Separation and Purification of Phenolic Compounds from Pomegranate Juice by Ultrafiltration and Nanofiltration Membranes. J. Food Eng. 2017, 195, 1–13. [Google Scholar] [CrossRef]
- Papaioannou, E.H.; Mitrouli, S.T.; Patsios, S.I.; Kazakli, M.; Karabelas, A.J. Valorization of Pomegranate Husk-Integration of Extraction with Nanofiltration for Concentrated Polyphenols Recovery. J. Environ. Chem. Eng. 2020, 8, 103951. [Google Scholar] [CrossRef]
- Machado, M.T.C.; Mello, B.C.B.S.; Hubinger, M.D. Study of Alcoholic and Aqueous Extraction of Pequi (Caryocar brasiliense Camb.) Natural Antioxidants and Extracts Concentration by Nanofiltration. J. Food Eng. 2013, 117, 450–457. [Google Scholar] [CrossRef]
- Arriola, N.A.; dos Santos, G.D.; Prudêncio, E.S.; Vitali, L.; Petrus, J.C.C.; Castanho Amboni, R.D.M. Potential of Nanofiltration for the Concentration of Bioactive Compounds from Watermelon Juice. Int. J. Food Sci. Technol. 2014, 49, 2052–2060. [Google Scholar] [CrossRef]
- Balyan, U.; Sarkar, B. Integrated Membrane Process for Purification and Concentration of Aqueous Syzygium cumini (L.) Seed Extract. Food Bioprod. Process. 2016, 98, 29–43. [Google Scholar] [CrossRef]
- Uyttebroek, M.; Vandezande, P.; Van Dael, M.; Vloemans, S.; Noten, B.; Bongers, B.; Porto-Carrero, W.; Muñiz Unamunzaga, M.; Bulut, M.; Lemmens, B. Concentration of Phenolic Compounds from Apple Pomace Extracts by Nanofiltration at Lab and Pilot Scale with a Techno-Economic Assessment. J. Food Process Eng. 2018, 41, 12629. [Google Scholar] [CrossRef]
- Vieira, G.S.; Moreira, F.K.V.; Matsumoto, R.L.S.; Michelon, M.; Filho, F.M.; Hubinger, M.D. Influence of Nanofiltration Membrane Features on Enrichment of Jussara Ethanolic Extract (Euterpe edulis) in Anthocyanins. J. Food Eng. 2018, 226, 31–41. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Bahmid, N.A.; Taha, A.; Khalifa, I.; Khan, S.; Rostamabadi, H.; Jafari, S.M. Recent Advances in Food Applications of Phenolic-Loaded Micro/Nanodelivery Systems. Crit. Rev. Food Sci. Nutr. 2022, 63, 8939–8959. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. The Use of Nixtamalization Waste Waters Clarified by Ultrafiltration for Production of a Fraction Rich in Phenolic Compounds. Waste Biomass Valorization 2016, 7, 1167–1176. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Garcia-Castello, E. Valorization of Artichoke Wastewaters by Integrated Membrane Process. Water Res. 2014, 48, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Conidi, C.; Cassano, A. Recovery of Phenolic Compounds from Bergamot Juice by Nanofiltration Membranes. Desalination Water Treat. 2015, 56, 3510–3518. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Figueroa, R.R.; Muñoz, R.C. A Two-Step Nanofiltration Process for the Production of Phenolic-Rich Fractions from Artichoke Aqueous Extracts. Int. J. Mol. Sci. 2015, 16, 8968–8987. [Google Scholar] [CrossRef] [PubMed]
- Cassano, A.; Cabri, W.; Mombelli, G.; Peterlongo, F.; Giorno, L. Recovery of Bioactive Compounds from Artichoke Brines by Nanofiltration. Food Bioprod. Process. 2016, 98, 257–265. [Google Scholar] [CrossRef]
- Rabelo, R.S.; MacHado, M.T.C.; Martínez, J.; Hubinger, M.D. Ultrasound Assisted Extraction and Nanofiltration of Phenolic Compounds from Artichoke Solid Wastes. J. Food Eng. 2016, 178, 170–180. [Google Scholar] [CrossRef]
