Natural Deep Eutectic Solvent-Based Extraction of Malva sylvestris L.: Phytochemical Content, Antioxidant and Antimicrobial Potential
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Biological Material
2.1.2. Chemicals
2.1.3. Microorganisms Studied
2.2. Sampling and Extract Preparation
2.2.1. Using NADESs
2.2.2. Using Classical Solvent, 70% v/v Ethanol in Water
2.3. Determination of pH
2.4. Spectrophotometric Determination of the Antioxidant Activity
2.4.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Method
2.4.2. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
2.4.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.5. Determination of Total Phenolic Content (TPC)
2.6. Determination of Total Flavonoid Content (TFC)
2.7. Determination of Total Condensed Tannin Content (TCT)
2.8. Determination of Total Anthocyanin Content (TAntC)
2.9. Determination of Total Alkaloid Content (TAlkC)
2.10. Determination of Antimicrobial Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Content of Biologically Active Compounds and Antioxidant Potential
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shreelaxmi, S.H.; Ramachandra, C.T.; Roopa, R.S.; Hanchinal, S.G. Antimicrobial activity of supercritical fluid extracted Acorus calamus oil against different microbes. J. Pharmacogn. Phytochem 2018, 7, 2836–2840. [Google Scholar]
- Koesling, D.; Bozzaro, C. The post-antibiotic era: An existential threat for humanity. IGJR 2022, 8, 51–56. [Google Scholar]
- Li, K.S.; Wah, C.S. Antioxidant and antibacterial activity of Acorus calamus L. leaf and rhizome extracts. J. Gizi Klinik Indonesia 2017, 13, 144–158. [Google Scholar] [CrossRef]
- Gu, S.; Rajendiran, G.; Forest, K.; Tran, T.C.; Denny, J.C.; Larson, E.A.; Wilke, R.A. Drug-Induced Liver Injury with Commonly Used Antibiotics in the All of Us Research Program. Clin. Pharmacol. Ther. 2023, 114, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 54. [Google Scholar] [PubMed]
- Irfan, A.; Imran, M.; Khalid, M.; Ullah, M.S.; Khalid, N.; Assiri, M.A.; Thomas, R.; Muthu, S.; Basra, M.A.R.; Hussein, M.; et al. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. J. Saudi Chem. Soc. 2021, 25, 101277. [Google Scholar] [CrossRef]
- Batiha, G.E.; Tene, S.T.; Teibo, J.O.; Shaheen, H.M.; Oluwatoba, O.S.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbee, A.L.; Alexiou, A.; Papadakis, M. The phytochemical profiling, pharmacological activities, and safety of Malva sylvestris: A review. Naunyn-Schmiedeberg Arch. Pharmacol. 2023, 396, 421–440. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.M.; Zarrini, G.; Molavi, G.; Ghasemi, G. Bioactivity of Malva sylvestris L., a medicinal plant from iran. Iran. J. Basic Med. Sci. 2011, 14, 574–579. [Google Scholar] [PubMed]
