Remediation of Methyl Orange Dye in Aqueous Solutions by Green Microalgae (Bracteacoccus sp.): Optimization, Isotherm, Kinetic, and Thermodynamic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling of Green Microalgae
2.3. Immobilization of the Bracteacoccus sp.
2.4. Characterization of the MO Solutions
2.5. Adsorption Experiments
2.6. Isotherm Study
2.7. Kinetic Study
2.8. Thermodynamics
2.9. Regeneration
3. Results
3.1. UV-Vis Analysis
3.2. A Comparison between Old, Immobilized Fresh, and Free Fresh Bracteacoccus sp.
3.3. Optimization of Experimental Factors Using a BBD
3.4. Effect of the Initial MO Concentration
3.5. Effect of the Adsorbent Dose
3.6. Effect of the Temperature
3.7. Effect of the Contact Time
3.8. Analysis of Variance (ANOVA)
+ 1.26629 × Initial concentration
+ 272.75347 × Adsorbent dose
+ 0.34388 × Temperature
+ 1.18298 × Contact time
− 6.81250 × Initial concentration × Adsorbent dose
− 0.025781 × Initial concentration × Temperature
− 6.77242 × 10−18 × Initial concentration × Contact time
+ 2.14844 × Adsorbent dose × Temperature
+ 0.55556 × Adsorbent dose × Contact time
− 1.25000 × 10−3 × Temperature × Contact time
− 0.017342 × Initial concentration2
− 302.60417 × Adsorbent dose2
+ 6.70247 × 10−3 × Temperature2
− 8.35021 × 10−3 × Contact time2
3.9. Desirability Function
3.10. Isotherm Study
3.11. Kinetic Study
3.12. Thermodynamic Study
3.13. Regeneration
3.14. Comparison with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.A.; Ahmed, M.A.; Mohamed, A.A. Synthesis, Characterization and Application of Chitosan/Graphene Oxide/Copper Ferrite Nanocomposite for the Adsorptive Removal of Anionic and Cationic Dyes from Wastewater. RSC Adv. 2023, 13, 5337–5352. [Google Scholar] [CrossRef] [PubMed]
- Aljuaid, A.; Almehmadi, M.; Alsaiari, A.A.; Allahyani, M.; Abdulaziz, O.; Alsharif, A.; Alsaiari, J.A.; Saih, M.; Alotaibi, R.T.; Khan, I. G-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules 2023, 28, 3199. [Google Scholar] [CrossRef] [PubMed]
- Hosny, N.M.; Gomaa, I.; Elmahgary, M.G. Adsorption of Polluted Dyes from Water by Transition Metal Oxides: A Review. Appl. Surf. Sci. Adv. 2023, 15, 100395. [Google Scholar] [CrossRef]
- Wang, K.; Kou, Y.; Wang, K.; Liang, S.; Guo, C.; Wang, W.; Lu, Y.; Wang, J. Comparing the Adsorption of Methyl Orange and Malachite Green on Similar yet Distinct Polyamide Microplastics: Uncovering Hydrogen Bond Interactions. Chemosphere 2023, 340, 139806. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Albaeejan, M.A.; Alshayiqi, A.A.; Al-Nafaei, W.S.; Alharthi, F.A. In Situ Hydrothermal Synthesis of Ni1−xMnxWO4 Nanoheterostructure for Enhanced Photodegradation of Methyl Orange. Molecules 2023, 28, 1140. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Mehmood, S.; Ashraf, A.; Saleem, A.; Younas, U.; Ahmad, A.; Bhatti, M.P.; Eldesoky, G.E.; Aljuwayid, A.M.; Habila, M.A.; et al. Ag-Cu Embedded SDS Nanoparticles for Efficient Removal of Toxic Organic Dyes from Water Medium. Ind. Eng. Chem. Res. 2023, 62, 4765–4777. [Google Scholar] [CrossRef]
