Techno-Economic Assessment (TEA) of a Minimal Liquid Discharge (MLD) Membrane-Based System for the Treatment of Desalination Brine
Abstract
1. Introduction
Industrial Sector | Total Dissolved Solids (TDS) (mg/L) |
---|---|
Petrochemical industry | 20,000–85,000 |
Desalination industry | 50,000–82,000 |
Aquaculture industry | 12,000–47,000 |
Textile industry | 1500–50,000 |
Pharmaceutical industry | 20,000–50,000 |
2. Materials and Methods
2.1. System Configuration
2.2. Techno-Economic Assessment (TEA) Methodology
3. Results and Discussion
3.1. Water Recovery
3.2. Energy and Cost Demands
3.3. Cost Comparison and Profitability
3.4. Present Developments and Future Outlook
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Elewa, M.M. Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge. Separations 2024, 11, 291. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Zhang, Y.; Wang, J. Theoretical Study of a Closed-Cycle Evaporation System for Seawater Desalination. Separations 2023, 10, 319. [Google Scholar] [CrossRef]
- Yang, Q.; Heng, Y.; Jiang, Y.; Luo, J. Multiscale Analysis of Permeable and Impermeable Wall Models for Seawater Reverse Osmosis Desalination. Separations 2023, 10, 134. [Google Scholar] [CrossRef]
- Poirier, K.; Al Mhanna, N.; Patchigolla, K. Techno-Economic Analysis of Brine Treatment by Multi-Crystallization Separation Process for Zero Liquid Discharge. Separations 2022, 9, 295. [Google Scholar] [CrossRef]
- Castillo-Téllez, B.; Romero, R.J.; Allaf, K.; Pilatowsky-Figueroa, I. Saline Diffusion Modeling for Sodium Chloride Aqueous Solutions: Freezing for Desalination Purposes. Separations 2022, 9, 272. [Google Scholar] [CrossRef]
- Huang, L.; Wang, D.; He, C.; Pan, M.; Zhang, B.; Chen, Q.; Ren, J. Industrial Wastewater Desalination under Uncertainty in Coal-Chemical Eco-Industrial Parks. Resour. Conserv. Recycl. 2019, 145, 370–378. [Google Scholar] [CrossRef]
- Das, T.K. Industrial Environmental Management; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bonnail, E.; Vera, S.; DelValls, T.Á. A New Disruptive Technology for Zero-Brine Discharge: Towards a Paradigm Shift. Appl. Sci. 2023, 13, 13092. [Google Scholar] [CrossRef]
- Wang, T.; Liang, H.; Bai, L.; Liu, B.; Zhu, X.; Wang, J.; Xing, J.; Ren, N.; Li, G. Desalination Performance and Fouling Mechanism of Capacitive Deionization: Effects of Natural Organic Matter. J. Electrochem. Soc. 2020, 167, 043501. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) Strategies for Wastewater Management and Resource Recovery—Analysis, Challenges and Prospects. J. Environ. Chem. Eng. 2020, 8, 104418. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Giannika, V. Decarbonized and Circular Brine Management/Valorization for Water & Valuable Resource Recovery via Minimal/Zero Liquid Discharge (MLD/ZLD) Strategies. J. Environ. Manage 2022, 324, 116239. [Google Scholar] [CrossRef]
- Cifuentes-Cabezas, M.; García-Suarez, L.; Soler-Cabezas, J.L.; Cuartas-Uribe, B.; Álvarez-Blanco, S.; Mendoza-Roca, J.A.; Vincent-Vela, M.C. Feasibility of Forward Osmosis to Recover Textile Dyes Using Single Salts and Multicomponent Draw Solutions. Membranes 2023, 13, 911. [Google Scholar] [CrossRef] [PubMed]