- Akash, M.S.; Shen, Q.; Rehman, K.; Chen, S. Interleukin-1 receptor antagonist: A new therapy for type 2 diabetes mellitus. J. Pharm. Sci. 2012, 101, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Shams-Ardekani, M.R.; Abdollahi, M. A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J. Gastroenterol. 2010, 16, 4504–4514. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, N.; Daher, C. Malva sylvestris water extract: A potential anti-inflammatory and anti-ulcerogenic remedy. Planta Medica 2009, 75, PH10. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Prudente, A.S.; Loddi, A.M.; Duarte, M.R.; Santos, A.R.; Pochapski, M.T.; Pizzolatti, M.G.; Hayashi, S.S.; Campos, F.R.; Pontarolo, R.; Santos, F.A.; et al. Pre-clinical anti-inflammatory aspects of a cuisine and medicinal millennial herb: Malva sylvestris L. Food Chem. Toxicol. 2013, 58, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Pirbalouti, A.G.; Koohpyeh, A. Wound healing activity of extracts of Malva sylvestris and Stachys lavandulifolia. Int. J. Biol. 2011, 3, 174. [Google Scholar] [CrossRef]
- Benso, B.; Rosalen, P.L.; Pasetto, S.; Marquezin, M.C.S.; Freitas–Blanco, V.; Murata, R.M. Malva sylvestris derivatives as inhibitors of HIV-1 bal infection. Nat. Prod. Res. 2021, 35, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Cutillo, F.; D’Abrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry 2006, 67, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Doldo, A.; Cotichini, V.; Rajevic, M.; Quaglia, M.G.; Mulinacci, N.; Vincieri, F.F. HPTLC and reflectance mode densitometry of anthocyanins in Malva silvestris L.: A comparison with gradient-elution reversed-phase HPLC. J. Pharm. Biomed. Anal. 1995, 14, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Schrader, B.; Quilitzsch, R.; Pfeffer, S.; Krüger, H. Rapid classification of basil chemotypes by various vibrational spectroscopy methods. J. Agric. Food Chem. 2003, 51, 2475–2481. [Google Scholar] [CrossRef] [PubMed]
- Gasparetto, J.C.; Martins, C.A.; Hayashi, S.S.; Otuky, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. J. Pharm. Pharmacol. 2012, 64, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, M.T.; Yaneva, Z.; Ivanova, D.; Toneva, M.; Grozeva, N.; Memdueva, N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024, 13, 605. [Google Scholar] [CrossRef] [PubMed]
- Negi, T.; Kumar, A.; Sharma, S.K.; Rawat, N.; Saini, D.; Sirohi, R.; Prakash, O.; Dubey, A.; Dutta, A.; Shahi, N.C. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Monem, A.; Habibi, D.; Goudarzi, H.; Mahmoudiani-Glian, M.; Benrashid, A.; Alshablawi, Z. The choline chloride-based DES as a capable and new catalyst for the synthesis of benzopyranophenazinecarbonitriles. Catal. Commun. 2024, 187, 106913. [Google Scholar] [CrossRef]
- Alam, M.A.; Muhammad, G.; Nuruzzaman Khan, M.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Zannou, O.; Koca, I. Optimization and stabilization of the antioxidant properties from Alkanet (Alkanna tinctoria) with natural deep eutectic solvents. Arab. J. Chem. 2020, 13, 6437–6450. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Yaneva, Z.; Grozeva, N.; Todorova, M.; Kamenova-Nacheva, M.; Staleva, P.; Memdueva, N.; Tzanova, M.T. Comparison of the Potential of “Green” Classical and Natural Deep Eutectic Solvents in the Production of Natural Food Colorant Extracts from the Roots of Alkanna tinctoria (L.). Foods 2025, 14, 584. [Google Scholar] [CrossRef] [PubMed]
- Dinev, T.; Tzanova, M.; Velichkova, K.; Dermendzhieva, D.; Beev, G. Antifungal and Antioxidant Potential of Methanolic Extracts from Acorus calamus L., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Appl. Sci. 2021, 11, 4745. [Google Scholar] [CrossRef]