- Negrão Murakami, A.N.; De Mello Castanho Amboni, R.D.; Prudêncio, E.S.; Amante, E.R.; de Moraes Zanotta, L.; Maraschin, M.; Cunha Petrus, J.C.; Teófilo, R.F. Concentration of Phenolic Compounds in Aqueous Mate (Ilex paraguariensis A. St. Hil) Extract through Nanofiltration. LWT 2011, 44, 2211–2216. [Google Scholar] [CrossRef]
- Prudêncio, A.P.A.; Prudêncio, E.S.; Amboni, R.D.M.C.; Murakami, A.N.N.; Maraschin, M.; Petrus, J.C.C.; Ogliari, P.J.; Leite, R.S. Phenolic Composition and Antioxidant Activity of the Aqueous Extract of Bark from Residues from Mate Tree (Ilex paraguariensis St. Hil.) Bark Harvesting Concentrated by Nanofiltration. Food Bioprod. Process. 2012, 90, 399–405. [Google Scholar] [CrossRef]
- Cissé, M.; Vaillant, F.; Pallet, D.; Dornier, M. Selecting Ultrafiltration and Nanofiltration Membranes to Concentrate Anthocyanins from Roselle Extract (Hibiscus sabdariffa L.). Food Res. Int. 2011, 44, 2607–2614. [Google Scholar] [CrossRef]
- Tylkowski, B.; Tsibranska, I.; Kochanov, R.; Peev, G.; Giamberini, M. Concentration of Biologically Active Compounds Extracted from Sideritis ssp. L. by Nanofiltration. Food Bioprod. Process. 2011, 89, 307–314. [Google Scholar] [CrossRef]
- Pinto, P.C.R.; Mota, I.F.; Loureiro, J.M.; Rodrigues, A.E. Membrane Performance and Application of Ultrafiltration and Nanofiltration to Ethanol/Water Extract of Eucalyptus Bark. Sep. Purif. Technol. 2014, 132, 234–243. [Google Scholar] [CrossRef]
- Sarmento, L.A.V.; Machado, R.A.F.; Petrus, J.C.C.; Tamanini, T.R.; Bolzan, A. Extraction of Polyphenols from Cocoa Seeds and Concentration through Polymeric Membranes. J. Supercrit. Fluids 2008, 45, 64–69. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Petrus, J.C.C.; Hubinger, M.D. Concentration of Flavonoids and Phenolic Compounds in Aqueous and Ethanolic Propolis Extracts through Nanofiltration. J. Food Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
- Tylkowski, B.; Trusheva, B.; Bankova, V.; Giamberini, M.; Peev, G.; Nikolova, A. Extraction of Biologically Active Compounds from Propolis and Concentration of Extract by Nanofiltration. J. Memb. Sci. 2010, 348, 124–130. [Google Scholar] [CrossRef]
- Tsibranska, H.; Peev, G.A.; Tylkowski, B. Fractionation of Biologically Active Compounds Extracted from Propolis by Nanofiltration. J. Membr. Sci. Technol. 2011, 1, 1000109. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Jimeno-Jiménez, Á.; Carbonell-Alcaina, C.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Effect of the Operating Conditions on a Nanofiltration Process to Separate Low-Molecular-Weight Phenolic Compounds from the Sugars Present in Olive Mill Wastewaters. Process Saf. Environ. Prot. 2021, 148, 428–436. [Google Scholar] [CrossRef]
- Garcia-Castello, E.; Cassano, A.; Criscuoli, A.; Conidi, C.; Drioli, E. Recovery and Concentration of Polyphenols from Olive Mill Wastewaters by Integrated Membrane System. Water Res. 2010, 44, 3883–3892. [Google Scholar] [CrossRef] [PubMed]
- Dammak, I.; Nakajima, M.; Sayadi, S.; Isoda, H. Integrated Membrane Process for the Recovery of Polyphenols from Olive Mill Water. J. Arid. Land Stud. 2015, 25, 85–88. [Google Scholar]
- Bazzarelli, F.; Piacentini, E.; Poerio, T.; Mazzei, R.; Cassano, A.; Giorno, L. Advances in Membrane Operations for Water Purification and Biophenols Recovery/Valorization from OMWWs. J. Memb. Sci. 2016, 497, 402–409. [Google Scholar] [CrossRef]
- Jahangiri, N.M.; Rahimpour, A.; Nemati, S.; Alimohammady, M. Recovery of polyphenols from olive mill wastewater. Cellul. Chem. Technol. 2016, 50, 961–966. [Google Scholar]