- Altınay, A.D.; Yazagan, A.; Koseoglu-Imer, D.Y.; Keskinler, B.; Koyuncu, I. Membrane Concentrate Management Model of Biologically Pre-Treated Textile Wastewater for Zero-Liquid Discharge. Water Air Soil. Pollut. 2022, 233, 303. [Google Scholar] [CrossRef]
- Natarajan, P.; Karmegam, P.M.; Madasamy, J.; Somasundaram, S.; Ganesan, S. Effective Treatment of Domestic Sewage to Reuse in Textile Dyeing and Catalytic Treatment of Generated Dye Wastewater. Int. J. Environ. Sci. Technol. 2022, 20, 6209–6220. [Google Scholar] [CrossRef]
- Zakari-Jiya, A.; Frazzoli, C.; Obasi, C.N.; Babatunde, B.B.; Patrick-Iwuanyanwu, K.C.; Orisakwe, O.E. Pharmaceutical and Personal Care Products as Emerging Environmental Contaminants in Nigeria: A Systematic Review. Environ. Toxicol. Pharmacol. 2022, 94, 103914. [Google Scholar] [CrossRef] [PubMed]
- Vaudreuil, M.A.; Vo Duy, S.; Munoz, G.; Sauvé, S. Pharmaceutical Pollution of Hospital Effluents and Municipal Wastewaters of Eastern Canada. Sci. Total Environ. 2022, 846, 157353. [Google Scholar] [CrossRef]
- Ghurye, G.L. Evaluation of a Minimum Liquid Discharge (Mld) Desalination Approach for Management of Unconventional Oil and Gas Produced Waters with a Focus on Waste Minimization. Water 2021, 13, 2912. [Google Scholar] [CrossRef]
- Panagopoulos, A. Brine Management (Saline Water & Wastewater Effluents): Sustainable Utilization and Resource Recovery Strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) Desalination Systems. Chem. Eng. Process. Process Intensif. 2022, 176, 108944. [Google Scholar] [CrossRef]
- Rotko, G.; Knapik, E.; Piotrowski, M.; Marszałek, M. Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale. Water 2024, 16, 1461. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, J.; Wei, G.; Wang, X.; Chen, S.; Quan, X. Electrostatic-Induced Ion-Confined Partitioning in Graphene Nanolaminate Membrane for Breaking Anion–Cation Co-Transport to Enhance Desalination. Nat. Commun. 2024, 15, 4324. [Google Scholar] [CrossRef]
- Kress, N. Marine Impacts of Seawater Desalination: Science, Management, and Policy; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128119532. [Google Scholar]
- Kress, N.; Gertner, Y.; Shoham-Frider, E. Seawater Quality at the Brine Discharge Site from Two Mega Size Seawater Reverse Osmosis Desalination Plants in Israel (Eastern Mediterranean). Water Res. 2020, 171, 115402. [Google Scholar] [CrossRef] [PubMed]
- Theodore, L.; Dupont, R.R. Introduction to Desalination: Principles and Calculations, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 9781119691754. [Google Scholar]
- DuPont. DUPONTTM XUS180808 Reverse Osmosis Element Product Data Sheet; DuPont: Wilmington, DE, USA, 2023. [Google Scholar]
- Dow Water Solutions. Dows Minimal Liquid Discharge Approach Takes Center Stage; Dow Water Solutions: Wilmington, DE, USA, 2023. [Google Scholar]
- Panagopoulos, A. Techno-Economic Assessment of Minimal Liquid Discharge (MLD) Treatment Systems for Saline Wastewater (Brine) Management and Treatment. Process Saf. Environ. Prot. 2021, 146, 656–669. [Google Scholar] [CrossRef]
- Veolia Water Technologies Brine Concentrator System: HPD®Evaporation and Crystallization. 2023. Available online: https://www.veoliawatertech.com/en/solutions/technologies/hpd-evaporation-crystallization (accessed on 1 June 2025).