- Alardhi, S.M.; Fiyadh, S.S.; Salman, A.D.; Adelikhah, M. Prediction of Methyl Orange Dye (MO) Adsorption Using Activated Carbon with an Artificial Neural Network Optimization Modeling. Heliyon 2023, 9, e12888. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Ighalo, J.O.; Emenike, E.C.; Ogunfowora, L.A.; Igwegbe, C.A. Adsorption of Methyl Orange: A Review on Adsorbent Performance. Curr. Res. Green Sustain. Chem. 2021, 4, 100179. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Saravanan, A.; Vo, D.V.N. Advances in Biosorbents for Removal of Environmental Pollutants: A Review on Pretreatment, Removal Mechanism and Future Outlook. J. Hazard. Mater. 2021, 420, 126596. [Google Scholar] [CrossRef]
- Lin, Z.; Li, J.; Luan, Y.; Dai, W. Application of Algae for Heavy Metal Adsorption: A 20-Year Meta-Analysis. Ecotoxicol. Environ. Saf. 2020, 190, 110089. [Google Scholar] [CrossRef]
- El-Naggar, N.E.A.; Hamouda, R.A.; Saddiq, A.A.; Alkinani, M.H. Simultaneous Bioremediation of Cationic Copper Ions and Anionic Methyl Orange Azo Dye by Brown Marine Alga Fucus Vesiculosus. Sci. Rep. 2021, 11, 3555. [Google Scholar] [CrossRef] [PubMed]
- Maruthanayagam, A.; Mani, P.; Kaliappan, K.; Chinnappan, S. In Vitro and In Silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium Subplagiostomum AP1. Water Air Soil Pollut. 2020, 231, 232. [Google Scholar] [CrossRef]
- Doshi, H.; Ray, A.; Kothari, I.L.; Gami, B. Spectroscopic and Scanning Electron Microscopy Studies of Bioaccumulation of Pollutants by Algae. Curr. Microbiol. 2006, 53, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.; Fathi, R.; Abdalla, M.A.A.; Radhika, N.; Ma, A.; Jiang, J. Optimization and Characterization of Centrifugal-Cast Functionally Graded Al-SiC Composite Using Response Surface Methodology and Grey Relational Analysis. Coatings 2023, 13, 813. [Google Scholar] [CrossRef]
- Williamson, E.M.; Sun, Z.; Mora-Tamez, L.; Brutchey, R.L. Design of Experiments for Nanocrystal Syntheses: A How-To Guide for Proper Implementation. Chem. Mater. 2022, 34, 9823–9835. [Google Scholar] [CrossRef]
- Osuchukwu, O.A.; Salihi, A.; Abdullahi, I.; Abdulkareem, B.; Salami, K.A.; Osayamen Etinosa, P.; Nwigbo, S.C.; Mohammed, S.A.; Obada, D.O. A Pedagogical Approach for the Development and Optimization of a Novel Mix of Biowastes-Derived Hydroxyapatite Using the Box-Behnken Experimental Design. Heliyon 2024, 10, e23092. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Hao, C.; Zhang, X.; Zhang, Q.; Sun, R. Sonocatalytic Degradation of Methyl Orange in Aqueous Solution Using Fe-Doped TiO2 Nanoparticles under Mechanical Agitation. Open Chem. 2018, 16, 1283–1296. [Google Scholar] [CrossRef]
- Al-Fawwaz, A.T.; Al Shra’ah, A.; Elhaddad, E. Bioremoval of Methylene Blue from Aqueous Solutions by Green Algae (Bracteacoccus sp.) Isolated from North Jordan: Optimization, Kinetic, and Isotherm Studies. Sustainability 2023, 15, 842. [Google Scholar] [CrossRef]
- Hambisa, A.A.; Regasa, M.B.; Ejigu, H.G.; Senbeto, C.B. Adsorption Studies of Methyl Orange Dye Removal from Aqueous Solution Using Anchote Peel-Based Agricultural Waste Adsorbent. Appl. Water Sci. 2023, 13, 24. [Google Scholar] [CrossRef]