- Rebaya, A.; Belghith, S.I.; Baghdikian, B.; Leddet, V.M.; Mabrouki, F.; Olivier, E.; Cherif, J.; Ayadi, M.T. Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium halimifolium (Cistaceae). J. App. Pharm. Sci. 2015, 5, 052–057. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- John, B.; Sulaiman, C.T.; Satheesh, G.; Reddy, V.R.K. Spectrophotometric estimation of total alkaloids in selected Justicia species. Int. J. Pharm. Pharm. Sci. 2014, 6, 647–648. [Google Scholar]
- Velichkova, K.; Sirakov, I.; Rusenova, N.; Beev, G.; Denev, S.; Valcheva, N.; Dinev, T. In vitro antimicrobial activity on Lemna minuta, Chlorella vulgaris and Spirulina sp. extracts. Fresenius Environ. Bull. 2018, 27, 5736–5741. [Google Scholar]
- Nelly, A.; Annick, D.D.; Frederic, D. Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J. Ethnopharmacol. 2008, 120, 315–334. [Google Scholar] [CrossRef] [PubMed]
- Areesanan, A.; Nicolay, S.; Keller, M.; Zimmermann-Klemd, A.M.; Potterat, O.; Gründemann, C. Potential benefits of Malva sylvestris in dry-eye disease pathology in vitro based on antioxidant, wound-healing and anti-inflammatory properties. Biomed. Pharmacother. 2023, 168, 115782. [Google Scholar] [CrossRef] [PubMed]
- Munir, A.; Youssef, F.S.; Ishtiaq, S.; Kamran, S.H.; Sirwi, A.; Ahmed, S.A.; Ashour, M.L.; Elhady, S.S. Malva parviflora Leaves Mucilage: An Eco-Friendly and Sustainable Biopolymer with Antioxidant Properties. Polymers 2021, 13, 4251. [Google Scholar] [CrossRef] [PubMed]
- Shadid, K.A.; Shakya, A.K.; Naik, R.R.; Jaradat, N.; Farah, H.S.; Shalan, N.; Khalaf, N.A.; Oriquat, G.A. Phenolic content and antioxidant and antimicrobial activities of Malva sylvestris L., Malva oxyloba boiss., Malva parviflora L., and Malva aegyptia L. leaves extract. J. Chem. 2021, 2021, 8867400. [Google Scholar] [CrossRef]
- Żbik, K.; Onopiuk, A.; Szpicer, A.; Kurek, A. Comparison of the effects of extraction method and solvents on biological activities of phytochemicals from selected violet and blue pigmented flowers. J. Food Meas. Charact. 2023, 17, 6600–6608. [Google Scholar] [CrossRef]
- Beghdad, M.C.; Benammar, C.; Bensalah, F.; Sabri, F.Z.; Belarbi, M.; Chemat, F. Antioxidant activity, phenolic and flavonoid content in leaves, flowers, stems and seeds of mallow (Malva sylvestris L.) from North Western of Algeria. Afr. J. Biotechnol. 2014, 13, 486–491. [Google Scholar] [CrossRef]
- Bimakr, M.; Ganjloo, A.; Zarringhalami, S.; Ansarian, E. Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique. Food Sci. Biotechnol. 2017, 26, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Petkova, N.; Popova, A.; Alexieva, I. Antioxidant properties and some phytochemical components of the edible medicinal Malva sylvestris L. J. Med. Plants Stud. 2019, 7, 96–99. [Google Scholar]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Munim, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef] [PubMed]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2023, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Enoki, S.; Harborne, J.B.; Eagles, J. Malonated anthocyanins in malvaceae: Malonylmalvin from Malva sylvestris. Phytochemistry 1989, 28, 499–500. [Google Scholar] [CrossRef]