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- Ossio, F.; Salinas, C.; Hernández, H. Circular Economy in the Built Environment: A Systematic Literature Review and Definition of the Circular Construction Concept. J. Clean. Prod. 2023, 414, 137738. [Google Scholar] [CrossRef]
- Zaman, A.; Caceres Ruiz, A.M.; Shooshtarian, S.; Ryley, T.; Caldera, S.; Maqsood, T. Development of the Circular Economy Design Guidelines for the Australian Built Environment Sector. Sustainability 2023, 15, 2500. [Google Scholar] [CrossRef]
- Arora, R.; Mutz, D.; Mohanraj, P. Innovating for the Circular Economy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; p. 147. ISBN 9781032063386. [Google Scholar]
- Nestorovic, M.; Radicevic, T.D.; Belgrade, F.; Sad, N. Transition to Circular Economy. In Proceedings of the 41st International Scientific Conference on Economic and Social Development, Belgrade, Serbia, 23–24 May 2019. [Google Scholar]
- Morseletto, P. Targets for a Circular Economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- Saltworks Technologies Inc. Zero Liquid Discharge and Minimal Liquid Discharge; Saltworks Technologies Inc.: Richmond, BC, Canada, 2022. [Google Scholar]
- Panagopoulos, A. Techno-Economic Assessment of Zero Liquid Discharge (ZLD) Systems for Sustainable Treatment, Minimization and Valorization of Seawater Brine. J. Environ. Manag. 2022, 306, 114488. [Google Scholar] [CrossRef]
- Criscuoli, A. The Potential of Membrane Contactors in the Pre-Treatment and Post-Treatment Lines of a Reverse Osmosis Desalination Plant. Separations 2023, 10, 129. [Google Scholar] [CrossRef]
- Lin, S. Energy Efficiency of Desalination: Fundamental Insights from Intuitive Interpretation. Environ. Sci. Technol. 2020, 54, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Bazargan, A. A Multidisciplinary Introduction to Desalination; River Publishers: Gistrup, Denmark, 2018; ISBN 9788793379534. [Google Scholar]
- Rosen, M.; Farsi, A. Sustainable Energy Technologies for Seawater Desalination; Academic Press: Cambridge, MA, USA, 2022; ISBN 9780323998727. [Google Scholar]
- Mujtaba, I.M.; Sowgath, M.T. Desalination Technologies: Design and Operation; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Chen, Q.; Luo, J.; Heng, Y. High-Throughput Optimal Design of Spacers Using Triply Periodic Minimal Surfaces in BWRO. Separations 2022, 9, 62. [Google Scholar] [CrossRef]
- Lim, Y.J.; Nadzri, N.; Xue, Q.; Li, C.; Wang, R. Investigating the Impact of TFC Membrane Structure and Compaction on Performance in Hypersaline Brine Desalination via High-Pressure Reverse Osmosis. Desalination 2025, 607, 118793. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Nadzri, N.; Wang, R. Thin-Film Composite (TFC) Membranes for Sustainable Desalination and Water Reuse: A Perspective. Desalination 2025, 599, 118451. [Google Scholar] [CrossRef]
- Lim, Y.J.; Nadzri, N.; Lai, G.S.; Wang, R. Demystifying the Compaction Effects of TFC Polyamide Membranes in the Desalination of Hypersaline Brine via High-Pressure RO. J. Memb. Sci. 2024, 707, 122950. [Google Scholar] [CrossRef]
- Lim, Y.J.; Ma, Y.; Chew, J.W.; Wang, R. Assessing the Potential of Highly Permeable Reverse Osmosis Membranes for Desalination: Specific Energy and Footprint Analysis. Desalination 2022, 533, 115771. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, S.; Naidu, G.; Lee, S.; Vigneswaran, S. Integrated Submerged Membrane Distillation-Adsorption System for Rubidium Recovery. Sep. Purif. Technol. 2019, 218, 146–155. [Google Scholar] [CrossRef]
- Ni, T.; Lin, J.; Kong, L.; Zhao, S. Omniphobic Membranes for Distillation: Opportunities and Challenges. Chin. Chem. Lett. 2021, 32, 3298–3306. [Google Scholar] [CrossRef]
