Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials
Abstract
1. Introduction
2. Introduction to IRETs
2.1. Ionic Rare Earth Ore
2.2. Production of IRETs
2.3. Mineralogical Composition and Particle Size Distribution of IRETs
2.4. Hazards of IRETs
2.5. Significance of Utilizing IRETs
3. Application of IRETs in Silicate Materials
3.1. Preparation of Clinker
3.2. Preparation of Bricks and Tiles
3.3. Preparation of Geopolymer
3.4. Preparation of Ceramics
3.5. Preparation of Glass-Ceramics
3.6. Other IRET Applications
3.7. Summary and Outlook
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RET | Rare earth tailing |
IRET | Ionic rare earth tailing |
REE | Rare earth element |
TREO | Total rare earth oxide content |
MK | Metakaolin |
LS | Limestone |
OPC | Ordinary Portland cement |
MSWIFA | Municipal solid waste incineration fly ash |
References
- Mäkinen, J.; Pietek, G.; Miettinen, V.; Khoshkhoo, M.; Sundkvist, J.E.; Kinnunen, P. Removal of Pyrrhotite from High-Sulphur Tailings Utilising Non-Oxidative H2SO4 Leaching. Minerals 2022, 12, 1610. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Y.T.; Jin, A.B.; Wang, X. Influence of Water Loss on Mechanical Properties of Superfine Tailing–Blast-Furnace Slag Backfill. Constr. Build. Mater. 2020, 246, 118482. [Google Scholar] [CrossRef]
- Jin, A.B.; Liu, B.; Gao, Y.T.; Sun, H. Evaluation of Safety and Deformation Characteristics of the Secondary Stope Sandwiched between Backfills in Underground Iron Mines. Bull. Eng. Geol. Environ. 2022, 81, 83. [Google Scholar] [CrossRef]
- Rasoulnia, P.; Barthen, R.; Lakaniemi, A.M. A Critical Review of Bioleaching of Rare Earth Elements: The Mechanisms and Effect of Process Parameters. Crit. Rev. Environ. Sci. Technol. 2021, 51, 378–427. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, J.; Kang, S.; Wang, X.; Yu, H.; Wan, Y. Enhancing Leaching Efficiency of Ion Adsorption Rare Earths by Ameliorating Mass Transfer Effect of Rare Earth Ions by Applying an Electric Field. J. Rare Earths 2024, 42, 172–180. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Tong, L.; Sand, W. Some Aspects of Industrial Heap Bioleaching Technology: From Basics to Practice. Miner. Process. Extr. Metall. Rev. 2022, 43, 510–528. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Ding, L.; Li, Y.; He, R.; Li, J. Changing the Calcination Temperature to Tune the Microstructure and Polishing Properties of Ceria Octahedrons. RSC Adv. 2022, 12, 16554–16560. [Google Scholar] [CrossRef]
- Owusu-Fordjour, E.Y.; Yang, X. Bioleaching of Rare Earth Elements Challenges and Opportunities: A Critical Review. J. Environ. Chem. Eng. 2023, 11, 110413. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Review of Rare Earth Oxide (Nano and Micro Sized Crystalline) Materials: Preparation from Rare Earth Chlorides, Characterisation and Applications. Hydrometallurgy 2025, 234, 106464. [Google Scholar] [CrossRef]
- Shahbaz, A. A Systematic Review on Leaching of Rare Earth Metals from Primary and Secondary Sources. Miner. Eng. 2022, 184, 107632. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, Y.; Zhou, H.; He, K.; Luo, C.; Liu, Z.; Tang, X. Review on the Development and Utilization of Ionic Rare Earth Ore. Minerals 2022, 12, 554. [Google Scholar] [CrossRef]
- Hajdu-Rahkama, R.; Kinnunen, P. Tailings Valorisation: Opportunities to Secure Rare Earth Supply and Make Mining Environmentally More Sustainable. J. Clean. Prod. 2025, 520, 146147. [Google Scholar] [CrossRef]