- Asanjarani, N.; Bagtash, M.; Zolgharnein, J. A Comparison between Box–Behnken Design and Artificial Neural Network: Modeling of Removal of Phenol Red from Water Solutions by Nanocobalt Hydroxide. J. Chemom. 2020, 34, 9. [Google Scholar] [CrossRef]
- Mahdi, A.E.; Ali, N.S.; Kalash, K.R.; Salih, I.K.; Abdulrahman, M.A.; Albayati, T.M. Investigation of Equilibrium, Isotherm, and Mechanism for the Efficient Removal of 3-Nitroaniline Dye from Wastewater Using Mesoporous Material MCM-48. Prog. Color. Color. Coat. 2023, 16, 387–398. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Yılmaz, M.; Helal, M.; El-Nemr, M.A.; Ragab, S.; El Nemr, A. Isotherm and Kinetic Investigations of Sawdust-Based Biochar Modified by Ammonia to Remove Methylene Blue from Water. Sci. Rep. 2023, 13, 12724. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, A.G.M.; Ragab, S.; El Sikaily, A.; Yılmaz, M.; El Nemr, A. Thermodynamic, Kinetic, and Isotherm Studies of Direct Blue 86 Dye Absorption by Cellulose Hydrogel. Sci. Rep. 2023, 13, 5910. [Google Scholar] [CrossRef] [PubMed]
- Deka, J.; Das, H.; Singh, A.; Barman, P.; Devi, A.; Bhattacharyya, K.G. Methylene Blue Removal Using Raw and Modified Biomass Plumeria Alba (White Frangipani) in Batch Mode: Isotherm, Kinetics, and Thermodynamic Studies. Environ. Monit. Assess. 2023, 195, 26. [Google Scholar] [CrossRef]
- Wekoye, J.N.; Wanyonyi, W.C.; Wangila, P.T.; Tonui, M.K. Kinetic and Equilibrium Studies of Congo Red Dye Adsorption on Cabbage Waste Powder. Environ. Chem. Ecotoxicol. 2020, 2, 24–31. [Google Scholar] [CrossRef]
- Kavcı, E. Adsorption of Direct Red 243 Dye onto Clay: Kinetic Study and Isotherm Analysis. Desalination Water Treat. 2021, 212, 452–461. [Google Scholar] [CrossRef]
- Zghal, S.; Jedidi, I.; Cretin, M.; Cerneaux, S.; Abdelmouleh, M. Adsorptive Removal of Rhodamine B Dye Using Carbon Graphite/CNT Composites as Adsorbents: Kinetics, Isotherms and Thermodynamic Study. Materials 2023, 16, 1015. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.A.; Sanad, M.M.S.; Kotb, A.; Negm, A.N.R.M.; Abdallah, M.H. Removal of Methyl Red from Wastewater Using a NiO@Hyphaene Thebaica Seed-Derived Porous Carbon Adsorbent: Kinetics and Isotherm Studies. Mater. Adv. 2023, 4, 2981–2990. [Google Scholar] [CrossRef]
- Thamer, B.M.; Al-aizari, F.A.; Abdo, H.S. Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study. Molecules 2023, 28, 7712. [Google Scholar] [CrossRef]
- Dutta, S.K.; Amin, M.K.; Ahmed, J.; Elias, M.; Mahiuddin, M. Removal of Toxic Methyl Orange by a Cost-Free and Eco-Friendly Adsorbent: Mechanism, Phytotoxicity, Thermodynamics, and Kinetics. S. Afr. J. Chem. Eng. 2022, 40, 195–208. [Google Scholar] [CrossRef]
- Cheng, Z.; Feng, K.; Su, Y.; Ye, J.; Chen, D.; Zhang, S.; Zhang, X.; Dionysiou, D.D. Novel Biosorbents Synthesized from Fungal and Bacterial Biomass and Their Applications in the Adsorption of Volatile Organic Compounds. Bioresour. Technol. 2020, 300, 122705. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Jiang, C.; Wang, C.; Sun, J.; Wang, X.; Li, X. A TiO2 Modified Abiotic–Biotic Process for the Degradation of the Azo Dye Methyl Orange. RSC Adv. 2015, 5, 58704–58712. [Google Scholar] [CrossRef]
