Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective
Abstract
1. Introduction
2. Trends in Quality Control Strategies
2.1. Fingerprint
2.2. Metabolomics Approach
2.3. Network Pharmacology
2.4. “Q-Markers”
3. Analytical Techniques and Their Importance for the Quality Control of Herbal Medicines
3.1. High-Performance Thin Layer Chromatography (HPTLC)
3.2. Liquid Chromatography
4. Trend in Data Analysis: Multivariate Analysis Contribution
4.1. Chemometrics and Molecular Networking Contribution in Herbal Quality Control Workflow
4.2. Molecular Networking
4.3. Chemometric Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Wyk, A.S.; Prinsloo, G. Health, Safety and Quality Concerns of Plant-Based Traditional Medicines and Herbal Remedies. S. Afr. J. Bot. 2020, 133, 54–62. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Yao, C.; Guo, D. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215. [Google Scholar] [CrossRef] [PubMed]
- Kagawad, P.; Gharge, S.; Jivaje, K.; Hiremath, S.I.; Suryawanshi, S.S. Quality Control and Standardization of Quercetin in Herbal Medicines by Spectroscopic and Chromatographic Techniques. Future J. Pharm. Sci. 2021, 7, 176. [Google Scholar] [CrossRef]
- WHO. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Geneva, Switzerland, 2000; 71p. [Google Scholar]
- Yang, B.; Liu, H.; Yang, J.; Gupta, V.K.; Jiang, Y. New Insights on Bioactivities and Biosynthesis of Flavonoid Glycosides. Trends Food Sci. Technol. 2018, 79, 116–124. [Google Scholar] [CrossRef]
- Adis R&D Profile. EGb 761: Ginkgo Biloba Extract, Ginkor. Drugs RD 2003, 4, 188–193. [Google Scholar] [CrossRef]
- Blumenthal, M.; Busse, W.R.; Goldberg, A.; Gruenwald, J.; Hall, T.; Riggins, C.W.; Rister, R.S. The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines; American Botanical Council: Austin, TX, USA, 1998. [Google Scholar]
- Sammani, M.S.; Clavijo, S.; Cerdà, V. Recent, Advanced Sample Pretreatments and Analytical Methods for Flavonoids Determination in Different Samples. Trends Anal. Chem. 2021, 138, 116220. [Google Scholar] [CrossRef]
- Turatbekova, A.; Babamuradova, L.; Tasheva, U.; Saparbaeva, N.; Saibnazarova, G.; Turayeva, M.; Yakubov, Y. A Brief Review on Biological and Chemical Activities of Flavonoids in Plants. E3S Web Conf. 2023, 434, 03026. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Fraga, C.G. Research Trends in Flavonoids and Health. Arch. Biochem. Biophys. 2018, 646, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Han, Q.; Qiao, C.; Song, J.; Cheng, C.L.; Xu, H. Chemical Markers for the Quality Control of Herbal Medicines: An Overview. Chin. Med. 2008, 3, 7. [Google Scholar] [CrossRef]
- Dong, R.; Su, J.; Nian, H.; Shen, H.; Zhai, X.; Xin, H.; Qin, L.; Han, T. Chemical Fingerprint and Quantitative Analysis of Flavonoids for Quality Control of Sea Buckthorn Leaves by HPLC and UHPLC-ESI-QTOF-MS. J. Funct. Foods 2017, 37, 513–522. [Google Scholar] [CrossRef]
- Ma, C.; Oketch-Rabah, H.; Kim, N.-C.; Monagas, M.; Bzhelyansky, A.; Sarma, N.; Giancaspro, G. Quality Specifications for Articles of Botanical Origin from the United States Pharmacopeia. Phytomedicine 2018, 45, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiong, Z.-Y.; Li, P.; Yang, H.; Gao, W.; Li, H.-J. From Chemical Consistency to Effective Consistency in Precise Quality Discrimination of Sophora Flower-Bud and Sophora Flower: Discovering Efficacy-Associated Markers by Fingerprint-Activity Relationship Modeling. J. Pharm. Biomed. Anal. 2017, 132, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kharat, S.; Namdeo, A.; Mehta, P. Development and Validation of HPTLC Method for Simultaneous Estimation of Curcumin and Galangin in Polyherbal Capsule Dosage Form. J. Taibah Univ. Sci. 2017, 11, 775–781. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Adams, S.J.; Lee, J.; Chittiboyina, A.G.; Avula, B.; Ali, Z.; Raman, V.; Li, J.; Wu, C.; et al. Metabolite Variation and Discrimination of Five Licorice (Glycyrrhiza) Species: HPTLC and NMR Explorations. J. Pharm. Biomed. Anal. 2022, 220, 115012. [Google Scholar] [CrossRef]
- Tao, H.-X.; Xiong, W.; Zhao, G.-D.; Peng, Y.; Zhong, Z.-F.; Xu, L.; Duan, R.; Tsim, K.W.K.; Yu, H.; Wang, Y.-T. Discrimination of Three Siegesbeckiae Herba Species Using UPLC-QTOF/MS-Based Metabolomics Approach. Food Chem. Toxicol. 2018, 119, 400–406. [Google Scholar] [CrossRef]
- Liao, F.; Yu, A.; Yu, J.; Wang, D.; Wu, Y.; Zheng, H.; Meng, Y.; He, D.; Shen, X.; Wang, L. Identification of Active Ingredients Mediating Anti-Platelet Aggregation Effects of BuyangHuanwu Decoction Using a Platelet Binding Assay, Solid Phase Extraction, and HPLC-MS/MS. J. Chromatogr. B 2018, 1092, 320–327. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, C.; Gong, X.; Sun, X.; Li, H.; Zhao, Y.; Zhou, X. Quantification and Efficient Discovery of Quality Control Markers for Emilia Prenanthoidea DC. by Fingerprint-Efficacy Relationship Modelling. J. Pharm. Biomed. Anal. 2018, 156, 36–44. [Google Scholar] [CrossRef]
- Yu, Y.; Gong, D.; Zhu, Y.; Wei, W.; Sun, G. Quality Consistency Evaluation of Isatidis Folium Combined with Equal Weight Quantified Ratio Fingerprint Method and Determination of Antioxidant Activity. J. Chromatogr. B 2018, 1095, 149–156. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, Q.; Li, L.; Huang, Q.; Yao, M.; Wang, N.; Peng, D. Spectrum-Effect Relationship between UPLC-Q-TOF-MS Fingerprint and Anti-AUB Effect of Clinopodium chinense (Benth.) O. Kuntze. J. Pharm. Biomed. Anal. 2022, 217, 114828. [Google Scholar] [CrossRef]
- Yuan, H.; Luo, J.; Lyu, M.; Jiang, S.; Qiu, Y.; Tian, X.; Liu, L.; Liu, S.; Ouyang, Y.; Wang, W. An Integrated Approach to Q-Marker Discovery and Quality Assessment of Edible Chrysanthemum Flowers Based on Chromatogram–Effect Relationship and Bioinformatics Analyses. Ind. Crops Prod. 2022, 188, 115745. [Google Scholar] [CrossRef]
- Fang, W.; Song, Q.; Luo, H.; Wang, R.; Fang, C. Quality Evaluation of the Traditional Chinese Medicine Moutan Cortex Based on UPLC Fingerprinting and Chemometrics Analysis. Metabolites 2025, 15, 281. [Google Scholar] [CrossRef]