- Khemakhem, I.; Gargouri, O.D.; Dhouib, A.; Ayadi, M.A.; Bouaziz, M. Oleuropein Rich Extract from Olive Leaves by Combining Microfiltration, Ultrafiltration and Nanofiltration. Sep. Purif. Technol. 2017, 172, 310–317. [Google Scholar] [CrossRef]
- Conidi, C.; Egea-Corbacho, A.; Cassano, A. A Combination of Aqueous Extraction and Polymeric Membranes as a Sustainable Process for the Recovery of Polyphenols from Olive Mill Solid Wastes. Polymers 2019, 11, 1868. [Google Scholar] [CrossRef]
- Cai, M.; Hou, W.; Lv, Y.; Sun, P. Behavior and Rejection Mechanisms of Fruit Juice Phenolic Compounds in Model Solution during Nanofiltration. J. Food Eng. 2017, 195, 97–104. [Google Scholar] [CrossRef]
- de Santana Magalhães, F.; de Souza Martins Sá, M.; Luiz Cardoso, V.; Hespanhol Miranda Reis, M. Recovery of Phenolic Compounds from Pequi (Caryocar brasiliense Camb.) Fruit Extract by Membrane Filtrations: Comparison of Direct and Sequential Processes. J. Food Eng. 2019, 257, 26–33. [Google Scholar] [CrossRef]
- Peshev, D.; Peeva, L.G.; Peev, G.; Baptista, I.I.R.; Boam, A.T. Application of Organic Solvent Nanofiltration for Concentration of Antioxidant Extracts of Rosemary (Rosmarinus officiallis L.). Chem. Eng. Res. Des. 2011, 89, 318–327. [Google Scholar] [CrossRef]
- Achour, S.; Khelifi, E.; Attia, Y.; Ferjani, E.; Noureddine Hellal, A. Concentration of Antioxidant Polyphenols from Thymus Capitatus Extracts by Membrane Process Technology. J. Food Sci. 2012, 77, C703–C709. [Google Scholar] [CrossRef] [PubMed]
- Ambrósio, C.L.B.; Campos, F.A.C.; Faro, Z.P.D. Carotenóides Como Alternativa Contra a Hipovitaminose A. Rev. Nutr. 2006, 19, 233–243. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001. [Google Scholar]
- Chuang, M.H.; Brunner, G. Concentration of Minor Components in Crude Palm Oil. J. Supercrit. Fluids 2006, 37, 151–156. [Google Scholar] [CrossRef]
- Barison, Y. Bailey’s Industrial Oil Fat Products. In Palm Oil; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Mortensen, A. Carotenoids and Other Pigments as Natural Colorants. Pure Appl. Chem. 2006, 78, 1477–1491. [Google Scholar] [CrossRef]
- Gordon, H.T.; Bauernfeind, J.C.; Furia, T.E. Carotenoids as food colorants. Crit. Rev. Food Sci. Nutr. 1983, 18, 59–97. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; International Food Policy Research Institute: Washington, DC, USA, 2004. [Google Scholar]
- Darnoko, D.; Cheryan, M. Carotenoids from Red Palm Methyl Esters by Nanofiltration. J. Am. Oil Chem. Soc. 2006, 83, 365–370. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valorization 2017, 9, 513–529. [Google Scholar] [CrossRef]
- Russo, F.; Castro-Munoz, R.; Galiano, F.; Figoli, A. Unprecedented preparation of porous Matrimid® 5218 membranes. J. Membr. Sci. 2019, 585, 166–174. [Google Scholar] [CrossRef]
- Dushkova, M.; Mihalev, K.; Dinchev, A.; Vasilev, K.; Georgiev, D.; Terziyska, M. Concentration of Polyphenolic Antioxidants in Apple Juice and Extract Using Ultrafiltration. Membranes 2022, 12, 1032. [Google Scholar] [CrossRef]
- Ferreyra-Suarez, D.; Paredes-Vargas, L.; Jafari, S.; García-Depraect, O. Strategies and extraction pathways towards carminic acid as natural-based food colorant: A comprehensive review. Adv. Colloid Interface Sci. 2024, 323, 103052. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; et al. Tomato and Lycopene and Multiple Health Outcomes: Umbrella Review. Food Chem. 2021, 343, 128396. [Google Scholar] [CrossRef] [PubMed]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can Lycopene Be Considered an Effective Protection against Cardiovascular Disease? Food Chem. 2018, 245, 1148–1153. [Google Scholar] [CrossRef]