- Hii, H.T. Adsorption Isotherm and Kinetic Models for Removal of Methyl Orange and Remazol Brilliant Blue R by Coconut Shell Activated Carbon. Trop. Aquat. Soil. Pollut. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Akansha, K.; Chakraborty, D.; Sachan, S.G. Decolorization and Degradation of Methyl Orange by Bacillus Stratosphericus SCA1007. Biocatal. Agric. Biotechnol. 2019, 18, 101044. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Ma, L.; Xiang, C.; Li, L. TiO2-Doped Chitosan Microspheres Supported on Cellulose Acetate Fibers for Adsorption and Photocatalytic Degradation of Methyl Orange. Polymers 2019, 11, 1293. [Google Scholar] [CrossRef] [PubMed]
- Nouaa, S.; Aziam, R.; Benhiti, R.; Carja, G.; Iaich, S.; Zerbet, M.; Chiban, M. Synthesis of LDH/Alginate Composite Beads as a Potential Adsorbent for Phosphate Removal: Kinetic and Equilibrium Studies. Chem. Pap. 2023, 77, 6689–6705. [Google Scholar] [CrossRef]
- Chiban, M.; Carja, G.; Lehutu, G.; Sinan, F. Equilibrium and Thermodynamic Studies for the Removal of As(V) Ions from Aqueous Solution Using Dried Plants as Adsorbents. Arab. J. Chem. 2016, 9, S988–S999. [Google Scholar] [CrossRef]
- Ramutshatsha-Makhwedzha, D.; Mavhungu, A.; Moropeng, M.L.; Mbaya, R. Activated Carbon Derived from Waste Orange and Lemon Peels for the Adsorption of Methyl Orange and Methylene Blue Dyes from Wastewater. Heliyon 2022, 8, e09930. [Google Scholar] [CrossRef]
- Djezar, H.; Rida, K.; Salhi, M. Efficient Adsorbent for the Removal of Methyl Orange and Congo Red by Calcined Zn-Al Layered Double Hydroxide. Inorg. Nano-Met. Chem. 2022, 52, 161–172. [Google Scholar] [CrossRef]
- Khalil, M.; Hanif, M.A.; Rashid, U.; Ahmad, J.; Alsalme, A.; Tsubota, T. Low-Cost Novel Nano-Constructed Granite Composites for Removal of Hazardous Terasil Dye from Wastewater. Environ. Sci. Pollut. Res. 2023, 30, 81333–81351. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, S.; Ameer, S.; Javed, M.; Iqbal, S.; Aljazzar, S.O.; Zahra, M.; Amin, S.; Shah, K.H.; Abourehab, M.A.S.; Elkaeed, E.B.; et al. Removal of Hexavalent Chromium Ions Using Micellar Modified Adsorbent: Isothermal and Kinetic Investigations. RSC Adv. 2022, 12, 23898–23911. [Google Scholar] [CrossRef] [PubMed]
- Etemadinia, T.; Allahrasani, A.; Barikbin, B. ZnFe2O4@SiO2@Tragacanth Gum Nanocomposite: Synthesis and Its Application for the Removal of Methylene Blue Dye from Aqueous Solution. Polym. Bull. 2019, 76, 6089–6109. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Cheikh, S.; Hadadi, A.; Hamri, N.; Bollinger, J.C.; Amrane, A.; Tahraoui, H.; Manseri, A.; Mouni, L. Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations 2023, 10, 57. [Google Scholar] [CrossRef]
- Emami, M.R.S.; Amiri, M.K.; Zaferani, S.P.G. Removal Efficiency Optimization of Pb2+ in a Nanofiltration Process by MLP-ANN and RSM. Korean J. Chem. Eng. 2021, 38, 316–325. [Google Scholar] [CrossRef]