- Chen, P.; Ilton, E.S.; Wang, Z.; Rosso, K.M.; Zhang, X. Global Rare Earth Element Resources: A Concise Review. Appl. Geochem. 2024, 175, 106158. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Geng, Y.; Ye, X.; Ma, S.; Hao, X.; Xin, W.; Chai, Y. A Review of the Main Rare Earth Ore Smelting Processes in the World: From Traditional Methods to New Technologies. J. Rare Earths, 2025; in press. [Google Scholar] [CrossRef]
- Mancheri, N.A. Chinese Monopoly in Rare Earth Elements: Supply-Demand and Industrial Applications. China Rep. 2012, 48, 449–468. [Google Scholar] [CrossRef]
- Patil, A.B.; Paetzel, V.; Struis, R.P.W.J.; Ludwig, C. Separation and Recycling Potential of Rare Earth Elements from Energy Systems: Feed and Economic Viability Review. Separations 2022, 9, 56. [Google Scholar] [CrossRef]
- Janot, N.; Huot, H.; Rivard, C.; Perrin, M.; Noirault, A.; Tang, Y.T.; Watteau, F.; Montargès-Pelletier, E. Localization and Speciation of Rare Earth Elements in Mine Tailings from Ion-Adsorption Clay Deposits, Southern China: Insights from Microfocused X-Ray Fluorescence Spectroscopy. J. Hazard. Mater. Adv. 2025, 17, 100609. [Google Scholar] [CrossRef]
- Dar, S.A.; Balaram, V.; Roy, P.; Mir, A.R.; Javed, M.; Teja, M.S. Phosphorite Deposits: A Promising Unconventional Resource for Rare Earth Elements. Geosci. Front. 2025, 16, 102044. [Google Scholar] [CrossRef]
- Riesgo García, M.V.; Krzemień, A.; Manzanedo del Campo, M.Á.; Menéndez Álvarez, M.; Gent, M.R. Rare Earth Elements Mining Investment: It Is Not All about China. Resour. Policy 2017, 53, 66–76. [Google Scholar] [CrossRef]
- Sanematsu, K.; Watanabe, Y. Characteristics and Genesis of Ion Adsorption-Type Rare Earth Element Deposits. Rare Earth Crit. Elem. Ore Depos. 2019, 18. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. An Overview of Rare-Earth Recovery by Ion-Exchange Leaching from Ion-Adsorption Clays of Various Origins. Mineral. Mag. 2016, 80, 63–76. [Google Scholar] [CrossRef]
- Estrade, G.; Marquis, E.; Smith, M.; Goodenough, K.; Nason, P. REE Concentration Processes in Ion Adsorption Deposits: Evidence from the Ambohimirahavavy Alkaline Complex in Madagascar. Ore Geol. Rev. 2019, 112, 103027. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Kamitani, M. Rare Earth Minerals and Resources in the World. J. Alloys Compd. 2006, 408–412, 1339–1343. [Google Scholar] [CrossRef]
- Gupta, N.K.; Gupta, A.; Ramteke, P.; Sahoo, H.; Sengupta, A. Biosorption-a Green Method for the Preconcentration of Rare Earth Elements (REEs) from Waste Solutions: A Review. J. Mol. Liq. 2019, 274, 148–164. [Google Scholar] [CrossRef]
- Han, A.; Li, Z.; Zheng, X.; Liu, D.; Zhao, L.; Feng, Z.; Huang, X. Readsorption of Rare Earths and Aluminum during Column Leaching of Ion-Adsorption Rare Earth Ore Using Magnesium Sulfate in the Presence of Lean Ore Layer. J. Rare Earths, 2025; in press. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, L.; Li, Z.; Huang, X.; Feng, Z.; Chen, J. Occurrence and Vertical Distribution of Aluminum and Rare Earths in Weathered Crust Elution-Deposited Rare Earth Ore: Effect of Soil Solution PH and Clay Minerals. J. Rare Earths 2024, 42, 1394–1402. [Google Scholar] [CrossRef]
- Sanematsu, K.; Kon, Y.; Imai, A.; Watanabe, K.; Watanabe, Y. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand. Miner. Depos. 2013, 48, 437–451. [Google Scholar] [CrossRef]
- Tohar, S.Z.; Yunus, M.Y.M. Mineralogy and BCR Sequential Leaching of Ion-Adsorption Type REE: A Novelty Study at Johor, Malaysia. Phys. Chem. Earth 2020, 120, 102947. [Google Scholar] [CrossRef]
- Xie, M.; Zhou, J.; Du, X.; Wang, X.; Zhang, B.; Wu, H.; Hu, Q.; Wang, W.; Tian, M.; Chen, B.; et al. The Characteristics and Enrichment Process of Dabu Ion-Adsorption Heavy Rare-Earth Element (HREE) Deposits in Jiangxi Province, South China. Minerals 2024, 14, 857. [Google Scholar] [CrossRef]