- Pereira, B.L.B.; Reis, P.P.; Severino, F.E.; Felix, T.F.; Braz, M.G.; Nogueira, F.R.; Silva, R.A.C.; Cardoso, A.C.; Lourenço, M.A.M.; Figueiredo, A.M.; et al. Tomato (Lycopersicon esculentum) or Lycopene Supplementation Attenuates Ventricular Remodeling after Myocardial Infarction through Different Mechanistic Pathways. J. Nutr. Biochem. 2017, 46, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Wolak, T.; Sharoni, Y.; Levy, J.; Linnewiel-Hermoni, K.; Stepensky, D.; Paran, E. Effect of Tomato Nutrient Complex on Blood Pressure: A Double Blind, Randomized Dose–Response Study. Nutrients 2019, 11, 950. [Google Scholar] [CrossRef]
- Wang, J.; Geng, T.; Zou, Q.; Yang, N.; Zhao, W.; Li, Y.; Tan, X.; Yuan, T.; Liu, X.; Liu, Z. Lycopene Prevents Lipid Accumulation in Hepatocytes by Stimulating PPARα and Improving Mitochondrial Function. J. Funct. Foods 2020, 67, 103857. [Google Scholar] [CrossRef]
- Rowles, J.L.; Ranard, K.M.; Smith, J.W.; An, R.; Erdman, J.W. Increased Dietary and Circulating Lycopene Are Associated with Reduced Prostate Cancer Risk: A Systematic Review and Meta-Analysis. Prostate Cancer Prostatic Dis. 2017, 20, 361–377. [Google Scholar] [CrossRef]
- Cheng, J.; Miller, B.; Balbuena, E.; Eroglu, A. Lycopene Protects against Smoking-Induced Lung Cancer by Inducing Base Excision Repair. Antioxidants 2020, 9, 643. [Google Scholar] [CrossRef]
- Sahin, K.; Yenice, E.; Tuzcu, M.; Orhan, C.; Mizrak, C.; Ozercan, I.H.; Sahin, N.; Yilmaz, B.; Bilir, B.; Ozpolat, B.; et al. Lycopene Protects Against Spontaneous Ovarian Cancer Formation in Laying Hens. J. Cancer Prev. 2018, 23, 25–36. [Google Scholar] [CrossRef]
- Singh, A.; Neupane, Y.R.; Panda, B.P.; Kohli, K. Lipid Based Nanoformulation of Lycopene Improves Oral Delivery: Formulation Optimization, Ex Vivo Assessment and Its Efficacy against Breast Cancer. J. Microencapsul. 2017, 34, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huang, C.; Chen, Z. A Review for the Pharmacological Effect of Lycopene in Central Nervous System Disorders. Biomed. Pharmacother. 2019, 111, 791–801. [Google Scholar] [CrossRef]
- Imran, M.; Ghorat, F.; Ul-haq, I.; Ur-rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, Y.; Li, J. Performance of Nanofiltration for Concentrating Lycopene Extract. In Proceedings of the 7th International Conference on Separation Science and Technology, Chengdu, China, 2–4 July 2013; p. 168. [Google Scholar]
- Arana Rodriguez, F.A. Membrane Separation of Bioactive Lycopene from Tomato Juice. Ph.D. Thesis, Universidad del Valle, Cali, Colombia, 2009. [Google Scholar]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.A.; Biesalski, H.K. β-Carotene Is an Important Vitamin A Source for Humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [PubMed]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Sarrade, S.J.; Rios, G.M.; Carlè, M. Supercritical CO2 Extraction Coupled with Nanofiltration Separation Applications to Natural Products. Sep. Purif. Technol. 1998, 14, 19–25. [Google Scholar] [CrossRef]
- Schroeder, M.T.; Becker, E.M.; Skibsted, L.H. Molecular Mechanism of Antioxidant Synergism of Tocotrienols and Carotenoids in Palm Oil. J. Agric. Food Chem. 2006, 54, 3445–3453. [Google Scholar] [CrossRef]