- Biradar, V.R.; Charde, M.S.; Chakole, R.D. QBD Approach Based Development of Validated Analytical Method for Estimation of Clarithromycin by RP-HPLC. J. Adv. Sci. Res. 2023, 14, 15–24. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Hanafiah, M.A.K.M.; ALOthman, Z.A.; Khan, M.R.; Surip, S.N. Numerical Desirability Function for Adsorption of Methylene Blue Dye by Sulfonated Pomegranate Peel Biochar: Modeling, Kinetic, Isotherm, Thermodynamic, and Mechanism Study. Korean J. Chem. Eng. 2021, 38, 1499–1509. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Candido, I.C.M.; Soares, J.M.D.; de Araujo Barros Barbosa, J.; de Oliveira, H.P. Adsorption and Identification of Traces of Dyes in Aqueous Solutions Using Chemically Modified Eggshell Membranes. Bioresour. Technol. Rep. 2019, 7, 100267. [Google Scholar] [CrossRef]
- Mokhtar, N.; Aziz, E.A.; Aris, A.; Ishak, W.F.W.; Mohd Ali, N.S. Biosorption of Azo-Dye Using Marine Macro-Alga of Euchema Spinosum. J. Environ. Chem. Eng. 2017, 5, 5721–5731. [Google Scholar] [CrossRef]
- Pootthachaya, P.; Puangsap, W.; Bunchalee, P.; Plangklang, P.; Reungsang, A.; Yuangsoi, B.; Cherdthong, A.; Tengjaroenkul, B.; Wongtangtintharn, S. Investigation of Nutritional Profile, Protein Solubility and in Vitro Digestibility of Various Algae Species as an Alternative Protein Source for Poultry Feed. Algal Res. 2023, 72, 103147. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Arumugam, N.; Chelliapan, S.; Kamyab, H.; Thirugnana, S.; Othman, N.; Nasri, N.S. Treatment of Wastewater Using Seaweed: A Review. Int. J. Environ. Res. Public Health 2018, 15, 2851. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu, G.; Burcu Angi, S.; Acikgoz-Erkaya, I.; Yakup Arica, M. Preparation of Effective Green Sorbents Using O. Princeps Alga Biomass with Different Composition of Amine Groups: Comparison to Adsorption Performances for Removal of a Model Acid Dye. J. Mol. Liq. 2022, 347, 118375. [Google Scholar] [CrossRef]
- Yu, L.; Bi, J.; Song, Y.; Wang, M. Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres. Int. J. Mol. Sci. 2022, 23, 13839. [Google Scholar] [CrossRef] [PubMed]
- Hady, A.K.; Owda, M.E.; Abouzeid, R.E.; Shehata, H.A.; Elzaref, A.S.; Elfeky, A.S. Harnessing the Potential of Modified Cellulosic Pumpkin Seed Hulls as Affordable Biosorbents for Cationic Dye Removal from Aqueous Solutions: Adsorption Kinetics and Isotherm Studies. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Yönten, V.; Sanyürek, N.K.; Kivanç, M.R. A Thermodynamic and Kinetic Approach to Adsorption of Methyl Orange from Aqueous Solution Using a Low Cost Activated Carbon Prepared from Vitis vinifera L. Surf. Interfaces 2020, 20, 100529. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Joshiba, G.J. Sustainable Approach to Decolourize Methyl Orange Dye from Aqueous Solution Using Novel Bacterial Strain and Its Metabolites Characterization. Clean Technol. Environ. Policy 2021, 23, 173–181. [Google Scholar] [CrossRef]
- Murali, V.; Ong, S.A.; Ho, L.N.; Wong, Y.S. Evaluation of Integrated Anaerobic-Aerobic Biofilm Reactor for Degradation of Azo Dye Methyl Orange. Bioresour. Technol. 2013, 143, 104–111. [Google Scholar] [CrossRef]
- Zhong, W.; Jiang, T.; Dang, Y.; He, J.; Chen, S.Y.; Kuo, C.H.; Kriz, D.; Meng, Y.; Meguerdichian, A.G.; Suib, S.L. Mechanism Studies on Methyl Orange Dye Degradation by Perovskite-Type LaNiO3-Δ under Dark Ambient Conditions. Appl. Catal. A Gen. 2018, 549, 302–309. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Chemical structure | |