- Azab, A. Top Edible Wild Plants of Eastern Mediterranean Region. Part I: Anticancer Activity. European J. Med. Plants 2023, 34, 29–51. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef] [PubMed]
- Yirui, L.; Tao, L.; Ruowu, L.; Jiao, Z.; Jing, Z.; Xiaodong, X.; Yan, Y.; Bachert, C.; Jintao, D.; Luo, B. Malvidin from Malva sylvestris L. Ameliorates Allergic Responses in Ovalbumin-Induced Allergic Rhinitis Mouse Model via the STAT6/GATA3 Pathway. Am. J. Rhinol. Allergy 2024, 38, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Omara, T.; Kahwa, I.; Khan, U.M. Anticancer potential of delphinidin and its derivatives: Therapeutic and mechanistic insights. Med. Chem. Res. 2024, 33, 1769–1786. [Google Scholar] [CrossRef]
- Moualek, I.; Moualek, D.; Benarab, K.; Sebbane, H.; Bariz, K.; Houali, K. Evaluation of antioxidant potential of Algerian Malva sylvestris aqueous extract. Int. J. Sci. Res. 2020, 76, 53–63. [Google Scholar]
- Moualek, I.; Benarab, K.; Belounis, Y.; Houali, K. Anti-Inflammatory and Antioxidant Activities of Cow’s Milk Supplemented with Aqueous Extract of Malva sylvestris. EPHELS 2023, 11, 1–11. [Google Scholar] [CrossRef]
- Sarmiento-Tomala, G.M.; Gutiérrez, Y.I.; Delgado, R.; Burbano, Z.C.; Soledispa, P.A.; Jaramillo, N.D.; Vargas, L.A. Phytochemical composition and antioxidant capacity of the aqueous extracts of Malva sylvestris L. and Malva pseudolavatera. Webb & Berthel. J. Pharm. Pharmacogn. Res. 2022, 10, 551–561. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Saputri, F.C.; Yanuar, A.; Jantan, I.; Ningrum, R.A.; Juanssilfero, A.B.; Munim, A. Choline chloride-urea-based natural deep eutectic solvent for highly efficient extraction of polyphenolic antioxidants from Pluchea indica (L.) Less leaves. Arab. J. Chem. 2024, 17, 105537. [Google Scholar] [CrossRef]
- Gomez-Urios, C.; Puchades-Colera, P.; Frigola, A.; Esteve, M.J.; Blesa, J.; Lopez-Malo, D. Natural deep eutectic solvents: A paradigm of stability and permeability in the design of new ingredients. J. Mol. Liq. 2024, 412, 125864. [Google Scholar] [CrossRef]
- Saha, S.K.; Dey, S.; Chakraborty, R. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic as-sisted extraction of polyphenols from Aegle marmelos. J. Mol. Liq. 2019, 287, 110956. [Google Scholar] [CrossRef]
- DellaGreca, M.; Cutillo, F.; D’Abrosca, B.; Fiorentino, A.; Pacifico, S.; Zarrelli, A. Antioxidant and radical scavenging properties of Malva sylvestris. Nat. Prod. Commun. 2009, 4, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Tomalá, G.M.; Miranda-Martínez, M.; Gutiérrez-Gaitén, Y.I.; Delgado-Hernández, R. Chemical Study, Antioxidant Capacity, and Hypoglycemic Activity of Malva pseudolavatera Webb & Berthel and Malva sylvestris L. (Malvaceae), Grown in Ecuador. Trop. J. Nat. Prod. Res. 2020, 4, 1064–1071. [Google Scholar]
- Sharifi-Rad, J.; Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Taheri, Y.; Shaheen, S.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Brdar-Jokanović, M.; Rajkovic, J.; et al. Malva species: Insights on its chemical composition towards pharmacological applications. Phytother. Res. 2020, 34, 546–567. [Google Scholar] [CrossRef] [PubMed]
