Fertilizers’ Impact on Grassland in Northeastern Romania
Abstract
:1. Introduction
2. Hypothesis and Research Objectives
- (i)
- To investigate to what extent the use of natural and mineral fertilizers influences the content of some essential and harmful elements in three types of forage grasses common in Romanian medium- to high-altitude grasslands;
- (ii)
- To quantify the influence of fertilizers as reflected by the parameters that characterize the nutritional value of the forages considered, i.e., the dietary requirements.
3. Materials and Methods
3.1. Sampling and Sample Preparation
3.2. Analytical Techniques
3.3. Statistical Data Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Ash Content |
ADF | Acid Detergent Fiber |
CP | Crude Protein |
DCAD | Dietary Cation–Anion Difference |
FEE | Fat Ether Extract |
INAA | Instrumental Neutron Activation Analysis |
MTL | Maximum Tolerable Level |
NDF | Neutral Detergent Fiber |
RDMR | Recommended Dietary Mineral Reserve |
SLC | Sulfuric Lignin Content |
SRM | Standard Reference Material |
Appendix A
Experience 1: Organic Fertilizer | Experience 2: Mineral Fertilizer | ||
---|---|---|---|
Plot | Plot | ||
V1 | Unfertilized control | V1 | Unfertilized control |
V2 | 20 t/h manure applied every year | V2 | |
V3 | 30 t/h manure applied every year | V3 | |
V4 | 40 t/h manure applied every year | V4 | |
V5 | 50 t/h manure applied every year | V5 | + |
V6 | 20 t/h manure applied every 2 years | V6 | + |
V7 | 30 t/h manure applied every 2 years | V7 | + |
V8 | 40 t/h manure applied every 2 years | ||
V9 | 50 t/h manure applied every 2 years |
Experience 1: Organic Fertilizer | Experience 2: Mineral Fertilizer | ||
---|---|---|---|
Plot | Plot | ||
V1 | Unfertilized control | V1 | Unfertilized control |
V2 | 10 t/ha manure applied every year | V2 | 30 kg/ha mineral nitrogen + 10 t/ha manure applied every year |
V3 | 20 t/ha manure applied every 2 years | V3 | 50 kg/ha mineral nitrogen + 10 t/ha manure applied every year |
V4 | 30 t/ha manure applied every 3 years | V4 | 30 kg/ha mineral nitrogen + 20 t/ha manure applied every 2 years |
V5 | 20 t/ha manure annually + 10 t/ha manure every 2 years + no manure | V5 | 50 kg/ha mineral nitrogen + 20 t/ha manure applied every 2 years |
V6 | 20 t/ha manure annually + no manure + 10 t/ha manure every 3 years | V6 | 30 kg/ha mineral nitrogen + 30 t/ha manure applied every 3 years |
V7 | 20 t/ha manure annually + 10 t/ha manure every 2 years + 10 t/ha manure every 2 years | V7 | 50 kg/ha mineral nitrogen + 30 t/ha manure applied every 3 years |
Sarul Dornei: Organic Fertilizer | Putna: Mineral Fertilizer | ||
---|---|---|---|
Plot | Plot | ||
V1 | Unfertilized control | V1 | Unfertilized control |
V2 | 20 t/ha manure applied every year | V2 | |
V3 | 30 t/ha manure applied every year | V3 | |
V4 | 30 t/ha manure applied every 2 years | V4 | |
V5 | 50 + 0 + 40 + 0 t/ha manure applied | V5 | + |
References
- Ghinea, D. Geographical Encyclopaedia of Romania; Enciclopedica, Ed.; Enciclopedica Publisher: Bucharest, Romania, 2002; ISBN 973-45-0396-0. (In Romanian) [Google Scholar]
- Radoane, M.; Vespremeanu-Stroe, A. (Eds.) Introduction in Romanian Geomorphology; Springer: Doerdrecht, The Netherlands, 2017; ISBN 978-3-319-32589-7. [Google Scholar]
- National Administration of Meteorology, National Administration of Meteorology. Available online: http://www.meteoromania.ro/anm2/clima/clima-romaniei/ (accessed on 23 August 2022).
- National Institute of Statistics, Romanian Statistical Yearbook, National Institute of Statistics, Bucharest. 2016. Available online: http://www.insse.ro/cms/sites/default/files/field/publicatii/anuar_statistic_al_romaniei_2016_format_carte_0.pdf (accessed on 23 August 2022).