- Li, Y.; Yu, B.; Zhao, W.; Pu, X.; Zhong, X.; Tao, X.; Wang, Y.; Cao, W.; Zhang, D. UPLC Fingerprinting Combined with Quantitative Analysis of Multicomponents by a Single Marker for Quality Evaluation of YiQing Granules. Front. Chem. 2025, 13, 1632033. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, B.; Wang, L.; Xiong, Z.-Y.Y.; Gao, W.; Li, P.; Li, H.-J.J. Discovery of Discriminatory Quality Control Markers for Chinese Herbal Medicines and Related Processed Products by Combination of Chromatographic Analysis and Chemometrics Methods: Radix Scutellariae as a Case Study. J. Pharm. Biomed. Anal. 2017, 138, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Mondal, S.; Ramakrishna, K. Pharmacobotanical, Physicochemical and Phytochemical Characterisation of a Rare Salt-Secreting Mangrove Aegialitis rotundifolia Roxb., (Plumbaginaceae) Leaves: A Comprehensive Pharmacognostical Study. S. Afr. J. Bot. 2017, 113, 212–229. [Google Scholar] [CrossRef]
- WANG, Y.; Sun, G.-X.; Jin, Y.; Xie, X.-M.; Liu, Y.-C.; Ma, D.-D.; Zhang, J.; GAO, J.-Y.; Li, Y.-F. Holistic Evaluation of San-Huang Tablets Using a Combination of Multi-Wavelength Quantitative Fingerprinting and Radical-Scavenging Assays. Chin. J. Nat. Med. 2017, 15, 310–320. [Google Scholar] [CrossRef]
- Ding, P.-L.; He, C.-M.; Cheng, Z.-H.; Chen, D.-F. Flavonoids Rather than Alkaloids as the Diagnostic Constituents to Distinguish Sophorae Flavescentis Radix from Sophorae Tonkinensis Radix et Rhizoma: An HPLC Fingerprint Study. Chin. J. Nat. Med. 2018, 16, 951–960. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Wu, H. Comprehensive Chemical Analysis of the Flower Buds of Five Lonicera Species by ATR-FTIR, HPLC-DAD, and Chemometric Methods. Rev. Bras. Farmacogn. 2018, 28, 533–541. [Google Scholar] [CrossRef]
- Liang, D.; Yin, Y.-H.H.; Miao, L.-Y.Y.; Zheng, X.; Gao, W.; Chen, X.-D.D.; Wei, M.; Chen, S.-J.J.; Li, S.; Xin, G.-Z.Z.; et al. Integrating Chemical Similarity and Bioequivalence: A Pilot Study on Quality Consistency Evaluation of Dispensing Granule and Traditional Decoction of Scutellariae Radix by a Totality-of-the-Evidence Approach. J. Pharm. Biomed. Anal. 2019, 169, 1–10. [Google Scholar] [CrossRef]
- Zhao, M.; Linghu, K.-G.; Xiao, L.; Hua, T.; Zhao, G.; Chen, Q.; Xiong, S.; Shen, L.; Yu, J.; Hou, X.; et al. Anti-Inflammatory/Anti-Oxidant Properties and the UPLC-QTOF/MS-Based Metabolomics Discrimination of Three Yellow Camellia Species. Food Res. Int. 2022, 160, 111628. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, C.L.; Zhu, Y.J.; Tian, Y.W.; Liu, X.; Gao, X.; Qin, K.M.; Li, W.D. Quality Evaluation of Crude and Salt-Processed Cuscutae Semen through Qualitative and Quantitative Analysis of Multiple Components Using HPLC Combined with Chemometrics. Separations 2022, 9, 231. [Google Scholar] [CrossRef]
- Gong, D.; Chen, J.; Sun, Y.; Liu, X.; Sun, G. Multiple Wavelengths Maximization Fusion Fingerprint Profiling for Quality Evaluation of Compound Liquorice Tablets and Related Antioxidant Activity Analysis. Microchem. J. 2021, 160, 105671. [Google Scholar] [CrossRef]
- Yang, T.; Yang, H.; Ling, G.; Sun, G. Evaluating the Quality Consistency of Keteling Capsules by Three-Dimensional Quantum Fingerprints and HPLC Fingerprint. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120820. [Google Scholar] [CrossRef]
- Shawky, E.; Ibrahim, R.S. Bioprofiling for the Quality Control of Egyptian Propolis Using an Integrated NIR-HPTLC-Image Analysis Strategy. J. Chromatogr. B 2018, 1095, 75–86. [Google Scholar] [CrossRef]
- Ji, P.; Yang, X.; Zhao, X. Application of Metabolomics in Quality Control of Traditional Chinese Medicines: A Review. Front. Plant Sci. 2024, 15, 1463666. [Google Scholar] [CrossRef]
- Zou, L.; Li, H.; Ding, X.; Liu, Z.; He, D.; Kowah, J.A.H.; Wang, L.; Yuan, M.; Liu, X. A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules 2022, 27, 7766. [Google Scholar] [CrossRef]
- Chen, L.; Huang, X.; Wang, H.; Shao, J.; Luo, Y.; Zhao, K.; Liu, Y.; Wang, S. Integrated metabolomics and network pharmacology strategy for ascertaining the quality marker of flavonoids for Sophora flavescens. J. Pharm. Biomed. Anal. 2020, 186, 113297. [Google Scholar] [CrossRef]
- Han, J.; Xu, K.; Yan, Q.; Sui, W.; Zhang, H.; Wang, S.; Zhang, Z.; Wei, Z.; Han, F. Qualitative and quantitative evaluation of Flos Puerariae by using chemical fingerprint in combination with chemometrics method. J. Pharm. Anal. 2021, 12, 489–499. [Google Scholar] [CrossRef]
- Cheng, W.; Li, S.; Han, J.; Su, J.; Cai, W. Supermolecules as a quality markers of herbal medicinal products. Heliyon 2022, 8, e12497. [Google Scholar] [CrossRef]
- Shi, X.; Long, F.; Wu, C.Y.; Zhou, J.; Shen, H.; Zhou, S.S.; Xu, J.D.; Zhang, W.; Li, S.L. Integrating Serum Pharmacochemistry and Network Pharmacology to Identify Chemical Markers for Quality Control of Apocyni Veneti Folium. Phytochem. Anal. 2023, 34, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Klein-Junior, L.C.; de Souza, M.R.; Viaene, J.; Bresolin, T.M.B.; de Gasper, A.L.; Henriques, A.T.; Heyden, Y.V. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. Planta Medica 2021, 87, 964–988. [Google Scholar] [CrossRef]
- Waris, M.; Koçak, E.; Gonulalan, E.M.; Demirezer, L.O.; Kır, S.; Nemutlu, E. Metabolomics Analysis Insight into Medicinal Plant Science. Trends Anal. Chem. 2022, 157, 116795. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Guo, Z.; Feng, X.; Huang, P.; Du, M.; Zalán, Z.; Kan, J. Distribution and Natural Variation of Free, Esterified, Glycosylated, and Insoluble-Bound Phenolic Compounds in Brocade Orange (Citrus sinensis L. Osbeck) Peel. Food Res. Int. 2022, 153, 110958. [Google Scholar] [CrossRef]