- Sales, M.D.C.; Costa, H.B.; Fernandes, P.M.B.; Ventura, J.A.; Meira, D.D. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac. J. Trop. Biomed. 2016, 6, 26–31. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Mickymaray, S.; Al Aboody, M.S. In vitro antioxidant and bactericidal efficacy of 15 common spices: Novel therapeutics for urinary tract infections? Medicina 2019, 55, 289. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef] [PubMed]
- De Morais, P.; Gonçalves, F.; Coutinho, J.A.P.; Ventura, S.P.M. Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustain. Chem. Eng. 2015, 3, 3398–3404. [Google Scholar] [CrossRef]
- Gama, G.S.P.; Pimenta, A.S.; Feijó, F.M.C.; dos Santos, C.S.; de Oliveira Castro, R.V.; de Azevedo, T.K.B.; de Medeiros, L.C.D. Effect of pH on the antibacterial and antifungal activity of wood vinegar (pyroligneous extract) from eucalyptus. Revista Árvore 2023, 47, 4711. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, J.X.; Tang, Y.L.; Wang, J.; Yang, Z. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 2015, 132, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Bedair, H.M.; Samir, T.M.; Mansour, F.R. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl. Microbiol. Biotechnol. 2024, 108, 198. [Google Scholar] [CrossRef] [PubMed]
- Trenzado, J.L.; Benito, C.; Atilhan, M.; Aparicio, S. Hydrophobic deep eutectic solvents based on cineole and organic acids. J. Mol. Liq. 2023, 377, 121322. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Li, W.Y.; Dinata, A.; Ho, E.T. Comparing the antibacterial efficacy and functionality of different commercial alcohol-based sanitizers. PLoS ONE 2023, 18, 0282005. [Google Scholar] [CrossRef] [PubMed]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Czerkas, K.; Olchowik-Grabarek, E.; Łomanowska, M.; Abdulladjanova, N.; Sękowski, S. Antibacterial Activity of Plant Polyphenols Belonging to the Tannins against Streptococcus mutans—Potential against Dental Caries. Molecules 2024, 29, 879. [Google Scholar] [CrossRef] [PubMed]
- Jenny, J.C.; Kuś, P.M.; Szweda, P. Investigation of antifungal and antibacterial potential of green extracts of propolis. Sci. Rep. 2024, 14, 13613. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, R. Evaluation of the Antibacterial Effect of Malva sylvestris Ethanolic Extract on Standard Pathogenic Bacteria. International Conference on Biology of Medicinal Plants. Ph.D. Thesis, University of Qom, Qom, Iran, 2023. [Google Scholar]
- Jangir, A.K.; Lad, B.; Dani, U.; Shah, N.; Kuperkar, K. In vitro toxicity assessment and enhanced drug solubility profile of green deep eutectic solvent derivatives (DESDs) combined with theoretical validation. RSC Adv. 2020, 10, 24063–24072. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.A.; Sand, M.I.; El-Kadi, S.M. Effect of some organic acids on fungal growth and their toxins production. J. Agric. Chem. Biotechn. 2012, 3, 391–397. [Google Scholar] [CrossRef]