- Steinfield, H.; Gerber, P.; Wassenaar, T.; Castel, V.; De Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization: Rome, Italy, 2006; ISBN 978-9251055717. [Google Scholar]
- Ontel, I.; Cheval, S.; Irimescu, A.; Boldeanu, G.; Amihaesei, V.A.; Mihailescu, D.; Nertan, A.; Angearu, C.V.; Craciunescu, V. Assessing the recent trends of land degradation and desertification in Romania using remote rensing rndicators. Remote Sens. 2023, 15, 4842. [Google Scholar] [CrossRef]
- Anonymous. Land Fund Law 18/1991 Republished in 1998; Monitorul Oficial Publishin House: Bucharet, Romania, 1998; Volume 1. (In Romanian) [Google Scholar]
- Anonymous. Emergency Ordinance 34/2013; Monitorul Oficial Publishin House: Bucharet, Romania, 2013; Volume 267. (In Romanian) [Google Scholar]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Frossard, E.; Bünemann, E.; Jansa, J.; Oberson, A.; Feller, C. Concepts and practices of nutrient management in agro-ecosystems: Can we draw lessons from history to design future sustainable agricultural production systems? Bodenkultur 2009, 60, 43–60. Available online: https://diebodenkultur.boku.ac.at/volltexte/band-60/heft-1/frossard.pdf (accessed on 24 April 2024).
- Tejada, M.; Gonzalez, J.L.; Garcia-Martinez, A.M.; Parrado, J. Application of a green manure and green manure composted with beet vinasse on soil restoration: Effects on soil properties. Bioresour. Technol. 2008, 99, 4949–4957. [Google Scholar] [CrossRef]
- Tong, Z.; Quan, G.; Wan, L.; He, F.; Li, X. The effect of fertilizers on biomass and biodiversity on a semi-arid grassland of Northern China. Sustainability 2019, 11, 2854. [Google Scholar] [CrossRef]
- Walie, M.; Tegegne, F.; Mekuriaw, Y.; Tsunekawa, A.; Kobayashi, N.; Ichinohe, T.; Haregeweyn, N.; Tassew, A.; Mekuriaw, S.; Masunaga, T.; et al. Biomass yield, quality, and soil nutrients of pasture influenced by farmyard manure and enrichment planting. Rangeland Ecol. Manag. 2023, 88, 174–181. [Google Scholar] [CrossRef]
- Chen, X.; Jiao, T.; Nie, Z.; Zhang, D.; Wang, J.; Qi, J. Effects of different fertilizers on nutrient quality and mineral elements in different economic forage groups in Qilian Mountain alpine meadows. PeerJ 2022, 10, e14223. [Google Scholar] [CrossRef]
- Sinde-Gonzalez, I.; Gil-Docampo, M.; Arza-garcia, M.; Grefa-Sánchez, J.; Yánez-Simba, D.; Pérez-Guerrero, P.; Abril-Porras, V. Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys. Int. J. Appl. Earth Obser. Geoinform. 2021, 101, 102355. [Google Scholar] [CrossRef]
- Sanchez, W.K.; Beede, D.K.; Delorenzo, M.A. Macromineral element interrelationships and lactational performance: Empirical models from a large data set. J. Diary. Sci. 1994, 77, 3096–3110. [Google Scholar] [CrossRef]
- Markert, B.; Kayser, G.; Korhammer, S.; Oehlmann, J. Distribution and effects of trace substances in soils, plants and animals. In Trace Elements—Their Distribution and Effects in the Environment; Markert, B., Friese, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Gupta, R.C. Aluminum. In Veterinary Toxicology; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-12-370467-2. [Google Scholar]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 329, 51–55. [Google Scholar] [CrossRef]
- Garland, T. Arsenic. In Veterinary Toxicology; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-12-370467-2. [Google Scholar]