- García-Martínez, E.; Camacho, M.D.M.; Martínez-Navarrete, N. In Vitro Bioaccessibility of Bioactive Compounds of Freeze-Dried Orange Juice Co-Product Formulated with Gum Arabic and Modified Starch. Molecules 2023, 28, 810. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Remonatto, D.; Paula, A.V.; Herculano, R.D.; Santos-Ebinuma, V.C.; Coutinho, J.A.P.; Pereira, J.F.B. Selective Recovery and Purification of Carotenoids and Fatty Acids from Rhodotorula Glutinis Using Mixtures of Biosolvents. Sep. Purif. Technol. 2021, 266, 118548. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Ortega-Regules, A.E.; Anaya de Parrodi, C.; Lozada-Ramírez, J.D. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids—A Review. Plants 2023, 12, 313. [Google Scholar] [CrossRef]
- Ligia Focsan, A.; Polyakov, N.E.; Kispert, L.D. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability—The Way of Bioavailability Improvement. Molecules 2019, 24, 3947. [Google Scholar] [CrossRef]
- Rehman, A.; Tong, Q.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Mushtaq, B.S.; Ashraf, W. Carotenoid-Loaded Nanocarriers: A Comprehensive Review. Adv. Colloid. Interface Sci. 2020, 275, 102048. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Bahmid, N.A.; Taha, A.; Abdel-Moneim, A.-M.E.; Shehata, A.M.; Tan, C.; Kharazmi, M.S.; Li, Y.; Assadpour, E.; Castro-Muñoz, R.; et al. Bioactive-Loaded Nanodelivery Systems for the Feed and Drugs of Livestock; Purposes, Techniques and Applications. Adv. Colloid. Interface Sci. 2022, 308, 102772. [Google Scholar] [CrossRef]
- Gul, K.; Tak, A.; Singh, A.K.; Singh, P.; Yousuf, B.; Wani, A.A. Chemistry, Encapsulation, and Health Benefits of β-Carotene—A Review. Cogent Food Agric. 2015, 1, 1018696. [Google Scholar] [CrossRef]
- Dias, D.R.; Botrel, D.A.; Fernandes, R.V.D.B.; Borges, S.V. Encapsulation as a Tool for Bioprocessing of Functional Foods. Curr. Opin. Food Sci. 2017, 13, 31–37. [Google Scholar] [CrossRef]
- Soh, S.H.; Lee, L.Y. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age-related Macular Degeneration Protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef]
- Fábryová, T.; Cheel, J.; Kubáč, D.; Hrouzek, P.; Vu, D.L.; Tůmová, L.; Kopecký, J. Purification of Lutein from the Green Microalgae Chlorella Vulgaris by Integrated Use of a New Extraction Protocol and a Multi-Injection High Performance Counter-Current Chromatography (HPCCC). Algal Res. 2019, 41, 101574. [Google Scholar] [CrossRef]
- Stahl, W. Macular carotenoids: Lutein and zeaxanthin. Nutr. Eye 2005, 38, 70–88. [Google Scholar]
- Sindhu, E.R.; Preethi, K.C.; Kuttan, R. Antioxidant Activity of Carotenoid Lutein in Vitro and in Vivo. CSIR 2010, 48, 843–848. [Google Scholar]
- Ma, L.; Lin, X.M. Effects of Lutein and Zeaxanthin on Aspects of Eye Health. J. Sci. Food Agric. 2010, 90, 2–12. [Google Scholar] [CrossRef]
- Ribaya-Mercado, J.D.; Blumberg, J.B. Lutein and Zeaxanthin and Their Potential Roles in Disease Prevention. J. Am. Coll. Nutr. 2004, 23, 567S–587S. [Google Scholar] [CrossRef]
- Becerra, M.; Mojica Contreras, L.; Hsieh Lo, M.; Mateos Díaz, J.; Castillo Herrera, G. Lutein as a Functional Food Ingredient: Stability and Bioavailability. J. Funct. Foods 2020, 66, 103771. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kamat, M.Y. The Carotenoid Pigment. Zeaxanthin—A Review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 29–49. [Google Scholar] [CrossRef]
- Lin, J.H.; Lee, D.J.; Chang, J.S. Lutein Production from Biomass: Marigold Flowers versus Microalgae. Bioresour. Technol. 2015, 184, 421–428. [Google Scholar] [CrossRef]
- USDA Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 19 January 2024).