- Cao, M.X.; Wang, X.G.; Zhang, D.F.; Zhang, Y.W.; Gong, L.X.; Zhong, W. Petrogenesis and REE Mineralogical Characteristics of Shitouping Granites in Southern Jiangxi Province: Implication for HREE Mineralization in South China. Ore Geol. Rev. 2024, 168, 106011. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Honda, T.; Tanaka, M.; Tanaka, K.; Takahashi, Y. Discovery of Ion-Adsorption Type Deposits of Rare Earth Elements (REE) in Southwest Japan with Speciation of REE by Extended X-Ray Absorption Fine Structure Spectroscopy. Geochem. J. 2018, 52, 415–425. [Google Scholar] [CrossRef]
- Sobri, N.A.M.; Harun, N.; Yunus, M.Y.M. A Review of the Ion Exchange Leaching Method for Extracting Rare Earth Elements from Ion Adsorption Clay. Chem. Eng. Res. Des. 2024, 208, 94–114. [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-de-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of Rare Earth Elements in Regolith-Hosted Clay Deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef]
- Ou, X.; Chen, Z.; Chen, X.; Li, X.; Wang, J.; Ren, T.; Chen, H.; Feng, L.; Wang, Y.; Chen, Z.; et al. Redistribution and Chemical Speciation of Rare Earth Elements in an Ion–Adsorption Rare Earth Tailing, Southern China. Sci. Total Environ. 2022, 821, 153369. [Google Scholar] [CrossRef]
- Ram, R.; Becker, M.; Brugger, J.; Etschmann, B.; Burcher-Jones, C.; Howard, D.; Kooyman, P.J.; Petersen, J. Characterisation of a Rare Earth Element- and Zirconium-Bearing Ion-Adsorption Clay Deposit in Madagascar. Chem. Geol. 2019, 522, 93–107. [Google Scholar] [CrossRef]
- Sanematsu, K.; Murakami, H.; Watanabe, Y.; Duangsurigna, S.; Siphandone, V. Enrichment of Rare Earth Elements (REE) in Granitic Rocks and Their Weathered Crusts in Central and Southern Laos. Bull. Geol. Surv. Japan 2009, 60, 527–558. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, X.; Ji, B.; Xu, Z.; Bao, S.; Zhang, X.; Li, G.; Mei, J.; Li, Z. Green Recovery of Rare Earth Elements under Sustainability and Low Carbon: A Review of Current Challenges and Opportunities. Sep. Purif. Technol. 2024, 330, 125501. [Google Scholar] [CrossRef]
- Mukai, H.; Kon, Y.; Sanematsu, K.; Takahashi, Y.; Ito, M. Microscopic Analyses of Weathered Granite in Ion-Adsorption Rare Earth Deposit of Jianxi Province, China. Sci. Rep. 2020, 10, 20194. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Qiu, J.; Chen, J.; Zan, M.; Xiao, Y. Progress in Green and Efficient Enrichment of Rare Earth from Leaching Liquor of Ion Adsorption Type Rare Earth Ores. J. Rare Earths 2022, 40, 353–364. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Z.; Yu, J.; Xu, Z.; Chi, R. Novel Solution Injection Technology for In-Situ Leaching of Weathered Crust Elu-tion-Deposited Rare Earth Ores. Hydrometallurgy 2016, 164, 248–256. [Google Scholar] [CrossRef]
- Araya, N.; Kraslawski, A.; Cisternas, L.A. Towards Mine Tailings Valorization: Recovery of Critical Materials from Chilean Mine Tailings. J. Clean. Prod. 2020, 263, 121555. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Y.; Feng, X.; Wang, J.; Ma, Z.; Yao, R.; Zhai, Y.; Tian, L. Leaching of Ion Adsorption Rare Earths and the Role of Bioleaching in the Process: A Review. J. Clean. Prod. 2024, 468, 143067. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, T.; Deng, L.; Li, Y.; Guo, H.; Zhou, J.; Li, L.; Peng, Y. Ion-Adsorption Type Rare Earth Tailings for Preparation of Alkali-Based Geopolymer with Capacity for Heavy Metals Immobilization. Cem. Concr. Compos. 2022, 134, 104768. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, C.; Li, C.; Jiang, M. A Novel Approach for Recovery of Rare Earths and Niobium from Bayan Obo Tailings. Miner. Eng. 2014, 65, 17–23. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, Z.; Fahimizadeh, M.; Yu, T.; Faheem, M.; Belaroui, L.S.; Hamada, B.; Yuan, P. Recycling of an Ion-Adsorption Type Rare Earth Tailing in a Low-Carbon Construction Material: Performance Modulation and Life Cycle Assessment. Constr. Build. Mater. 2025, 475, 141167. [Google Scholar] [CrossRef]