- Khan, M.I.; Ahmad, M.F.; Ahmad, I.; Ashfaq, F.; Wahab, S.; Alsayegh, A.A.; Kumar, S.; Hakeem, K.R. Arsenic exposure through dietary intake and associated health hazards in the Middle East. Nutrients 2022, 14, 2136. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Hüner, N.P.A. Introduction to Plant Physiology; Willey: Hoboken, NJ, USA, 2009; ISBN 978-0-470-24766-2. [Google Scholar]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xia, L.; Li, H.; Jiang, X.; Pan, H.; Xu, Y.; Lu, W.W.; Zhang, Z.; Chang, J. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 2013, 34, 10028–10042. [Google Scholar] [CrossRef] [PubMed]
- Vandana, U.; Nancy, D.; Sabareeswaran, A.; Remya, N.S.; Rajendran, N.; Mohanan, P.V. Biocompatibility of strontium incorporated ceramic coated titanium oxide implant indented for orthopaedic applications. Mater. Sci. Eng. B 2021, 264, 114954. [Google Scholar] [CrossRef]
- Burger, A.; Lichtscheidl, I. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ. 2019, 653, 1458–1512. [Google Scholar] [CrossRef] [PubMed]
- Naccari, C.; Cicero, N.; Vadalà, R.; Bartolomeo, G.; Palma, E. Toxicological analysis of metals content in agro-food wastes as possible supplement in animal feed. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef]
- Vadalà, R.; Mottese, A.F.; Bua, G.D.; Salvo, A.; Mallamace, D.; Corsaro, C.; Vasi, S.; Giofrè, S.V.; Alfa, M.; Cicero, N.; et al. Statistical analysis of mineral concentration for the geographic identification of garlic samples from Sicily (Italy), Tunisia and Spain. Foods 2016, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Code of Consumption, Law 296/2006; Monitorul Oficial Publishin House: Bucharet, Romania, 2008; Volume 224. (In Romanian) [Google Scholar]
- Oancea, S.; Banaduc, D. Food security and safety. In Integrated and Strategic Management of the Smart Fight against the Global Food Crisis, Based on Bioeconomy And Ecoeconomy; Bogdan, T.A., Oprean, C., Oprean, L., Eds.; Editura Academiei: Bucharest, Romania, 2012. (In Romanian) [Google Scholar]
- Steines, E. Activation analysis in agriculture and botany. In Activation Analysis II; Alfassi, Z.B., Ed.; CRC: Bocca Raton, FL, USA, 2000; pp. 568–579. ISBN 0-8493-4584-7. [Google Scholar]
- Frontasyeva, M.V. Neutron activation analysis in the life sciences. Phys. Part. Nucl. 2011, 42, 332–378. [Google Scholar] [CrossRef]
- Pavlov, S.S.; Dmitriev, A.Y.; Frontasyeva, M.V. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J. Radioanal. Nucl. Chem. 2016, 309, 27–38. [Google Scholar] [CrossRef]
- Culicov, O.A.; Yurukova, L.; Duliu, O.G.; Zinicovscaia, I. Elemental content of mosses and lichens from Livingston Island (Antarctica) as determined by instrumental neutron activation analysis (INAA). Environ. Sci. Pollut. Res. 2017, 24, 5717–5732. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Duliu, O.G.; Culicov, O.A.; Sturza, R.; Bilici, C.; Gundorina, S. Geographical origin identification of Moldavian wines by neutron activation analysis. Food Anal. Methods 2017, 10, 3523–3530. [Google Scholar] [CrossRef]
- Abdusamadzoda, D.; Abdushukurov, D.A.; Zinicovscaia, I.; Duliu, O.G.; Vergel, K.N. Assessment of the ecological and geochemical conditions in surface sediments of the Varzob river, Tajikistan. Microchem. J. 2020, 158, 105173. [Google Scholar] [CrossRef]