- Prasanna, N.S.; Choudhary, N.; Singh, N.; Raghavarao, K.S.M.S. Omniphobic Membranes in Membrane Distillation for Desalination Applications: A Mini-Review. Chem. Eng. J. Adv. 2023, 14, 100486. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Alias, N.H.; Aziz, M.H.A.; Jaafar, J.; Othman, F.E.C.; Chew, J.W. Progress on Improved Fouling Resistance-Nanofibrous Membrane for Membrane Distillation: A Mini-Review. Membranes 2023, 13, 727. [Google Scholar] [CrossRef]
- Panagopoulos, A. Process Simulation and Analysis of High-Pressure Reverse Osmosis (HPRO) in the Treatment and Utilization of Desalination Brine (Saline Wastewater). Int. J. Energy Res. 2022, 46, 23083–23094. [Google Scholar] [CrossRef]
- Chen, L.H.; Huang, A.; Chen, Y.R.; Chen, C.H.; Hsu, C.C.; Tsai, F.Y.; Tung, K.L. Omniphobic Membranes for Direct Contact Membrane Distillation: Effective Deposition of Zinc Oxide Nanoparticles. Desalination 2018, 428, 255–263. [Google Scholar] [CrossRef]
- Panagopoulos, A. Study and Evaluation of the Characteristics of Saline Wastewater (Brine) Produced by Desalination and Industrial Plants. Environ. Sci. Pollut. Res. 2022, 29, 23736–23749. [Google Scholar] [CrossRef]
- Panagopoulos, A. Energetic, Economic and Environmental Assessment of Zero Liquid Discharge (ZLD) Brackish Water and Seawater Desalination Systems. Energy Convers. Manag. 2021, 235, 113957. [Google Scholar] [CrossRef]
- DuPont. FILMTECTM Reverse Osmosis Membranes: Technical Manual. 2024. Available online: https://www.dupont.com/content/dam/water/amer/us/en/water/public/documents/en/RO-NF-FilmTec-Manual-45-D01504-en.pdf (accessed on 1 June 2025).
- EDEYA. Water Prices; EDEYA: Athens, Greece, 2023. [Google Scholar]
- Nowtricity Electricity CO2 Emissions per KWh in Greece. Current Production by Electricity Source and Average Emissions by Month and Year. 2025. Available online: https://www.nowtricity.com/country/greece/ (accessed on 1 June 2025).
- Moradi, M.R.; Pihlajamäki, A.; Hesampour, M.; Ahlgren, J.; Mänttäri, M. End-of-Life RO Membranes Recycling: Reuse as NF Membranes by Polyelectrolyte Layer-by-Layer Deposition. J. Memb. Sci. 2019, 584, 300–308. [Google Scholar] [CrossRef]
- Gaid, K. Drinking Water Treatment: Membranes Applied to Drinking Water and Desalination; John Wiley & Sons: Hoboken, NJ, USA, 2023; Volume 4, ISBN 9781394226122. [Google Scholar]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Reverse Osmosis; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128114681. [Google Scholar]
- Ghangrekar, M.M. Wastewater to Water: Principles, Technologies and Engineering Design; Springer: Berlin/Heidelberg, Germany, 2023; ISBN 9789811940477/9789811940484. [Google Scholar]
- Nasr, M.; Negm, A.M. Cost-Efficient Wastewater Treatment Technologies. Eng. Syst. 2023, 118, 1–184. [Google Scholar]
- Shah, M.P. Membrane and Membrane-Based Processes for Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Droste, R.L.; Gehr, R.L. Theory and Practice of Water and Wastewater Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Panagopoulos, A. Assessing the Energy Footprint of Desalination Technologies and Minimal/Zero Liquid Discharge (MLD/ZLD) Systems for Sustainable Water Protection via Renewable Energy Integration. Energies 2025, 18, 962. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Michailidis, P. Membrane Technologies for Sustainable Wastewater Treatment: Advances, Challenges, and Applications in Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) Systems. Membranes 2025, 15, 64. [Google Scholar] [CrossRef]
- Panagopoulos, A. Resource Recovery Via Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD): A Biotechnological Approach. In Smart Waste and Wastewater Management by Biotechnological Approaches; Mohd, Y.A., Sillanpää, M., Eds.; Springer Nature: Singapore, 2025; pp. 379–392. ISBN 978-981-97-8673-2. [Google Scholar]