- Nwachukwu, I.D.; Udenigwe, C.C.; Aluko, R.E. Lutein and Zeaxanthin: Production Technology, Bioavailability, Mechanisms of Action, Visual Function, and Health Claim Status. Trends Food Sci. Technol. 2016, 49, 74–84. [Google Scholar] [CrossRef]
- Breithaupt, D.E.; Schlatterer, J. Lutein and Zeaxanthin in New Dietary Supplements-Analysis and Quantification. Eur. Food Res. Technol. 2005, 220, 648–652. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Ferreira, F.C.; Hirunlabh, J. Advances in Green Engineering for Natural Products Processing: Nanoseparation Membrane Technology. J. Eng. Sci. Technol. Rev. 2018, 11, 197–205. [Google Scholar] [CrossRef]
- Szekely, G.; Jimenez-Solomon, M.F.; Marchetti, P.; Kim, J.F.; Livingston, A.G. Sustainability Assessment of Organic Solvent Nanofiltration: From Fabrication to Application. Green Chem. 2014, 16, 4440–4473. [Google Scholar] [CrossRef]
- Tsui, E.M.; Cheryan, M. Membrane Processing of Xanthophylls in Ethanol Extracts of Corn. J. Food Eng. 2007, 83, 590–595. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; de Oliveira Filho, J.G.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds From Agro-Industrial By-Products: A Review. Front. Bioeng. Biotechnol. 2022, 9, 802543. [Google Scholar] [CrossRef]
- Xu, Q.; Bao, Z. Special Issue on “Extraction and Purification of Bioactive Compounds”. Processes 2023, 11, 2034. [Google Scholar] [CrossRef]
- Agyei, D.; Ongkudon, C.M.; Wei, C.Y.; Chan, A.S.; Danquah, M.K. Bioprocess Challenges to the Isolation and Purification of Bioactive Peptides. Food Bioprod. Process. 2016, 98, 244–256. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Kirschner, A.Y.; Chang, C.C.; He, Z.; Nassr, M.; Emrick, T.; Freeman, B.D. Surface Modification of Ultrafiltration Membranes with 1,4-Benzoquinone and Polyetheramines to Improve Fouling Resistance. ACS Appl. Mater. Interfaces 2022, 14, 52390–52401. [Google Scholar] [CrossRef]
- Taghavian, H.; Černík, M.; Dvořák, L. Advanced (Bio)Fouling Resistant Surface Modification of PTFE Hollow-Fiber Membranes for Water Treatment. Sci. Rep. 2023, 13, 11871. [Google Scholar] [CrossRef]
- Choi, Y.; Shin, Y.; Woo, Y.C.; Lee, S. Enhancement of Fouling Resistance of Microfiltration Membranes by Surface Modification Using UV-Curing Photopolymer. Chemosphere 2024, 346, 140555. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Mohammad, A.W.; Mahmoudi, E.; Ang, W.L.; Leo, C.P.; Teow, Y.H. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. Membranes 2022, 12, 1276. [Google Scholar] [CrossRef]
- Kim, T.; Lee, Y.; Kim, E.; Kim, K. Fouling-Resistant Surface Modification of Forward Osmosis Membranes Using MoS2-Ag Nanofillers. Surf. Interfaces 2023, 38, 102844. [Google Scholar] [CrossRef]
- Valencia-Arredondo, J.; Hernández-Bolio, G.; Cerón-Montes, G.I. Enhanced process integration for the extraction, concentration and purification of di-acylated cyanidin from red cabbage. Sep. Purif. Technol. 2020, 238, 116492. [Google Scholar] [CrossRef]
- Rashid, S.; Malik, S.; Embi, K.; Ropi, N.A.M.; Yaakob, H.; Cheng, K.K.; Sarmidi, M.R.; Leong, H.Y. Carotenoids and antioxidant activity in virgin palm oil (VPO) produced from palm mesocarp with low heat aqueous-enzyme extraction techniques. Mater. Today Proc. 2021, 42, 148–152. [Google Scholar] [CrossRef]