- Farrance, I.; Frenkel, R. Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships. Clin. Biochem. Rev. 2012, 33, 49–75. [Google Scholar] [CrossRef]
- Marshall, M.R. Ash Analysis. In Food Analysis; Nielsen, S., Ed.; Food Science Text Series; Springer: Berlin/Heidelberg, Germany, 2017; pp. 105–115. [Google Scholar] [CrossRef]
- Chang, S.K.C.; Zhang, Y. Protein Analysis. In Food Analysis; Nielsen, S., Ed.; Food Science Text Series; Springer: Berlin/Heidelberg, Germany, 2017; pp. 315–331. [Google Scholar] [CrossRef]
- Min, D.B.; Ellefson, W.C. Fat Analysis. In Food Analysis; Nielsen, S., Ed.; Food Science Text Series; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–132. [Google Scholar] [CrossRef]
- Dence, C.W. The Determination of Lignin. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 33–61. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- National Research Council. Mineral Tolerance of Animals: Second Revised Edition; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
Locality | Natural Fertilizer | Chemical Fertilizer |
---|---|---|
Grass Species | (t/ha) | (t/ha) |
Cosna (840 m altitude) Nardus stricta L. | 20 to 50 t of manure applied annually/biannually (1–4 years) | ; ; ; + ; + ; + |
Pojorata (717 m altitude) Agrostis capillaris L. Festuca rubra L. Nardus stricta L. | 10 to 50 t of manure applied annually/biannually (1–4 years) | 30–50 kg mineral nitrogen + 10 to 30 t of manure applied annually, biannually, or every three years |
Putna (611 m altitude) Agrostis capillaris L. Festuca rubra L. | 20 to 50 t of partially or totally fermented manure | —– |
Sarul Dornei (940 m altitude) Festuca rubra L. Nardus stricta L. | 20 t to 30 t of manure applied annually and biannually following the schedule: 50 + 0 + 40 + 0 t over 4 years | —– |
Cosna | Pojorata | Sarul Dornei | Putna | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Element | Unfertilized | Fertilized | Unfertilized | Fertilized | Unfertilized | Fertilized | Unfertilized | Fertilized | RDM | MTL | RP |
Na | 80 ± 50 | 110 ± 50 | 90 ± 50 | 100 ± 30 | 50 ± 20 | 50 ± 10 | 80 ± 20 | 90 ± 10 | 1000–2000 | 40,000 | 150 |
Cl | 1960 ± 820 | 2730 ± 1320 | 1350 ± 820 | 1480 ± 610 | 4630 ± 2090 | 4500 ± 1730 | 3310 ± 1740 | 4290 ± 1300 | 1300–2900 | 40,000 | 2000 |
K | 9500 ± 3700 | 12,200 ± 4900 | 16,500 ± 3700 | 15,800 ± 3700 | 16,900 ± 3500 | 19,000 ± 3700 | 20,300 ± 3700 | 21,700 ± 2500 | 4700–10,000 | 30,000 | 19,000 |
Mg | 2800 ± 860 | 3860 ± 2530 | 5700 ± 860 | 5080 ± 1240 | 3020 ± 800 | 3280 ± 890 | 2100 ± 530 | 1940 ± 600 | 1100–2100 | 2000 | 2000 |
Ca | 5160 ± 1410 | 7150 ± 2950 | 14,230 ± 1410 | 11,110 ± 4230 | 9530 ± 830 | 9650 ± 1050 | 5780 ± 1580 | 6290 ± 1310 | 2200–3800 | 7000 | 10,000 |
Mn | 550 ± 210 | 590 ± 340 | 80 ± 10 | 70 ± 30 | 260 ± 40 | 240 ± 20 | 460 ± 90 | 440 ± 40 | 13–24 | 1000 | 200 |
Fe | 300 ± 250 | 360 ± 180 | 250 ± 250 | 290 ± 120 | 220 ± 140 | 160 ± 30 | 210 ± 80 | 200 ± 70 | 12–40 | 500 | 150 |
Co | 0.23 ± 0.1 | 0.27 ± 0.1 | 0.16 ± 0.1 | 0.16 ± 0.05 | 0.16 ± 0.05 | 0.15 ± 0.04 | 0.19 ± 0.04 | 0.18 ± 0.03 | 0.10–0.15 | 25 | 0.2 |
Ni | 3.3 ± 0.4 | 3.1 ± 0.7 | bdl | 1.9 ± 0.4 | 3.8 ± 1.9 | 4.3 ± 2.5 | 4.9 ± 1.2 | 5 ± 1.5 | 21–55 | 500 | 1.5 |