- Luo, Y.; Zeng, W.; Huang, K.-E.E.; Li, D.-X.X.; Chen, W.; Yu, X.-Q.Q.; Ke, X.-H.H. Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ as Well as the Citrus reticulata ‘Chachi’ within Different Storage Years Using Ultra High Performance Liquid Chromatography Quadrupole/Time-of-Flight Mass Spectrometry Based Metabol. J. Pharm. Biomed. Anal. 2019, 171, 218–231. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Li, Y.; Yao, C.; An, Y.; Wei, W.; Yao, S.; Yang, L.; Huang, Y.; Qu, H.; et al. In-Depth Profiling, Nontargeted Metabolomic and Selective Ion Monitoring of Eight Chemical Markers for Simultaneous Identification of Different Part of Eucommia Ulmoides in 12 Commercial Products by UPLC/QDa. Food Chem. 2022, 393, 133346. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, H.H.; Chen, B.; Lou, J.; Wang, H.H.; Xiong, Y.; Hu, Y.; Xu, X.; Jing, Q.; Jiang, M.; et al. Untargeted Metabolomics Analysis to Unveil the Chemical Markers for the Differentiation among Three Gleditsia Sinensis-Derived Herbal Medicines by Ultra-High Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. Arab. J. Chem. 2022, 15, 103762. [Google Scholar] [CrossRef]
- Anokwuru, C.P.; Tankeu, S.; van Vuuren, S.; Viljoen, A.; Ramaite, I.D.I.; Taglialatela-Scafati, O.; Combrinck, S. Unravelling the Antibacterial Activity of Terminalia sericea Root Bark through a Metabolomic Approach. Molecules 2020, 25, 3683. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Opportunities and Limitations for Untargeted Mass Spectrometry Metabolomics to Identify Biologically Active Constituents in Complex Natural Product Mixtures. J. Nat. Prod. 2019, 82, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Petrick, L.M.; Shomron, N. AI/ML-Driven Advances in Untargeted Metabolomics and Exposomics for Biomedical Applications. Cell Rep. Phys. Sci. 2022, 3, 100978. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, M.; Punetha, S.; Pradhan, S. Recent Advancement in Metabolomic Research: Applications and Limitations. In Ethnopharmacology and OMICS Advances in Medicinal Plants Volume 2; Nandave, M., Joshi, R., Upadhyay, J., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Jia, W.; Xie, G. A Metabolomics-Based Strategy for the Quality Control of Traditional Chinese Medicine: Shengmai Injection as a Case Study. Evid.-Based Complement. Altern. Med. 2013, 2013, 836179. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network Pharmacology: The next Paradigm in Drug Discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Zhang, G.B.; Li, Q.Y.; Chen, Q.L.; Su, S.B. Network Pharmacology: A New Approach for Chinese Herbal Medicine Research. Evid.-Based Complement. Altern. Med. 2013, 2013, 621423. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.-Z.; Du, Z.-Y.; Yuan, S.; Lu, M.-Q.; Xing, J.-Y.; Ma, Q.; Han, Z.-Z.; Tu, P.-F.; Jiang, Y. Comparison of Murraya exotica and Murraya paniculata by Fingerprint Analysis Coupled with Chemometrics and Network Pharmacology Methods. Chin. J. Nat. Med. 2021, 19, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Zhao, J.; Wei, Y.; Zhai, S.; Tan, M.; Guan, K.; Huang, Z.; Chen, C. Lonicera Rupicola Hook.f.et Thoms Flavonoids Ameliorated Dysregulated Inflammatory Responses, Intestinal Barrier, and Gut Microbiome in Ulcerative Colitis via PI3K/AKT Pathway. Phytomedicine 2022, 104, 154284. [Google Scholar] [CrossRef]
- Xiang, W.; Suo, T.-C.; Yu, H.; Li, A.-P.; Zhang, S.-Q.; Wang, C.-H.; Zhu, Y.; Li, Z. A New Strategy for Choosing “Q-Markers” via Network Pharmacology, Application to the Quality Control of a Chinese Medical Preparation. J. Food Drug Anal. 2018, 26, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.A.; Rahman, A.; Hossen, A.; Reza, A.S.M.A.; Islam, S.; Rashid, M.; Rafi, K.J.; Siddiqui, T.A.; Al-Noman, A.; Uddin, N. Epiphytic Acampe ochracea Orchid Relieves Paracetamol-Induced Hepatotoxicity by Inhibiting Oxidative Stress and Upregulating Antioxidant Genes in in Vivo and Virtual Screening. Biomed. Pharmacother. 2021, 143, 112215. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Si, N.; Li, M.; Gu, X.; Zhang, Y.; Zhou, Y.; Wang, H.-J.; Wei, X.-L.; Bian, B.-L.; Zhao, H.-Y. The Integrated Study on the Chemical Profiling and in Vivo Course to Explore the Bioactive Constituents and Potential Targets of Chinese Classical Formula Qingxin Lianzi Yin Decoction by UHPLC-MS and Network Pharmacology Approaches. J. Ethnopharmacol. 2021, 272, 113917. [Google Scholar] [CrossRef]
- Li, Z.; Qu, B.; Zhou, L.; Chen, H.W.; Wang, J.; Zhang, W.; Chen, C.F. A New Strategy to Investigate the Efficacy Markers Underlying the Medicinal Potentials of Orthosiphon Stamineus Benth. Front. Pharmacol. 2021, 12, 748684. [Google Scholar] [CrossRef]
- Sun, S.; Xun, G.; Zhang, J.; Gao, Y.; Ge, J.; Liu, F.; Qian, Q.; Liu, X.; Tian, Y.; Sun, Q.; et al. An Integrated Approach for Investigating Pharmacodynamic Material Basis of Lingguizhugan Decoction in the Treatment of Heart Failure. J. Ethnopharmacol. 2022, 295, 115366. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, T.; Li, Y.; Liao, M.; Zhang, H.; Hou, W.; Zhang, T.; Liu, L.; Huang, H.; Liu, C. Prediction of quality markers of traditional Chinese medicines based on network pharmacology. Chin. Herb. Med. 2019, 11, 349–356. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Wang, Q.; Zhang, Y.; Ling, Y.; Zhao, T.; Zhang, H.; Li, P. A novel and comprehensive strategy for quality control in complex Chinese medicine formula using UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS combined with network pharmacology analysis: Take Tangshen formula as an example. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1183, 122889. [Google Scholar] [CrossRef]
- Duan, S.; Niu, L.; Yin, T.; Li, L.; Gao, S.; Yuan, D.; Hu, M. A novel strategy for screening bioavailable quality markers of traditional Chinese medicine by integrating intestinal absorption and network pharmacology: Application to Wu Ji Bai Feng Pill. Phytomedicine Int. J. Phytother. Phytopharm. 2020, 76, 153226. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, Y.; Guo, D.; Zhang, T.; Li, Y.; Hou, W.; Huang, L.; Xu, H. A New Concept on Quality Marker for Quality Assessment and Process Control of Chinese Medicines. Chin. Herb. Med. 2017, 9, 3–13. [Google Scholar] [CrossRef]
- Feng, G.; Chen, Y.; Li, W.; Li, L.; Wu, Z.; Wu, Z.; Hai, Y.; Zhang, S.; Zheng, C.; Liu, C.; et al. Exploring the Q-Marker of “Sweat Soaking Method” Processed Radix Wikstroemia Indica: Based on the “Effect-Toxicity-Chemicals” Study. Phytomedicine 2018, 45, 49–58. [Google Scholar] [CrossRef]