- Altunay, N.; Haq, H.U.; Castro-Muñoz, R. Optimization of vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction for quantification of niclosamide in real samples. Food Chem. 2023, 426, 136646. [Google Scholar] [CrossRef] [PubMed]
- Kallel, F.; Chaibi, Z.; Neifar, M.; Chaabouni, S.E. Effect of Enzymatic Treatments and Microfiltration on the Physicochemical Properties and Antioxidant Activities of Two Tunisian Prickly Pear Juices. Process Biochem. 2023, 132, 140–151. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Sentellas, S. Recovery of Phenolic Compounds from Wine Lees Using Green Processing: Identifying Target Molecules and Assessing Membrane Ultrafiltration Performance. Sci. Total Environ. 2023, 857, 159623. [Google Scholar] [CrossRef] [PubMed]
- Rosas Vega, F.E.; Sanchez Muñoz, S.; Severo Gonçalves, I.; Terán Hilares, F.; Rocha Balbino, T.; Soares Forte, M.B.; da Silva, S.S.; dos Santos, J.C.; Terán Hilares, R. Carbohydrates Valorization of Quinoa (Chenopodium quinoa) Stalk in Xylooligosaccharides and Carotenoids as Emergent Biomolecules. Ind. Crops Prod. 2023, 194, 116274. [Google Scholar] [CrossRef]
- Vitor Pereira, D.T.; Barrales, F.M.; Pereira, E.; Viganó, J.; Iglesias, A.H.; Reyes Reyes, F.G.; Martínez, J. Phenolic Compounds from Passion Fruit Rinds Using Ultrasound-Assisted Pressurized Liquid Extraction and Nanofiltration. J. Food Eng. 2022, 325, 110977. [Google Scholar] [CrossRef]
- Arend, G.D.; Soares, L.S.; Camelo-Silva, C.; Sanches, M.A.R.; Penha, F.M.; Díaz-De-Cerio, E.; Verardo, V.; Prudencio, E.S.; Segura-Carretero, A.; Tischer, B.; et al. Is Nanofiltration an Efficient Technology to Recover and Stabilize Phenolic Compounds from Guava (Psidium guajava) Leaves Extract? Food Biosci. 2022, 50, 101997. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Parvulescu, V.; Anastasescu, M.; Petrescu, S.; Albu, C.; Nechifor, G.; Radu, G.L. New Hybrid Nanofiltration Membranes with Enhanced Flux and Separation Performances Based on Polyphenylene Ether-Ether-Sulfone/Polyacrylonitrile/SBA-15. Membranes 2022, 12, 689. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, R.; Zurob, E.; Gomez, B.; Merlet, G.; Plaza, A.; Araya-Lopez, C.; Romero, J.; Olea, F.; Quijada-Maldonado, E.; Pino-Soto, L.; et al. Challenges and Possibilities of Deep Eutectic Solvent-Based Membranes. Ind. Eng. Chem. Res. 2022, 61, 17397–17422. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Castro-Munõz, R.; Budd, P.M. Boosting Gas Separation Performance and Suppressing the Physical Aging of Polymers of Intrinsic Microporosity (PIM-1) by Nanomaterial Blending. Nanoscale 2020, 12, 23333–23370. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.M.; Gilron, J.; Kong, D.F.; Yin, Y.; Oren, Y.; Linder, C.; He, T. CF4 Plasma-Modified Superhydrophobic PVDF Membranes for Direct Contact Membrane Distillation. J. Memb. Sci. 2014, 456, 155–161. [Google Scholar] [CrossRef]
- Jiang, B.B.; Sun, X.F.; Wang, L.; Wang, S.Y.; Liu, R.D.; Wang, S.G. Polyethersulfone Membranes Modified with D-Tyrosine for Biofouling Mitigation: Synergistic Effect of Surface Hydrophility and Anti-Microbial Properties. Chem. Eng. J. 2017, 311, 135–142. [Google Scholar] [CrossRef]
- Cosme, J.R.A.; Castro-Muñoz, R.; Vatanpour, V. Recent advances in nanocomposite membranes for organic compound remediation from potable waters. ChemBioEng Rev. 2023, 10, 112–132. [Google Scholar] [CrossRef]