Zn | 70 ± 11 | 65 ± 15 | 40 ± 11 | 33 ± 9 | 69 ± 8 | 71 ± 7 | 55 ± 6 | 49 ± 9 | 0.1–0.3 | 2 | 50 |
Mo | 1 ± 1.3 | 0.4 ± 0.4 | 0.5 ± 1.3 | 0.5 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 | 5 | 0.5 |
Se | 0.2 ± 0.03 | 0.22 ± 0.04 | bdl | 0.19 ± 0.04 | 0.28 ± 0.08 | 0.28 ± 0.09 | 0.29 ± 0.04 | 0.29 ± 0.03 | 13–24 | 1000 | 0.02 |
Al | 510 ± 400 | 640 ± 440 | 490 ± 400 | 390 ± 290 | 350 ± 330 | 240 ± 50 | 180 ± 50 | 200 ± 60 | — | 1000 | 80 |
As | 1.7 ± 0.7 | 1.8 ± 0.8 | 1 ± 0.7 | 1.1 ± 0.6 | 1.4 ± 0.7 | 1.4 ± 0.6 | 1.5 ± 0.5 | 1.4 ± 0.4 | — | 30 | 0.1 |
Sr | 24 ± 12 | 30 ± 10 | 14 ± 12 | 13 ± 3 | 40 ± 9 | 42 ± 6 | 32 ± 8 | 33 ± 7 | — | 2000 | 50 |
Element | Organic Fertilizers | Mineral Fertilizers | ||||
---|---|---|---|---|---|---|
Increased (%) | Unchanged (%) | Decreased (%) | Increased (%) | Unchanged (%) | Decreased (%) | |
Na | 50 | 37.5 | 12.5 | 50 | 50 | nd |
Cl | 87.5 | 12.5 | nd | 25 | 25 | 50 |
K | 50 | 37.5 | nd | nd | 75 | 25 |
Mg | 50 | 12.5 | 37.5 | 25 | 25 | 50 |
Ca | 62.5 | 12.5 | 25 | nd | 25 | 75 |
Mn | nd | 12.5 | 87.5 | 50 | 25 | 25 |
Fe | 62.5 | 12.5 | 25 | 50 | 25 | 25 |
Co | 25 | 75 | nd | 50 | 25 | 25 |
Zn | 25 | 50 | 25 | 25 | 25 | 50 |
Se | nd | nd | nd | nd | nd | nd |
Mo | 75 | nd | 25 | 25 | nd | 50 |
Al | 25 | 12.5 | 62.5 | 25 | 25 | 50 |
As | nd | 62.5 | 37.5 | 50 | 25 | 25 |
Sr | 75 | nd | 25 | nd | 50 | 50 |
Fertilization Variant | DCAD | CP | AC | FEE | NDF | ADF | SLC |
---|---|---|---|---|---|---|---|
Organic Fertilizers | |||||||
V1 Unfertilized Control | 3100 | 6.4 | 5.5 | 1.6 | 74.7 | 47.1 | 11 |
V2 20 t/ha every year | 3130 | 9.3 | 9.8 | 2 | 60.2 | 38.4 | 10.4 |
V3 30 t/ha every year | 3720 | 11.5 | 9 | 1.6 | 55.1 | 37.5 | 10.4 |
V4 40 t/ha every year | 3170 | 9.7 | 10.5 | 1.9 | 50.1 | 38.5 | 10.4 |
V5 50 t/ha every year | 3940 | 10.8 | 10.2 | 2.2 | 53.8 | 40.7 | 9.9 |
V6 20 t/ha every 2 years | 2100 | 11.7 | 8.8 | 1.7 | 57.5 | 37.7 | 9.9 |
V7 30 t/ha every 2 years | 2150 | 12 | 9 | 1.3 | 57.8 | 39.4 | 9.5 |
V8 40 t/ha every 2 years | 2590 | 12.8 | 9.4 | 1.3 | 55.9 | 38.6 | 9.6 |
V9 50 t/ha every 2 years | 2620 | 13.1 | 10 | 1.5 | 54.8 | 43.1 | 9.2 |
Mineral Fertilizers | |||||||
V1 Unfertilized Control | 3200 | 6.5 | 7.6 | 2.7 | 72 | 46 | 10 |
V2 N100P100 | 3420 | 6.6 | 6.3 | 3 | 59 | 34 | 9.6 |
V3 N140P140 | 4430 | 8.1 | 6.2 | 3.1 | 59 | 33 | 9.8 |
V4 N200P200 | 3180 | 10 | 7.1 | 3.2 | 52 | 33 | 9.5 |
V5 N100P100 + N40P40 | 3370 | 11 | 6 | 3 | 55 | 34 | 9.7 |
V6 N100P100 + N100P100 | 3070 | 14 | 7.3 | 3.3 | 54 | 32 | 10.5 |
V7 N80P80 + N60P60 | 2670 | 11 | 6.2 | 2.6 | 59 | 40 | 9.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Culicov, O.A.; Tarcau, D.; Zinicovscaia, I.; Duliu, O.G.; Stavarache, M.; Vintu, V. Fertilizers’ Impact on Grassland in Northeastern Romania. Separations 2024, 11, 139. https://doi.org/10.3390/separations11050139
Culicov OA, Tarcau D, Zinicovscaia I, Duliu OG, Stavarache M, Vintu V. Fertilizers’ Impact on Grassland in Northeastern Romania. Separations. 2024; 11(5):139. https://doi.org/10.3390/separations11050139
Chicago/Turabian StyleCulicov, Otilia A., Doina Tarcau, Inga Zinicovscaia, Octavian G. Duliu, Mihai Stavarache, and Vasile Vintu. 2024. "Fertilizers’ Impact on Grassland in Northeastern Romania" Separations 11, no. 5: 139. https://doi.org/10.3390/separations11050139