- Zhang, T.; Bai, G.; Han, Y.; Xu, J.; Gong, S.; Li, Y.; Zhang, H.; Liu, C. The Method of Quality Marker Research and Quality Evaluation of Traditional Chinese Medicine Based on Drug Properties and Effect Characteristics. Phytomedicine 2018, 44, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhang, X.; Su, J.; Xu, H.; Zhang, Y.; Zhang, F.; Li, D.; Zhang, Y.; Xiao, X.; Ma, S.; et al. Identifying Potential Quality Markers of Xin-Su-Ning Capsules Acting on Arrhythmia by Integrating UHPLC-LTQ-Orbitrap, ADME Prediction and Network Target Analysis. Phytomedicine 2018, 44, 117–128. [Google Scholar] [CrossRef]
- Liu, C.; Guo, D.-a.; Liu, L. Quality Transitivity and Traceability System of Herbal Medicine Products Based on Quality Markers. Phytomedicine 2018, 44, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Lan, J.; Zhang, Y.; Yu, S.; Bao, B.; Yao, W.; Cao, Y.; Shan, M.; Cheng, F.; Zhang, L.; et al. Discovery of Processing-Associated Q-Marker of Carbonized Traditional Chinese Medicine: An Integrated Strategy of Metabolomics, Systems Pharmacology and in Vivo High-Throughput Screening Model. Phytomedicine 2022, 102, 154152. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhu, Z.; Xie, M.; Deng, L.; Xie, X.; Zhang, M. Investigation on the Q-Markers of Bushen Huoxue Prescriptions for DR Treatment Based on Chemometric Methods and Spectrum-Effect Relationship. J. Ethnopharmacol. 2022, 285, 114800. [Google Scholar] [CrossRef]
- Bai, J.; Su, H.; Liang, Y.; Shi, X.; Huang, J.; Xu, W.; Zhang, J.; Gong, L.; Huang, Z.; Qiu, X. Screening of Quality Markers During the Processing of Reynoutria Multiflora Based on the UHPLC-Q-Exactive Plus Orbitrap MS/MS Metabolomic Method. Front. Pharmacol. 2021, 12, 695560. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Yang, K.; Zou, Z.; Fan, C.; Yao, Z.; Dai, Y.; Li, K.; Chen, J.; Yao, X. The Discovery of Q-Markers of Qiliqiangxin Capsule, a Traditional Chinese Medicine Prescription in the Treatment of Chronic Heart Failure, Based on a Novel Strategy of Multi-Dimensional “Radar Chart” Mode Evaluation. Phytomedicine 2021, 82, 153443. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Li, L.; Li, X.-Q.; Yu, B.-Y.; Liu, J.-H. Identification of Active Compound Combination Contributing to Anti-Inflammatory Activity of Xiao-Cheng-Qi Decoction via Human Intestinal Bacterial Metabolism. Chin. J. Nat. Med. 2018, 16, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yang, J.; Wang, Y. Discrimination and Identification of Q-Markers Based on ‘Spider-Web’ Mode for Quality Control of Traditional Chinese Medicine. Phytomedicine 2018, 44, 98–102. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Chu, Y.; Li, Z.; Zuo, L.; Kang, J.; Cheng, G.; Sun, Z.; Zhang, X.; Du, S. Discovery of Quality Markers for Mailuoshutong Pill Based on “Spider Web” Mode of “Content-Pharmacokinetics-Pharmacology” Network. Arab. J. Chem. 2022, 15, 104296. [Google Scholar] [CrossRef]
- Zeng, Z.; Chau, F.T.; Chan, H.Y.; Cheung, C.Y.; Lau, T.Y.; Wei, S.; Mok, D.K.; Chan, C.O.; Liang, Y. Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines. Chin. Med. 2008, 3, 9. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Wu, W.; Huang, L.; Guo, D.; Liu, C. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm. Sinica B 2017, 7, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Bidikar, C.M.; Hurkadale, P.J.; Nandanwadkar, S.M.; Hegde, H.V. A Validated Spectro Densitometric Regulatory Compliant USP-HP-TLC Protocol for Quantification of Polyphenols and Antioxidants from Polyherbal Formulations Containing Terminalia Species. J. Chromatogr. B 2022, 1207, 123379. [Google Scholar] [CrossRef]
- Karthika, K.; Paulsamy, S. TLC and HPTLC Fingerprints of Various Secondary Metabolites in the Stem of the Traditional Medicinal Climber, Solena Amplexicaulis. Indian J. Pharm. Sci. 2015, 77, 111–116. [Google Scholar] [CrossRef]
- Gunjal, S.B.; Dighe, P.R. Analysis of Herbal Drugs by HPTLC: A Review. Asian J. Pharm. Res. Dev. 2022, 10, 125–128. [Google Scholar] [CrossRef]
- Bezerra, I.C.F.; Ramos, R.T.d.M.; Ferreira, M.R.A.; Soares, L.A.L. Chromatographic Profiles of Extractives from Leaves of Eugenia uniflora. Rev. Bras. Farmacogn. 2018, 28, 92–101. [Google Scholar] [CrossRef]
- Blainski, A.; Antonelli-Ushirobira, T.M.; Godoy, G.; Leite-Mello, E.V.S.; Mello, J.C.P. Pharmacognostic Evaluation, and Development and Validation of a HPLC-DAD Technique for Gallocatechin and Epigallocatechin in Rhizomes from Limonium Brasiliense. Rev. Bras. Farmacogn. 2017, 27, 162–169. [Google Scholar] [CrossRef]
- Wojtanowski, K.K.; Mroczek, T. Study of a Complex Secondary Metabolites with Potent Anti-Radical Activity by Two Dimensional TLC/HPLC Coupled to Electrospray Ionization Time-of-Flight Mass Spectrometry and Bioautography. Anal. Chim. Acta 2018, 1029, 104–115. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative Analysis of Hibiscus Sabdariffa (Roselle) Hot and Cold Extracts in Respect to Their Potential for α-Glucosidase Inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros-Rodríguez, J.C.; Serrano-Contreras, J.I.; Villagómez-Ibarra, J.R.; García-Gutiérrez, H.A.; Gerardo Zepeda-Vallejo, L. A Semi-Targeted NMR-Based Chemical Profiling of Retail Samples of Mexican Gordolobo. J. Pharm. Biomed. Anal. 2022, 212, 114651. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Yoshitomi, T.; Maruyama, T.; Yamamoto, Y.; Hakamatsuka, T.; Uchiyama, N. 13C-NMR-Based Metabolic Fingerprinting of Citrus-Type Crude Drugs. J. Pharm. Biomed. Anal. 2018, 161, 305–312. [Google Scholar] [CrossRef]
- Shafaei, A.; Saeed, M.A.A.; Hamil, M.S.R.; Ismail, Z. Application of High Performance Liquid Chromatography and Fourier-Transform Infrared Spectroscopy Techniques for Evaluating the Stability of Orthosiphon Aristatus Ethanolic Extract and Its Nano Liposomes. Rev. Bras. Farmacogn. 2018, 28, 658–668. [Google Scholar] [CrossRef]
- Wang, X.H.; Wu, Q.W.; Li, L.L.; Wang, P.; Wang, Y.; Wei, W.F.; Ma, X.J.; Shu, J.; Zhang, K.; Ma, D.M. Determination of Quality Markers for Quality Control of Zanthoxylum Nitidum Using Ultra-Performance Liquid Chromatography Coupled with near Infrared Spectroscopy. PLoS ONE 2022, 17, e0270315. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Li, X.; Liu, X.; Sun, G.; Guo, P. Electrochemical-Based Quantitative Fingerprint Evaluation Strategy Combined with Multi-Markers Assay by Monolinear Method for Quality Control of Herbal Medicine. Phytomedicine 2022, 104, 154274. [Google Scholar] [CrossRef]