- Panagopoulos, A. Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) Technologies for Sustainable Wastewater Management and Valorization. In Smart Waste and Wastewater Management by Biotechnological Approaches; Mohd, Y.A., Sillanpää, M., Eds.; Springer Nature: Singapore, 2025; pp. 307–320. ISBN 978-981-97-8673-2. [Google Scholar]
- Gude, V.G. Renewable Energy Powered Desalination Handbook: Application and Thermodynamics; Butterworth-Heinemann: Oxford, UK, 2018; ISBN 9780128152447. [Google Scholar]
- Gude, V.G. Sustainable Desalination Handbook: Plant Selection, Design and Implementation; Butterworth-Heinemann: Oxford, UK, 2018; ISBN 9780128094969. [Google Scholar]
- Dong, Y.; Ma, L.; Tang, C.Y.; Yang, F.; Quan, X.; Jassby, D.; Zaworotko, M.J.; Guiver, M.D. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes. Nano Lett. 2018, 18, 5514–5521. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, J.; Zhang, L.Z. Fouling Resistance Improvement with a New Superhydrophobic Electrospun PVDF Membrane for Seawater Desalination. Desalination 2020, 476, 114246. [Google Scholar] [CrossRef]
- Naseem, S.; Wu, C.M.; Motora, K.G. Novel Multifunctional RbxWO3@Fe3O4 Immobilized Janus Membranes for Desalination and Synergic-Photocatalytic Water Purification. Desalination 2021, 517, 115256. [Google Scholar] [CrossRef]
- Namdari, M.; Zokaee Ashtiani, F.; Bonyadi, E. Development of a High Flux Janus PVDF Membrane for Oily Saline Water Desalination by Membrane Distillation via PDA-TEOS-APTES Surface Modification. Desalination 2024, 572, 117139. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, S.; Li, P.; Ji, X.; Ning, R.; Li, P. Preparation Janus Membrane via Polytetrafluoroethylene Membrane Modification for Enhanced Performance of Vacuum Membrane Distillation Desalination. Sep. Purif. Technol. 2023, 313, 123465. [Google Scholar] [CrossRef]
- Li, Z.; Binnemans, K. Selective Removal of Magnesium from Lithium-Rich Brine for Lithium Purification by Synergic Solvent Extraction Using β-Diketones and Cyanex 923. AIChE J. 2020, 66, e16246. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-Based Technologies for Lithium Recovery from Water Lithium Resources: A Review. J. Memb. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Alsabbagh, A.; Aljarrah, S.; Almahasneh, M. Lithium Enrichment Optimization from Dead Sea End Brine by Chemical Precipitation Technique. Miner. Eng. 2021, 170, 107038. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; Ghahreman, A. Novel Approaches for Lithium Extraction from Salt-Lake Brines: A Review. Hydrometallurgy 2019, 187, 81–100. [Google Scholar] [CrossRef]
- Chen, W.S.; Lee, C.H.; Chung, Y.F.; Tien, K.W.; Chen, Y.J.; Chen, Y.A. Recovery of Rubidium and Cesium Resources from Brine of Desalination through T-BAMBP Extraction. Metals 2020, 10, 607. [Google Scholar] [CrossRef]
- Abdullah, N.; Tajuddin, M.H.; Yusof, N. 10-Forward Osmosis (FO) for Removal of Heavy Metals; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128139035. [Google Scholar]
- Imdad, S.; Dohare, R.K. A Critical Review On Heavy Metals Removal Using Ionic Liquid Membranes From The Industrial Wastewater. Chem. Eng. Process. Process Intensif. 2022, 173, 108812. [Google Scholar] [CrossRef]