Chemical formula | C14H14N3SO3Na |
Molecular weight (g mol−1) | 327.33 |
Molecular size (Å) | 15.8 × 6.5 × 2.6 |
λmax (nm) | 464 |
Density at 20 °C | 1.28 |
pKa | 3.42 |
Solubility (mg L−1) | 5.0 × 103 |
Parameter | Factor | Level | ||
---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | ||
Initial MO concentration (mg L−1) | A | 5 | 15 | 25 |
Adsorbent dose (g mL−1) | B | 0.02 | 0.06 | 0.10 |
Temperature (°C) | C | 4 | 20 | 36 |
Contact time (min) | D | 5 | 45 | 95 |
Exp. # | Factor 1 (Initial Concentration, mg L−1) | Factor 2 (Adsorbent Dose, g mL−1) | Factor 3 (Temperature, °C) | Factor 4 (Time, min) |
---|---|---|---|---|
1 | 0 | −1 | −1 | 0 |
2 | −1 | 0 | 0 | −1 |
3 | 0 | −1 | 0 | −1 |
4 | +1 | 0 | −1 | 0 |
5 | 0 | 0 | 0 | 0 |
6 | +1 | 0 | 0 | −1 |
7 | 0 | +1 | 0 | +1 |
8 | +1 | 0 | +1 | 0 |
9 | 0 | 0 | −1 | −1 |
10 | 0 | 0 | −1 | +1 |
11 | −1 | −1 | 0 | 0 |
12 | 0 | +1 | 0 | −1 |
13 | 0 | 0 | 0 | 0 |
14 | −1 | 0 | 0 | +1 |
15 | −1 | +1 | 0 | 0 |
16 | 0 | −1 | +1 | 0 |
17 | +1 | −1 | 0 | 0 |
18 | −1 | 0 | +1 | 0 |
19 | 0 | 0 | 0 | 0 |
20 | +1 | +1 | 0 | 0 |
21 | 0 | 0 | 0 | 0 |
22 | −1 | 0 | −1 | 0 |
23 | 0 | 0 | +1 | −1 |
24 | 0 | +1 | +1 | 0 |
25 | +1 | 0 | 0 | +1 |
26 | 0 | 0 | +1 | +1 |
27 | 0 | +1 | −1 | 0 |
28 | 0 | −1 | 0 | +1 |
29 | 0 | 0 | 0 | 0 |
Exp. # | Response (Removal %) | Exp. # | Response (Removal %) |
---|---|---|---|
1 | 76 | 16 | 80 |
2 | 52 | 17 | 76 |
3 | 44 | 18 | 96 |
4 | 83 | 19 | 85 |
5 | 85 | 20 | 86 |
6 | 48 | 21 | 86 |
7 | 94 | 22 | 77 |
8 | 86 | 23 | 60 |
9 | 48 | 24 | 99 |
10 | 82 | 25 | 80 |
11 | 75 | 26 | 91 |
12 | 60 | 27 | 89 |
13 | 84 | 28 | 74 |
14 | 84 | 29 | 86 |
15 | 96 |
Sum of | Mean | F | p-Value | |||
---|---|---|---|---|---|---|
Source | Squares | df | Square | Value | Prob > F | |
Model | 6347.89 | 14 | 453.42 | 286.71 | <0.0001 | significant |
A—Initial concentration | 38.16 | 1 | 38.16 | 24.13 | 0.0002 | |
B—Adsorbent dose | 806.88 | 1 | 806.88 | 510.21 | <0.0001 | |
C—Temperature | 261.33 | 1 | 261.33 | 165.25 | <0.0001 | |
D—Contact time | 3084.81 | 1 | 3084.81 | 1950.62 | <0.0001 | |
AB | 29.70 | 1 | 29.70 | 18.78 | 0.0007 | |
AC | 68.06 | 1 | 68.06 | 43.04 | <0.0001 | |
AD | 0.000 | 1 | 0.000 | 0.000 | 1.0000 | |
BC | 7.56 | 1 | 7.56 | 4.78 | 0.0462 | |
BD | 4.00 | 1 | 4.00 | 2.53 | 0.1341 | |
CD | 3.24 | 1 | 3.24 | 2.05 | 0.1743 | |
A2 | 19.51 | 1 | 19.51 | 12.33 | 0.0035 | |
B2 | 1.52 | 1 | 1.52 | 0.96 | 0.3435 | |
C2 | 19.10 | 1 | 19.10 | 12.08 | 0.0037 | |
D2 | 1854.62 | 1 | 1854.62 | 1172.73 | <0.0001 | |
Residual | 22.14 | 14 | 1.58 | |||
Lack of Fit | 19.87 | 10 | 1.99 | 3.50 | 0.1195 | not significant |
Pure Error | 2.27 | 4 | 0.57 | |||
Cor Total | 6370.03 | 28 |
Isotherm Model | Parameters | Values |
---|---|---|
Langmuir | (mg g−1) | 5.4171 |
KL (L mg−1) | 1.2067 | |
RL | 0.07635 | |
R2 | 0.9991 | |
RMSE | 0.04197 | |
Freundlich | Kf ((mg g−1)(L mg−1)1/n) | 2.3977 |
n | 2.8514 | |
R2 | 0.9717 | |
RMSE | 61.0529 | |
D-R | Qm (mg g−1) | 3.8129 |
KD (mol2/kJ2) | 0.0653 | |
E (J mol−1) | 2.7671 | |
R2 | 0.9518 | |
RMSE | 14.4135 | |
Temkin | AT (L g−1) | 33.869 |
BT (J mol−1) | 1.1639 | |
bT (J mol−1) | 3225.58 | |
R2 | 0.9946 | |