- An, Q.; Wang, L.; Ding, X.-Y.; Shen, Y.-J.; Hao, S.-H.; Li, W.-J.; Li, H.-Y.; Wang, T.; Zhan, Z.-L.; Zheng, Y.-G.; et al. Validation of Sennae Folium Specification Grade Classification Based on UPLC-Q-TOF/MS Spectrum-Effect Relationship. Arab. J. Chem. 2022, 15, 104223. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Kong, J.; Yue, Y.; Dong, Y.; Zhang, J.; Liu, L. Application of UHPLC-Q-TOF MS Based Untargeted Metabolomics Reveals Variation and Correlation amongst Different Tissues of Eucommia Ulmoides Oliver. Microchem. J. 2022, 172, 106919. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Bhat, S.M.; Lee, C.-W.; Shiea, J. Thin Layer Chromatography Combined with Electrospray Ionization Mass Spectrometry for Characterizing Herbal Compounds. Int. J. Mass Spectrom. 2018, 434, 264–271. [Google Scholar] [CrossRef]
- Booker, A.; Agapouda, A.; Frommenwiler, D.A.; Scotti, F.; Reich, E.; Heinrich, M. St John’s Wort (Hypericum Perforatum) Products—An Assessment of Their Authenticity and Quality. Phytomedicine 2018, 40, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Frommenwiler, D.A.; Booker, A.; Vila, R.; Heinrich, M.; Reich, E.; Cañigueral, S. Comprehensive HPTLC Fingerprinting as a Tool for a Simplified Analysis of Purity of Ginkgo Products. J. Ethnopharmacol. 2019, 243, 112084. [Google Scholar] [CrossRef]
- Wosch, L.; Santos, K.C.d.; Imig, D.C.; Santos, C.A.M. Comparative Study of Passiflora Taxa Leaves: II. A Chromatographic Profile. Rev. Bras. Farmacogn. 2017, 27, 40–49. [Google Scholar] [CrossRef]
- Sadhana, N.; Lohidasan, S.; Mahadik, K.R. Marker-Based Standardization and Investigation of Nutraceutical Potential of Indian Propolis. J. Integr. Med. 2017, 15, 483–494. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Mothana, R.A.; Al-Rehaily, A.J.; Alam, P.; Yousaf, M.; Ahmed, S.; Alatar, A. High-Performance Thin-Layer Chromatography Based Concurrent Estimation of Biomarkers Ent-Phyllanthidine and Rutin in the Dried Aerial Parts of Flueggea Virosa. Saudi Pharm. J. 2017, 25, 696–702. [Google Scholar] [CrossRef]
- Singh, D.; Lawrence, K.; Singh, S.; Ercisli, S.; Choudhary, R. In-Vivo Hyperglycemic, Antioxidant, Histopathological Changes, and Simultaneous Measurement of Kaempferol Verified by High-Performance Thin Layer Chromatography of Setaria italica in Streptozotocin -Induced Diabetic Rats. Saudi J. Biol. Sci. 2022, 29, 3772–3790. [Google Scholar] [CrossRef]
- Chen, Y.L.; Li, L.N.; Xu, R.; Li, F.; Gu, L.H.; Liu, H.W.; Wang, Z.T.; Yang, L. Characterization of Natural Herbal Medicines by Thin-Layer Chromatography Combined with Laser Ablation-Assisted Direct Analysis in Real-Time Mass Spectrometry. J. Chromatogr. A 2021, 1654, 462461. [Google Scholar] [CrossRef]
- Pudumo, J.; Chaudhary, S.K.; Chen, W.; Viljoen, A.; Vermaak, I.; Veale, C.G.L. HPTLC Fingerprinting of Croton Gratissimus Leaf Extract with Preparative HPLC-MS-Isolated Marker Compounds. S. Afr. J. Bot. 2018, 114, 32–36. [Google Scholar] [CrossRef]
- Dash, U.C.; Sahoo, A.K. In Vitro Antioxidant Assessment and a Rapid HPTLC Bioautographic Method for the Detection of Anticholinesterase Inhibitory Activity of Geophila Repens. J. Integr. Med. 2017, 15, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ramu, B.; Chittela, K.B. High Performance Thin Layer Chromatography and Its Role Pharmaceutical Industry: Review. Open Sci. J. Biosci. Bioeng. 2018, 5, 29–34. [Google Scholar]
- Frommenwiler, D.A.; Kim, J.; Yook, C.S.; Tran, T.T.T.; Cañigueral, S.; Reich, E. Comprehensive HPTLC Fingerprinting for Quality Control of an Herbal Drug—The Case of Angelica gigas Root. Planta Medica 2018, 84, 465–474. [Google Scholar] [CrossRef]
- Kobakhidze, T.; Agatonovic-Kustrin, S.; Gegechkori, V.I.; Chugaev, D.; Ramenskaya, G.V. Quantitative analysis of rutin in flavonoid-rich plant raw material by HPTLC. Farmaciya 2024, 73, 13–17. [Google Scholar] [CrossRef]
- Figueredo, K.C.; Guex, C.G.; Reginato, F.Z.; Haas da Silva, A.R.; Cassanego, G.B.; Lhamas, C.L.; Boligon, A.A.; Lopes, G.H.H.; de Freitas Bauermann, L. Safety Assessment of Morus nigra L. Leaves: Acute and Subacute Oral Toxicity Studies in Wistar Rats. J. Ethnopharmacol. 2018, 224, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Song, Y.; Sun, H.; Liu, W.; Zhang, Y.; Zheng, J.; Zhang, Q.; Zhao, Y.; Xiao, W.; Tu, P.; et al. Characterization and Quantitative Analysis of Phenolic Derivatives in Longxuetongluo Capsule by HPLC-DAD-IT-TOF-MS. J. Pharm. Biomed. Anal. 2017, 145, 462–472. [Google Scholar] [CrossRef]
- Morais Fernandes, J.; Ortiz, S.; Padilha, M.; Tavares, R.; Mandova, T.; Araújo, E.R.D.; Andrade, A.W.L.; Michel, S.; Grougnet, R.; Zucolotto, S.M. Bryophyllum Pinnatum Markers: CPC Isolation, Simultaneous Quantification by a Validated UPLC-DAD Method and Biological Evaluations. J. Pharm. Biomed. Anal. 2021, 193, 113682. [Google Scholar] [CrossRef]
- Garayev, E.; Di Giorgio, C.; Herbette, G.; Mabrouki, F.; Chiffolleau, P.; Roux, D.; Sallanon, H.; Ollivier, E.; Elias, R.; Baghdikian, B. Bioassay-Guided Isolation and UHPLC-DAD-ESI-MS/MS Quantification of Potential Anti-Inflammatory Phenolic Compounds from Flowers of Inula montana L. J. Ethnopharmacol. 2018, 226, 176–184. [Google Scholar] [CrossRef]
- Gibitz-Eisath, N.; Eichberger, M.; Gruber, R.; Sturm, S.; Stuppner, H. Development and Validation of a Rapid Ultra-High Performance Liquid Chromatography Diode Array Detector Method for Verbena officinalis L. J. Pharm. Biomed. Anal. 2018, 160, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Kim, K.-A.; Lee, C.H.; Yang, S.J.; Kang, T.K.; Jung, J.H.; Kim, T.-J.; Oh, S.-R.; Jung, S.H. A Standardized Extract of Rhynchosia Volubilis Lour. Exerts a Protective Effect on Benzalkonium Chloride-Induced Mouse Dry Eye Model. J. Ethnopharmacol. 2018, 215, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, P.; Lee, K.D.; Song, C.E.; Ilavenil, S.; Srigopalram, S.; Arasu, M.V.; Choi, K.C. Quantification of Major Phenolic and Flavonoid Markers in Forage Crop Lolium Multiflorum Using HPLC-DAD. Rev. Bras. Farmacogn. 2018, 28, 282–288. [Google Scholar] [CrossRef]