Source | Membrane Specifications | Best Performing Membrane | Flavonoid Rejection | Reference | ||
---|---|---|---|---|---|---|
Commercial Membrane | Polymer Material | MWCO (Da) | ||||
Grape by-products | AFC40 PU608 PU120 FP200 | Polyamide Polysulphone Polysulphone Polyvinilidene fluoride | 60% CaCl2 8000 20,000 200,000 | Integrated membrane system | 100% | [19] |
Nanomax 95 Nanomax 50 DL2540 GE2540 Inside Céram | Polyamide/Polysulphone Polyamide/Polysulphone Thin film Thin film Titania | 250 350 150–300 1000 1000 | Inside Céram | 52% | [20] | |
CA400-22 CA400-26 CA400-28 NF270 ETNA01PP | Cellulose acetate Cellulose acetate Cellulose acetate Polypiperazine Fluoropolymer | n/a | NF270 | 93.8% | [21] | |
NF270 ETNA01PP ETNA10PP | Polypiperazine Fluoropolymer Fluoropolymer | 200–300 1000 10,000 | Integrated membrane system | ACN: 100% TPC: >90% | [22] | |
M-U2540 HYDRACoRe 70pHT NF270 NF90 ESP04 HFW1000 | Polyacrylonitrile Sulfonated polyethersulfone Polypiperazine Polyamide Modified polyethersulfone Modified polyethersulfone | 20,000 720 97% MgSO4 97% MgSO4 4000 1000 | HYDRACoRe 70pHT | 91.9% | [23] | |
NF270 ETNA01PP | Polypiperazine Fluoropolymer | 300 1000 | NF270 | >90% | [24] |
Material | Membrane Specifications | Selected Membrane | Polyphenol Rejection | Reference | ||
---|---|---|---|---|---|---|
Membrane | Polymer | MWCO (Da) | ||||
Olive products | n/a Nadir N30F | n/a Polyethersulphone | n/a 578 | Integrated membrane system | ≈100% | [96] |
DK DL G10 G5 MPF34 MPF36 MPF44 NTR7250 NTR7410 NTR7430 NTR7450 | Polyamide/Polysulfone Polyamide/Polysulfone Polyethylene glycine Polyethylene glycine Silicone/Polysulfone Silicone/Polysulfone Silicone/Polysulfone Polyvinyl alcohol Sulfonated polyether sulfone Sulfonated polyether sulfone Sulfonated polyether sulfone | 150 300 2500 1000 200 1000 250 300–400 17,500 2000 700–800 | MPF44 | OLP: 96% | [97] | |
Isoflux n/a DL1812 NF90 LiquiCells ExtraFlow Shirasu porous glass | TiO2 TiO2 Polyamide Polyamide Polypropylene Al2O3 SiO2 glass | n/a n/a 150–300 200 n/a n/a | Integrated membrane system | 85% | [98] | |
n/a UF(ARS) NF-70 | Polypropylene Polysulfonamide Polyamide | n/a 20,000 200 | Integrated membrane system | 78.3% | [99] | |
TOPER ZeeWeed 1500 HL2540TF | n/a n/a n/a | n/a 5000 300 | Integrated membrane system | HT: 100% SA: 100% OLP: 100% | [100] | |
MD 020 TP 2N GK GH GE NFA-12A DK | Polypropylene Polyamide Polyamide Polyamide Polyamide Polyamide | n/a 3500 2500 1000 500 150–300 | Integrated membrane system | HCA: 100% | [101] | |
NF270 | Polyamide | 300 Da | NF270 | ≈100% | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Muñoz, R. Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices. Separations 2024, 11, 64. https://doi.org/10.3390/separations11020064
Castro-Muñoz R. Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices. Separations. 2024; 11(2):64. https://doi.org/10.3390/separations11020064
Chicago/Turabian StyleCastro-Muñoz, Roberto. 2024. "Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices" Separations 11, no. 2: 64. https://doi.org/10.3390/separations11020064
APA StyleCastro-Muñoz, R. (2024). Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices. Separations, 11(2), 64. https://doi.org/10.3390/separations11020064