RMSE | 0.07198 |
Kinetic Model | Parameters | Values |
---|---|---|
Pseudo-first-order | qe (mg g−1) | 0.9307 |
K1 (min−1) | 0.0354 | |
R2 | 0.9363 | |
RMSE | 2.0556 | |
Pseudo-second-order | qe (mg g−1) | 2.0588 |
K2 (g mg−1 min−1) | 0.0766 | |
R2 | 0.9991 | |
RMSE | 0.04569 | |
Elovich | β (g mg−1) | 66.6667 |
α (mg g−1 min−1) | 5.1476 × 1011 | |
R2 | 0.9674 | |
RMSE | 1.0074 |
ΔH° (KJ/mol) | ΔS° (KJ/mol) | ΔG° (KJ/mol) | ||
---|---|---|---|---|
277 k | 293 k | 309 k | ||
+49.469 | +0.205 | −7.345 | −10.627 | −13.909 |
Biosorbent | Experimental Conditions | qm (mg g−1) | R% | Ref. |
---|---|---|---|---|
Alga (Fucus vesiculosus) | 10 mL of a 60 mg L−1 MO solution, pH = 7.0, 3 g L−1 of adsorbent dose, and 60 min of contact time | 0.10 | 50% | [11] |
Chlorella species | 1.0–2.2 mg L−1 initial MO concentration and 0.7 g of adsorbent in 50 mL of aqueous solution | 0.74–0.27 | - | [13] |
Alga (Oedogonium subplagiostomum AP1) | 500 mg L−1 initial MO concentration, pH = 6.5, 400 mg L−1 algal dose, and 5.5 days of contact time | 1213 | 97% | [12] |
Microbial culture (bacterial strain, M. yunnaenensis) | 100 mL of a 100 mg L−1 MO solution, pH 7.0, 3 mL (culture), and 5.0 days of contact time | - | 98% | [58] |
Microbial culture (Bacillus stratosphericus SCA1007) | 100 mL of a 150 mg L−1 MO solution, optical density 1.0 (λmax = 600 nm, 1.50 × 106 cells mL−1), pH 7.0, T = 35 °C, 3 mL (culture), and 12 h of contact time | - | 100% | [37] |
Biofilm reactor containing anaerobic–aerobic microbial culture/coconut fiber | 3 L reactor with anaerobic–aerobic biofilm (7.2 cm dimeter × 75 cm height) filled with 1 L of coconut fiber, 200 mg L−1 initial MO concentration, contact time of 36 days with aeration for 24 h | 1.20 | 81% | [59] |
Green microalga (Bracteacoccus sp.) | 20 mL of MO solution (10 mg L−1), 0.10 g L−1 adsorbent dose, 20 °C temperature, and 75 min of contact time | 5.42 | 97% | The current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shra’ah, A.; Al-Fawwaz, A.T.; Ibrahim, M.M.; Alsbou, E. Remediation of Methyl Orange Dye in Aqueous Solutions by Green Microalgae (Bracteacoccus sp.): Optimization, Isotherm, Kinetic, and Thermodynamic Studies. Separations 2024, 11, 170. https://doi.org/10.3390/separations11060170
Al Shra’ah A, Al-Fawwaz AT, Ibrahim MM, Alsbou E. Remediation of Methyl Orange Dye in Aqueous Solutions by Green Microalgae (Bracteacoccus sp.): Optimization, Isotherm, Kinetic, and Thermodynamic Studies. Separations. 2024; 11(6):170. https://doi.org/10.3390/separations11060170
Chicago/Turabian StyleAl Shra’ah, Ahmad, Abdullah T. Al-Fawwaz, Mohammed M. Ibrahim, and Eid Alsbou. 2024. "Remediation of Methyl Orange Dye in Aqueous Solutions by Green Microalgae (Bracteacoccus sp.): Optimization, Isotherm, Kinetic, and Thermodynamic Studies" Separations 11, no. 6: 170. https://doi.org/10.3390/separations11060170
APA StyleAl Shra’ah, A., Al-Fawwaz, A. T., Ibrahim, M. M., & Alsbou, E. (2024). Remediation of Methyl Orange Dye in Aqueous Solutions by Green Microalgae (Bracteacoccus sp.): Optimization, Isotherm, Kinetic, and Thermodynamic Studies. Separations, 11(6), 170. https://doi.org/10.3390/separations11060170