- Bardakci, H.; Acar, E.T.; Kırmızıbekmez, H. Simultaneous Quantification of Six Flavonoids in Four Scutellaria Taxa by HPLC-DAD Method. Rev. Bras. Farmacogn. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Fernandes, F.; Barroso, M.F.; De Simone, A.; Emriková, E.; Dias-Teixeira, M.; Pereira, J.P.; Chlebek, J.; Fernandes, V.C.; Rodrigues, F.; Andrisano, V.; et al. Multi-Target Neuroprotective Effects of Herbal Medicines for Alzheimer’s Disease. J. Ethnopharmacol. 2022, 290, 115107. [Google Scholar] [CrossRef]
- Pereira, A.B.D.; Gomes, J.H.d.S.; Pereira, A.C.; Pádua, R.M.d.; Côrtes, S.F.; Sena, M.M.; Braga, F.C. Definition of Chemical Markers for Hancornia Speciosa Gomes by Chemometric Analysis Based on the Chemical Composition of Extracts, Their Vasorelaxant Effect and α-Glucosidase Inhibition. J. Ethnopharmacol. 2022, 299, 115692. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Zhang, D.; Du, X.; Han, L.; Lv, C.; Li, Y.; Wang, R.; Wang, B.; Huang, Y. Nuciferine and Paeoniflorin Can Be Quality Markers of Tangzhiqing Tablet, a Chinese Traditional Patent Medicine, Based on the Qualitative, Quantitative and Dose-Exposure-Response Analysis. Phytomedicine 2018, 44, 155–163. [Google Scholar] [CrossRef]
- Verma, A.; Chattopadhaya, A.; Gupta, P.; Tiwari, H.; Singh, S.; Kumar, L.; Gautam, V. Integration of Hyphenated Techniques for Characterizing and Chemical Profiling of Natural Products. Chem. Biodivers. 2025, 22, e202500234. [Google Scholar] [CrossRef]
- Gomes, A.F.; Almeida, M.P.; Leite, M.F.; Schwaiger, S.; Stuppner, H.; Halabalaki, M.; Amaral, J.G.; David, J.M. Seasonal Variation in the Chemical Composition of Two Chemotypes of Lippia Alba. Food Chem. 2019, 273, 186–193. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G.; Carrubba, A.; Lazzara, S.; Speciale, A.; Cimino, F.; Saija, A.; Cristani, M. Phytochemical Profiles, Phototoxic and Antioxidant Properties of Eleven Hypericum Species—A Comparative Study. Phytochemistry 2018, 152, 162–173. [Google Scholar] [CrossRef]
- An, J.H.; Yuk, H.J.; Kim, D.-Y.; Nho, C.W.; Lee, D.; Ryu, H.W.; Oh, S.-R. Evaluation of Phytochemicals in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze at Different Growth Stages by UPLC-QTof-MS. Ind. Crops Prod. 2018, 112, 608–616. [Google Scholar] [CrossRef]
- Félix-Silva, J.; Gomes, J.A.S.S.; Fernandes, J.M.; Moura, A.K.C.C.; Menezes, Y.A.S.S.; Santos, E.C.G.G.; Tambourgi, D.V.; Silva-Junior, A.A.; Zucolotto, S.M.; Fernandes-Pedrosa, M.F. Comparison of Two Jatropha Species (Euphorbiaceae) Used Popularly to Treat Snakebites in Northeastern Brazil: Chemical Profile, Inhibitory Activity against Bothrops Erythromelas Venom and Antibacterial Activity. J. Ethnopharmacol. 2018, 213, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.; Gupta, M.; Ahmad, F.; Rout, P.K.; Misra, L.; Patwardhan, A.; Vasudeva, R. Extraction, Quantification and Antioxidant Activities of Flavonoids, Polyphenols and Pinitol from Wild and Cultivated Saraca Asoca Bark Using RP-HPLC-PDA-RI Method. Ind. Crops Prod. 2017, 103, 73–80. [Google Scholar] [CrossRef]
- Zanatta, A.C.; Borges, M.S.; Mannochio-Russo, H.; Heredia-Vieira, S.C.; Campaner dos Santos, L.; Rinaldo, D.; Vilegas, W. Green Chromatography as a Novel Alternative for the Quality Control of Serjania marginata Casar. Leaves. Microchem. J. 2022, 181, 107671. [Google Scholar] [CrossRef]
- Pilepić, K.H.; Yang, Z.; Chen, J.; Chen, X.; Wang, Y.; Zhao, J.; Mihaljević, S.; Li, S.P. Flavonoids in Natural and Tissue Cultured Materials of Epimedium Alpinum Identified by Using UHPLC-Q-TOF-MS/MS. Int. J. Mass Spectrom. 2018, 434, 222–232. [Google Scholar] [CrossRef]
- Li, Y.; Guo, S.; Zhu, Y.; Yan, H.; Qian, D.-W.; Wang, H.-Q.; Yu, J.-Q.; Duan, J.-A. Comparative Analysis of Twenty-Five Compounds in Different Parts of Astragalus membranaceus Var. mongholicus and Astragalus membranaceus by UPLC-MS/MS. J. Pharm. Anal. 2019, 9, 392–399. [Google Scholar] [CrossRef]
- Guo, S.; Hu, S.; Jiang, L.; Chen, X.; Zhang, W.; Jiang, Y.; Liu, B. Quantitative Determination of Multi-Class Bioactive Constituents for Quality Control of Yiqi Jiangzhi Granules. Chin. Herb. Med. 2022, 14, 324–331. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Guo, Y.-Y.; Zhou, J.; Long, F.; Zhang, W.; Shen, H.; Xu, J.-D.; Zhou, S.-S.; Li, S.-L. Holistic Quality Evaluation of Hibisci Mutabilis Folium by Integrating UPLC–QTOF–MS/MS Chemical Profiling and UPLC–TQ–MS/MS Quantification Approaches. J. Pharm. Biomed. Anal. 2022, 218, 114869. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2022, 27, 1223. [Google Scholar] [CrossRef]
- Santoro, V.; Parisi, V.; D’Ambola, M.; Sinisgalli, C.; Monne, M.; Milella, L.; Russo, R.; Severino, L.; Braca, A.; De Tommasi, N. Chemical Profiling of Astragalus membranaceus Roots (Fish.) Bunge Herbal Preparation and Evaluation of Its Bioactivity. Nat. Prod. Commun. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Liao, J.; Fan, X.; Cheng, Y. An Ultra-Robust Fingerprinting Method for Quality Assessment of Traditional Chinese Medicine Using Multiple Reaction Monitoring Mass Spectrometry. J. Pharm. Anal. 2021, 11, 88–95. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Leme, G.M.; Cavalheiro, A.J.; Funari, C.S. Online Extraction Coupled to Liquid Chromatography Analysis (OLE-LC): Eliminating Traditional Sample Preparation Steps in the Investigation of Solid Complex Matrices. Anal. Chem. 2016, 88, 8421–8427. [Google Scholar] [CrossRef]
- Tong, C.; Tong, X.; Shi, S.; Guo, K. Rapid Discrimination and Quantification of Isomeric Flavonoid-O-Diglycosides in Citrus paradisi Cv. Changshanhuyou by Online Extraction–Quadrupole Time-of Flight Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 165, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Wang, L.-Y.; Lin, H.; Shang, E.-X.; Tang, Y.-P.; Yue, S.-J.; Jin, Y.; Tao, W.-W.; Li, S.-P.; Hua, Y.-Q.; et al. Hierarchical Identification of Bioactive Components in a Medicinal Herb by Preparative High-Performance Liquid Chromatography and Selective Knock-out Strategy. J. Pharm. Biomed. Anal. 2017, 135, 206–216. [Google Scholar] [CrossRef]