- Carmona, B.; Abejón, R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. Membranes 2023, 13, 385. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, K.; Tanoue, R.; Kunisue, T.; Tue, N.M.; Fujii, S.; Sudo, N.; Isobe, T.; Nakayama, K.; Sudaryanto, A.; Subramanian, A.; et al. Pharmaceuticals and Personal Care Products (PPCPs) in Surface Water and Fish from Three Asian Countries: Species-Specific Bioaccumulation and Potential Ecological Risks. Sci. Total Environ. 2023, 866, 161258. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhang, Z.; Liu, H.; Dong, S.; Nghiem, L.D.; Gao, L.; Chaves, A.V.; Zamyadi, A.; Li, X.; Wang, Q. A Review on Microalgae-Mediated Biotechnology for Removing Pharmaceutical Contaminants in Aqueous Environments: Occurrence, Fate, and Removal Mechanism. J. Hazard. Mater. 2023, 443, 130213. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Ecotoxic Pharmaceuticals, Personal Care Products, and Other Emerging Contaminants: A Review of Environmental, Receptor-Mediated, Developmental, and Epigenetic Toxicity with Discussion of Proposed Toxicity to Humans. Crit. Rev. Environ. Sci. Technol. 2016, 46, 336–381. [Google Scholar] [CrossRef]
- Panagopoulos, A. Beneficiation of Saline Effluents from Seawater Desalination Plants: Fostering the Zero Liquid Discharge (ZLD) Approach—A Techno-Economic Evaluation. J. Environ. Chem. Eng. 2021, 9, 105338. [Google Scholar] [CrossRef]
Item | Value | References |
---|---|---|
Projected operational duration of the facility | 30 years | assumption |
Interest rate imposed | 5% | assumption |
Charge for water in Cyprus | USD 3.9 per cubic meter | [53] |
Storage unit for the feed solution | USD 93.6 per cubic meter | [53] |
Storage tank for freshwater | USD 75.53 per cubic meter | [53] |
Rate of flow for the feed solution | 100 cubic meters per day | assumption |
Level of salinity in the feed solution | 38 g per liter | [53] |
Chemical consumption expenses | USD 0.0176 per cubic meter | [53] |
Utility service charges | USD 41.04 per cubic meter per day | [53] |
Monetary outlay for pretreatment processes | USD 79.26 per cubic meter per day | [53] |
Expenditure for maintenance and replacement parts | USD 0.019 per cubic meter | [53] |
Cost of electricity usage | USD 0.064 per kilowatt-hour | [53] |
Workforce-related expenditures | USD 0.0315 per cubic meter | [53] |
Land development and site preparation expenses | USD 25.33 per cubic meter per day | [53] |
Cost for miscellaneous expenditures | USD 83.2 per cubic meter per day | [53] |
Determining factor for plant availability | 90% | assumption |
Cost of water in Greece | USD 3 per cubic meter | [55] |
Feed solution composition | Ca2+ (417 mg/L), Mg2+ (1401 mg/L), Cl− (22,661 mg/L), Na+ (11,853 mg/L), K+ (454 mg/L), SO42− (1182 mg/L), and HCO3− (46 mg/L) | [53] |
Membrane material | HPRO: thin-film composite (TFC) membrane with a polyamide layer; MD: hydrophobic polyvinylidene fluoride (PVDF) membrane | [24,54] |
Grid emission factor for the Eastern Mediterranean region (Greece) | 0.256 kg CO2-eq/kWh | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagopoulos, A. Techno-Economic Assessment (TEA) of a Minimal Liquid Discharge (MLD) Membrane-Based System for the Treatment of Desalination Brine. Separations 2025, 12, 224. https://doi.org/10.3390/separations12090224
Panagopoulos A. Techno-Economic Assessment (TEA) of a Minimal Liquid Discharge (MLD) Membrane-Based System for the Treatment of Desalination Brine. Separations. 2025; 12(9):224. https://doi.org/10.3390/separations12090224
Chicago/Turabian StylePanagopoulos, Argyris. 2025. "Techno-Economic Assessment (TEA) of a Minimal Liquid Discharge (MLD) Membrane-Based System for the Treatment of Desalination Brine" Separations 12, no. 9: 224. https://doi.org/10.3390/separations12090224
APA StylePanagopoulos, A. (2025). Techno-Economic Assessment (TEA) of a Minimal Liquid Discharge (MLD) Membrane-Based System for the Treatment of Desalination Brine. Separations, 12(9), 224. https://doi.org/10.3390/separations12090224