- Sekhon, A.S.; Padhye, A.A.; Garg, A.K. In vitro sensitivity of Penicillium marneffei and Pythium insidiosum to various antifungal agents. Eur. J. Epidemiol. 1992, 8, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, P.; Shapiro, B.L.; Srinivasan, M. Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch. Ophthalmol. 2007, 125, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, S.O.; Phillips, A.J.L.; Cabrita, E.J.; Macedo, M.F. Ethanol as an antifungal treatment for paper. Stud. Conserv. 2017, 62, 33–42. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Denkova, R.; Alexieva, I.; Krastanov, A. In vitro antioxidant and antimicrobial activity of extracts of Bulgarian Malva sylvestris L. In Annuaire de l’Université de Sofia “St. Kliment Ohridski” Faculte de Biologie, Proceedings of the First National Conference of Biotechnology, Sofia, Bulgaria, 17–18 October 2014; Sofia University St. Kliment Ohridski: Sofia, Bulgaria, 2015; Volume 100, pp. 41–48. [Google Scholar]
ID | Plant Organ | Solvent |
---|---|---|
L1 | Leaf | NADES1 Choline chloride + Citric acid + Water (1:1 mol/mol) + 30% w/w Water |
F1 | Flower | Choline chloride + Citric acid + Water (1:1 mol/mol) + 30% w/w Water |
R1 | Root | Choline chloride + Citric acid + Water (1:1 mol/mol) + 30% w/w Water |
L2 | Leaf | NADES2 Choline chloride + Glycerol (1:1 mol/mol) + 30% w/w Water |
F2 | Flower | Choline chloride + Glycerol (1:1 mol/mol) + 30% w/w Water |
R2 | Root | Choline chloride + Glycerol (1:1 mol/mol) + 30% w/w Water |
L3 | Leaf | 70% v/v Ethanol in water |
F3 | Flower | 70% v/v Ethanol in water |
R3 | Root | 70% v/v Ethanol in water |
ID | pH | TPC | TFC | TCT | TAntC | TAlkC |
---|---|---|---|---|---|---|
mgGAE/L | mgCE/L | mgCE/L | mgCGE/L | µgAE/L | ||
L1 | 1.14 ± 0.02 | 165 ± 9 | 52 ± 4 | nd * | nd * | 6.5 ± 0.3 |
F1 | 0.98 ± 0.02 | 579 ± 16 | 110 ± 9 | 11 ± 1 | 0.15 ± 0.02 | 4.0 ± 0.2 |
R1 | 0.52 ± 0.02 | 39 ± 4 | nd * | nd * | nd * | 4.6 ± 0.2 |
NADES 1 | −0.17 ± 0.02 | - | - | - | - | - |
L2 | 5.26 ± 0.02 | 132 ± 6 | 81 ± 5 | nd * | nd * | nd * |
F2 | 5.00 ± 0.02 | 168 ± 10 | 104 ± 8 | 95 ± 5 | 0.25 ± 0.03 | nd * |
R2 | 5.12 ± 0.02 | 42 ± 3 | nd * | nd * | nd * | nd * |
NADES 2 | 2.63 ± 0.02 | - | - | - | - | - |
L3 | 6.14 ± 0.01 | 174 ± 7 | 136 ± 6 | 84 ± 5 | nd | 13.9 ± 0.2 |
F3 | 5.60 ± 0.01 | 276 ± 9 | 217 ± 8 | 89 ± 5 | 19 ± 2 | nd * |
R3 | 6.57 ± 0.01 | 20 ± 2 | nd * | 17 ± 1 | nd * | nd * |
70% EtOH | 7.91 ± 0.01 | - | - | - | - | - |
ID | DPPH | ABTS | FRAP |
---|---|---|---|
µmolTE/L | % | mgE/L | |
L1 | 53 ± | 97 ± 3 | 0.22 ± 0.04 |
F1 | 64 ± 2 | 99 ± 2 | 0.19 ± 0.02 |
R1 | 18 ± 1 | 65 ± 3 | 0.02 ± 0.01 |
L2 | 40 ± | 83 ± 2 | 5.54 ± 0.16 |
F2 | 75 ± 2 | 96 ± 3 | 4.14 ± 0.08 |
R2 | 13 ± | 72 ± 2 | 0.78 ± 0.07 |
L3 | 69 ± | 63 ± 3 | 3.89 ± 0.12 |
F3 | 107 ± 1 | 99 ± 3 | 1.25 ± 0.06 |
R3 | 24 ± 1 | 61 ± 2 | 0.46 ± 0.05 |
DPPH | ABTS | FRAP | TPC | TFC | TCT | TAntC | TAlkC | |
---|---|---|---|---|---|---|---|---|
DPPH | 1.0000 | 0.6588 * | 0.4467 | 0.5887 | 0.9611 | 0.7891 | 0.6831 | 0.1298 |
ABTS | 1.0000 | 0.3419 | 0.6854 | 0.5750 | 0.1818 | 0.4144 | −0.2455 | |
FRAP | 1.0000 | −0.0062 | 0.5200 | 0.4328 | 0.3714 | −0.4195 | ||
TPC | 1.0000 | 0.5933 | 0.1597 | 0.2231 | 0.1296 | |||
TFC | 1.0000 | 0.7458 | 0.7143 | 0.1494 | ||||
TCT | 1.0000 | 0.4982 | 0.1612 | |||||
TAntC | 1.0000 | −0.2582 | ||||||
TAlkC | 1.0000 |
ID | Diameter of Inhibition Zones (mm) | |||
---|---|---|---|---|
S. aureus | E. coli | P. aeruginosa | B. cereus | |
L1 | 33.3 ± 0.6 ac | 27.3 ± 2.3 ab | 31.3 ± 2.3 ac | 32.0 ± 0.0 ac |