- Indrayanto, G. Recent Development of Quality Control Methods for Herbal Derived Drug Preparations. Nat. Prod. Commun. 2018, 13, 1599–1606. [Google Scholar] [CrossRef]
- Juszczak, A.M.; Zovko-Končić, M.; Tomczyk, M. Recent Trends in the Application of Chromatographic Techniques in the Analysis of Luteolin and Its Derivatives. Biomolecules 2019, 9, 731. [Google Scholar] [CrossRef]
- Banerjee, D.; Parekh, N.; Kaur, G.; Sharma, S.; Buttar, H.S.; Chauhan, R.; Kaur, D.; Tuli, H.S.; Jairoun, A.A.; Shahwan, M. Chemometric Perspective on Herbal Medicine Evaluation: Tools, Techniques, and Trends. J. Appl. Pharm. Sci. 2025, 15, 85–93. [Google Scholar] [CrossRef]
- Lindenmaier, M.P.; Bernart, M.W.; Brinckmann, J.A. Advanced Methodologies for the Quality Control of Herbal Supplements and Regulatory Considerations. Phytochem. Anal. 2025, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Arbianto, A.D.; Kim, M.; Oh, S.M.; Jang, H.-J.; Ryu, H.W.; Paik, J.-H.; Oh, S.-R.; Ahn, J. Regional comparison study of Epimedium koreanum using UHPLC-QTOF/MS-based metabolomics approach. Appl. Biol. Chem. 2024, 67, 54. [Google Scholar] [CrossRef]
- Yuan, H.; Xie, Q.; Liang, L.; Luo, J.; Jiang, S.; Peng, C.; Wang, W. An Efficient Workflow for Quality Control Marker Screening and Metabolite Discovery in Dietary Herbs by LC-Orbitrap-MS/MS and Chemometric Methods: A Case Study of Chrysanthemum Flowers. Foods 2024, 13, 1008. [Google Scholar] [CrossRef]
- David, P.A.; Norazhar, A.I.; Che Zain, M.S. Integrating LC-MS/MS and Molecular Networking for Advance Analysis and Comprehensive Flavonoids Annotation. J. Sep. Sci. 2025, 48, e70230. [Google Scholar] [CrossRef]
- He, M.; Zhou, Y. How to identify “Material basis-Quality markers” more accurately in Chinese herbal medicines from modern chromatography-mass spectrometry data-sets: Opportunities and challenges of chemometric tools. Chin. Herb. Med. 2020, 13, 2–16. [Google Scholar] [CrossRef]
- Stavrianidi, A. A Classification of Liquid Chromatography Mass Spectrometry Techniques for Evaluation of Chemical Composition and Quality Control of Traditional Medicines. J. Chromatogr. A 2020, 1609, 460501. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Li, C.-R.; Li, M.-N.; Yang, H.; Li, P.; Gao, W. Rapid Characterization of Chemical Markers for Discrimination of Moutan Cortex and Its Processed Products by Direct Injection-Based Mass Spectrometry Profiling and Metabolomic Method. Phytomedicine 2018, 45, 76–83. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Wang, H.; Wang, H.; Liu, M.; Hu, W.; Chen, B.; Jiang, M.; Qi, J.; Li, X.; et al. A Multi-Dimensional Liquid Chromatography/High-Resolution Mass Spectrometry Approach Combined with Computational Data Processing for the Comprehensive Characterization of the Multicomponents from Cuscuta Chinensis. J. Chromatogr. A 2022, 1675, 463162. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Tian, Y.; Yi, Y.; Li, K.; Qiao, X.; Ye, M. Comparative Bioactivity Evaluation and Chemical Profiling of Different Parts of the Medicinal Plant Glycyrrhiza uralensis. J. Pharm. Biomed. Anal. 2022, 215, 114793. [Google Scholar] [CrossRef]
- Rivera-Mondragón, A.; Tuenter, E.; Ortiz, O.; Sakavitsi, M.E.; Nikou, T.; Halabalaki, M.; Caballero-George, C.; Apers, S.; Pieters, L.; Foubert, K. UPLC-MS/MS-Based Molecular Networking and NMR Structural Determination for the Untargeted Phytochemical Characterization of the Fruit of Crescentia Cujete (Bignoniaceae). Phytochemistry 2020, 177, 112438. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Li, Y.; Gao, J.; Tao, R.; Li, J.; Li, Y.; Luo, J. Integrated molecular networking strategy enhance the accuracy and visualization of components identification: A case study of Ginkgo biloba leaf extract. J. Pharm. Biomed. Anal. 2022, 209, 114523. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fan, Q.; Xiang, J.; Huang, H.; Chen, S.; Liu, B.; Wu, A.; Zhang, C.; Rong, L. Structural characterization and discrimination of Paris polyphylla var. yunnanensis by a molecular networking strategy coupled with ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2020, 34, e8760. [Google Scholar] [CrossRef]
- Houriet, J.; Allard, P.M.; Queiroz, E.F.; Marcourt, L.; Gaudry, A.; Vallin, L.; Li, S.; Lin, Y.; Wang, R.; Kuchta, K.; et al. A Mass Spectrometry Based Metabolite Profiling Workflow for Selecting Abundant Specific Markers and Their Structurally Related Multi-Component Signatures in Traditional Chinese Medicine Multi-Herb Formulae. Front. Pharmacol. 2020, 11, 578346. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheng, X.-L.; Li, L.-F.; Dai, S.-Y.; Wang, Y.-D.; Li, M.-H.; Guo, X.-H.; Wei, F.; Ma, S.-C. A General Procedure for Establishing Composite Quality Evaluation Indices Based on Key Quality Attributes of Traditional Chinese Medicine. J. Pharm. Biomed. Anal. 2022, 207, 114415. [Google Scholar] [CrossRef]
- Darwish, R.S.; El-Banna, A.A.; Ghareeb, D.A.; El-Hosseny, M.F.; Seadawy, M.G.; Dawood, H.M. Chemical Profiling and Unraveling of Anti-COVID-19 Biomarkers of Red Sage (Lantana camara L.) Cultivars Using UPLC-MS/MS Coupled to Chemometric Analysis, in Vitro Study and Molecular Docking. J. Ethnopharmacol. 2022, 291, 115038. [Google Scholar] [CrossRef]
- He, L.; Zhang, Z.; Liu, Y.; Chen, D.; Yuan, M.; Dong, G.; Luo, P.; Yan, Z. Rapid Discrimination of Raw and Sulfur-Fumigated Smilax Glabra Based on Chemical Profiles by UHPLC-QTOF-MS/MS Coupled with Multivariate Statistical Analysis. Food Res. Int. 2018, 108, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Leite, P.M.; Miranda, A.P.N.; Amorim, J.M.; Santos, L.B.; Duarte, R.C.F.; Maltarollo, V.G.; Viccini, L.F.; Faraco, A.A.G.; Graças Carvalho, M.d.; Castilho, R.O. Correlation of Chemical Composition and Anticoagulant Activity in Different Accessions of Brazilian Lippia Alba (Verbenaceae). J. Herb. Med. 2022, 34, 100581. [Google Scholar] [CrossRef]