F1 | 33.3 ± 1.2 ac | 30.0 ± 3.5 ac | 32.0 ± 1.7 ac | 31.3 ± 0.6 ac |
R1 | 32.7 ± 2.3 ac | 29.3 ± 0.6 ac | 33.3 ± 0.6 ac | 32.0 ± 0.0 ac |
NADES1 | 30.0 ± 0.0 a | 27.0 ± 0.0 a | 28.3 ± 0.6 a | 30.0 ± 0.0 a |
L2 | - ** | - ** | - ** | - ** |
F2 | 8.0 ± 0.0 ac | - ** | - ** | - ** |
R2 | - ** | - ** | - ** | - ** |
NADES2 | 6.0 ± 0 a | 6 ± 0 a | 6.0 ± 0 a | 6.0 ± 0 a |
L3 | 10.7 ± 0.6 ac | 6.7 ± 0.6 ab | 9.3 ± 1.2 ac | 8.3 ± 1.5 ac |
F3 | 10.3 ± 0.6 ac | 6.7 ± 0.6 ab | 7.3 ± 0.6 ab | 9.3 ± 1.2 ac |
R3 | 9.7 ± 0.6 ac | 6.7 ± 0.6 ab | 9.0 ± 1.7 ac | 8.7 ± 1.2 ac |
70% EtOH | 7.0 ± 0 a | 7.0 ± 0.0 a | 7.0 ± 0 a | 6.7 ± 0.6 a |
Gentamicin | 15.0 ± 0.0 ac | 11.0 ± 0.0 ac | 11.0 ± 0.0 ac | 15.0 ± 0.0 ac |
ID | Diameter of Inhibition Zones (mm) | ||||||
---|---|---|---|---|---|---|---|
P. chrysogenum | F. oxysporum | A. parasiticus | A. niger | A. flavus | A. carbonarius | A. ochraceus | |
L1 | 12.7 ± 1.1 ac | 11.7 ± 0.6 ab | 9.7 ± 0.6 ab | - ** | 10.0 ± 0.0 ac | - ** | 10.3 ± 0.6 ab |
F1 | 14.0 ± 1.0 ab | 12.3 ± 0.6 ab | 9.7 ± 0.6 ab | - ** | 11.0 ± 0.0 ab | - ** | 10.0 ± 0.0 ab |
R1 | 14.7 ± 0.6 ab | 13.0 ± 1.0 ac | - ** | - ** | 13.0 ± 0.0 ab | - ** | 11.3 ± 0.6 ab |
NADES1 | 15.3 ± 0.6 a | 10.0 ± 0.0 a | 9.0 ± 0.0 a | 17.7 ± 0.6 a | 12.0 ± 0.0 a | 6.0 ± 0.0 a | 10.0 ± 0.0 a |
L2 | - ** | - ** | - ** | - ** | - ** | - ** | - ** |
F2 | - ** | - ** | - ** | - ** | - ** | - ** | - ** |
R2 | - ** | - ** | - ** | - ** | - ** | - ** | - ** |
NADES2 | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a |
L3 | 9.0 ± 0.0 ab | 10.0 ± 0.0 ac | 7.3 ± 0.6 ab | - ** | 7.7 ± 0.6 ab | - ** | 8.7 ± 0.6 ab |
F3 | 10.0 ± 0.0 ac | - ** | 7.3 ± 0.6 ab | - ** | 7.7 ± 0.6 ab | - ** | 8.7 ± 0.6 ab |
R3 | 10.0 ± 0.0 ac | 9.7 ± 0.6 ac | 8.3 ± 0.6 ab | - ** | 9.7 ± 0.6 ac | - ** | 9.0 ± 1.0 ab |
70% EtOH | 8.0 ± 0.0 a | 7.7 ± 0.6 a | 7.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 7.7 ± 0.6 a |
Amphotericin B | 6.0 ± 0.0 ab | 6.0 ± 0.0 ab | 11.0 ± 0.0 ac | 9.0 ± 0.0 ab | 11.5 ± 0.3 a | 13.8 ± 0.3 a | 6.0 ± 0.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memdueva, N.; Tzanova, M.; Yaneva, Z.; Rusenova, N.; Grozeva, N.; Dinev, T. Natural Deep Eutectic Solvent-Based Extraction of Malva sylvestris L.: Phytochemical Content, Antioxidant and Antimicrobial Potential. Separations 2025, 12, 187. https://doi.org/10.3390/separations12070187
Memdueva N, Tzanova M, Yaneva Z, Rusenova N, Grozeva N, Dinev T. Natural Deep Eutectic Solvent-Based Extraction of Malva sylvestris L.: Phytochemical Content, Antioxidant and Antimicrobial Potential. Separations. 2025; 12(7):187. https://doi.org/10.3390/separations12070187
Chicago/Turabian StyleMemdueva, Neli, Milena Tzanova, Zvezdelina Yaneva, Nikolina Rusenova, Neli Grozeva, and Toncho Dinev. 2025. "Natural Deep Eutectic Solvent-Based Extraction of Malva sylvestris L.: Phytochemical Content, Antioxidant and Antimicrobial Potential" Separations 12, no. 7: 187. https://doi.org/10.3390/separations12070187
APA StyleMemdueva, N., Tzanova, M., Yaneva, Z., Rusenova, N., Grozeva, N., & Dinev, T. (2025). Natural Deep Eutectic Solvent-Based Extraction of Malva sylvestris L.: Phytochemical Content, Antioxidant and Antimicrobial Potential. Separations, 12(7), 187. https://doi.org/10.3390/separations12070187