- Chen, M.-L.; Chang, W.-Q.; Zhou, J.-L.; Yin, Y.-H.; Xia, W.-R.; Liu, J.-Q.; Liu, L.-F.; Xin, G.-Z. Comparison of Three Officinal Species of Callicarpa Based on a Biochemome Profiling Strategy with UHPLC-IT-MS and Chemometrics Analysis. J. Pharm. Biomed. Anal. 2017, 145, 666–674. [Google Scholar] [CrossRef]
- Gaião Calixto, M.; Alves Ramos, H.; Veríssimo, L.S.; Dantas Alves, V.; Medeiros, A.C.D.; Alencar Fernandes, F.H.; Veras, G. Trends and Application of Chemometric Pattern Recognition Techniques in Medicinal Plants Analysis. Crit. Rev. Anal. Chem. 2023, 53, 326–338. [Google Scholar] [CrossRef]
- Rohman, A.; Rawar, E.A.; Sudevi, S.; Nurrulhidayah, A.F.; Windarsih, A. The use of chemometrics in combination with molecular spectroscopic and chromatographic methods for authentication of Curcuma species: A Review. Food Res. 2020, 4, 1850–1858. [Google Scholar] [CrossRef]
- Rebiai, A.; Hemmami, H.; Zeghoud, S.; Ben Seghir, B.; Kouadri, I.; Eddine, L.S.; Elboughdiri, N.; Ghareba, S.; Ghernaout, D.; Abbas, N. Current Application of Chemometrics Analysis in Authentication of Natural Products: A Review. Comb. Chem. High Throughput Screen 2022, 25, 945–972. [Google Scholar] [CrossRef] [PubMed]

| Quality Control Strategies | Principle | Limitations |
|---|---|---|
| Fingerprints | Multiple chemical markers | Specificity |
| Metabolomics approaches | Targeted and non-targeted | Unambiguous identification, reproducibility and data processing |
| Network pharmacology | Computational and experimental methods | Dependence on database (accuracy, integrity) Interactions of multiple compounds |
| Q-markers | Computational and experimental methods | Measurability and transferability |
| spider web | Rapid screening | |
| radar chart | In-depth screening and structural analysis |
| Species | Part of the Plant | Brazilian Pharmacopoeia 6th Edition (Ph. Br.) | ||
|---|---|---|---|---|
| TLC | UV | HPLC | ||
| Calendula officinalis L. | Flowers | Rutin | 0.4% of total flavonoids expressed as hyperoside | - |
| Matricaria chamomilla L. | Floral capitula | - | - | 0.025% of Apigenin-7-O-glicoside |
| Echinodorus grandiflorus (Cham. & Schltdl.) Micheli | Leaves | Isoorientin Swertiajaponin | - | - |
| Crataegus monogyna Jacq., Crataegus rhipidophylla Gand. (syn. C. oxyacantha L.) and other hybrids | Flowering branches | Hyperoside | 1.5% of total flavonoid expressed as hyperoside | |
| Achyrocline satureioides (Lam.) DC., | Inflorescences | Quercetin Luteolin and 3-O-methylquercetin | 3.0% of total flavonoids expressed as quercetin | 0.6% of 3-O-methylquercetin |
| Passiflora edulis Sims (Ph. Br.) and Passiflora incanata (Ph. Eur.) | Leaves | Isoorientin Isovitexin | 1.0% of total flavonoids expressed as apigenin | Qualitative profile with identification of isovitexin and isoorientin |
| Citrus aurantium L. subsp. aurantium [syn. Citrus aurantium L. subsp. amara (L.) Engler] | Exocarp from fruits (Ph. Br.) and epicarp and mesocarp (Ph. E.) | Naringin | - | 0.25% of naringin |
| Hypericum perforatum L. | Flowering tops | Not found in Ph. Br. | ||
| Ginkgo biloba L. | Leaves | Not found in Ph. Br. | ||
| Sambucus nigra L. | Flowers | Hyperoside and rutin | at least 1.5% total flavonoids expressed as quercetin | at least 1.0% rutin |
| Styphnolobium japonicum (L.) Schott (syn. Sophora japonica L.) | Opened flower | Not found in Ph. Br. | ||
| Species | Part of the Plant | European Pharmacopoeia 11th Edition (Ph. Eur.) | ||
|---|---|---|---|---|
| TLC | UV | HPLC | ||
| Calendula officinalis L. | Flowers | Isorhamnetin-3-O-rutinoside and hyperoside * | 0.4% of total flavonoids expressed as hyperoside | - |
| Matricaria chamomilla L. | Floral capitula | - | - | 0.025% of apigenin-7-O-glicoside |
| Echinodorus grandiflorus (Cham. & Schltdl.) Micheli | Leaves | Not found in Ph. Eur. | ||
| Crataegus monogyna Jacq., Crataegus rhipidophylla Gand. (syn. C. oxyacantha L.) and other hybrids | Flowering branches | Hyperoside Vitexin-2″-O-rhamnoside * | Minimum 0.2% of total vitexin-2″-O-rhamnoside derivatives, expressed as vitexin-2″-O-rhamnoside | |
| Achyrocline satureioides (Lam.) DC., | Inflorescences | Not found in Ph. Eur. | ||
| Passiflora edulis Sims (Ph. Br.) and Passiflora incanata (Ph. Eur.) | Leaves | Vitexin Isovitexin Orientin and Homoorientin * | - | 1.0% of total flavonoids, expressed as isovitexin. isovitexin, orientin and homoorientin as reference |
| Citrus aurantium L. subsp. aurantium [syn. Citrus aurantium L. subsp. amara (L.) Engler] | Exocarp from fruits (Ph. Br.) and epicarp and mesocarp (Ph. E.) | Narigenin | - | - |
| Hypericum perforatum L. | Flowering tops | Hyperoside and rutin * | - | - |
| Ginkgo biloba L. | Leaves | Rutin | - | Quercetin as reference. 0.5% flavonoids, expressed as flavone glycosides |
| Sambucus nigra L. | Flowers | Hyperoside and rutin | Minimum 0.80 per cent of flavonoids expressed as isoquercitrin | - |
| Styphnolobium japonicum (L.) Schott (syn. Sophora japonica L.) | Opened flower | Hyperoside and rutin | minimum 8.0% of total flavonoids expressed as rutin | minimum 6.0% of rutin; also apigenin 7-glucoside was used reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, J.M.; Silvestre, C.; Zucolotto, S.M.; Antih, J.; Vaillant, F.; Echallier, A.; Poucheret, P. Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective. Separations 2025, 12, 289. https://doi.org/10.3390/separations12110289
Fernandes JM, Silvestre C, Zucolotto SM, Antih J, Vaillant F, Echallier A, Poucheret P. Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective. Separations. 2025; 12(11):289. https://doi.org/10.3390/separations12110289
Chicago/Turabian StyleFernandes, Julia Morais, Charlotte Silvestre, Silvana M. Zucolotto, Julien Antih, Fabrice Vaillant, Aude Echallier, and Patrick Poucheret. 2025. "Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective" Separations 12, no. 11: 289. https://doi.org/10.3390/separations12110289
APA StyleFernandes, J. M., Silvestre, C., Zucolotto, S. M., Antih, J., Vaillant, F., Echallier, A., & Poucheret, P. (2025). Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective. Separations, 12(11), 289. https://doi.org/10.3390/separations12110289