- Cheng, J.; Hua, X.; Zhang, G.; Yu, M.; Wang, Z.; Zhang, Y.; Liu, W.; Chen, Y.; Wang, H.; Luo, Y.; et al. Synthesis of High-Crystallinity Zeolite A from Rare Earth Tailings: Investigating Adsorption Performance on Typical Pollutants in Rare Earth Mines. J. Hazard. Mater. 2024, 468, 133730. [Google Scholar] [CrossRef]
- Zapp, P.; Schreiber, A.; Marx, J.; Kuckshinrichs, W. Environmental Impacts of Rare Earth Production. MRS Bull. 2022, 47, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Tunsu, C.; Menard, Y.; Eriksen, D.Ø.; Ekberg, C.; Petranikova, M. Recovery of Critical Materials from Mine Tailings: A Comparative Study of the Solvent Extraction of Rare Earths Using Acidic, Solvating and Mixed Extractant Systems. J. Clean. Prod. 2019, 218, 425–437. [Google Scholar] [CrossRef]
- Peelman, S.; Kooijman, D.; Sietsma, J.; Yang, Y. Hydrometallurgical Recovery of Rare Earth Elements from Mine Tailings and WEEE. J. Sustain. Metall. 2018, 4, 367–377. [Google Scholar] [CrossRef]
- Packey, D.J.; Kingsnorth, D. The Impact of Unregulated Ionic Clay Rare Earth Mining in China. Resour. Policy 2016, 48, 112–116. [Google Scholar] [CrossRef]
- Tian, S.; Liu, Z.; Mao, Q.; Ye, H.; Tian, C.; Zhu, Y.; Zhang, L. Leaching Characteristics and Environmental Impact of Heavy Metals in Tailings under Rainfall Conditions: A Case Study of an Ion-Adsorption Rare Earth Mining Area. Ecotoxicol. Environ. Saf. 2024, 281, 116642. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Hu, S.; Zhang, R.; Yang, B.; Liu, Y.; Qiu, G. Efficient Recovery of Rare Earth Elements from Ion-Adsorption Rare Earth Tailings: Based on the Addition of Pyrite Calcination Modification. Sep. Purif. Technol. 2025, 356, 129767. [Google Scholar] [CrossRef]
- Sarker, S.K.; Haque, N.; Bhuiyan, M.; Bruckard, W.; Pramanik, B.K. Recovery of Strategically Important Critical Minerals from Mine Tailings. J. Environ. Chem. Eng. 2022, 10, 107622. [Google Scholar] [CrossRef]
- Levett, A.; van der Ent, A.; Ray Jones, T.; Bolouri, K.; Kelly, K.; Vaughan, J.; Edraki, M.; Erskine, P.; Southam, G. Water-Soluble Rare Earth Elements (REEs) Recovered from Uranium Tailings. Miner. Eng. 2024, 210, 108675. [Google Scholar] [CrossRef]
- Baral, S.S.; Shekar, K.R.; Viswanathan, V.; Surendran, G. Dissolution Kinetics of Cerium from Red Mud. Sep. Sci. Technol. 2017, 52, 883–891. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Y.T.; Jin, A.B.; Wang, X. Dynamic Characteristics of Superfine Tailings-Blast Furnace Slag Backfill Featuring Filling Surface. Constr. Build. Mater. 2020, 242, 118173. [Google Scholar] [CrossRef]
- Abbadi, A.; Mucsi, G. A Review on Complex Utilization of Mine Tailings: Recovery of Rare Earth Elements and Residue Valorization. J. Environ. Chem. Eng. 2024, 12, 113118. [Google Scholar] [CrossRef]
- Wang, W.; Wang, T.; Sun, Z.; Bo, Y.; Zou, C.; Wang, Z.; Zheng, C. Solidification Treatment of Rare Earth Tailings by a Re-newable Biological Cementation Method. Process Saf. Environ. Prot. 2023, 179, 585–592. [Google Scholar] [CrossRef]
- Azizi, M.; Faz, A.; Zornoza, R.; Martínez-Martínez, S.; Shahrokh, V.; Acosta, J.A. Environmental Pollution and Depth Distribution of Metal(Loid)s and Rare Earth Elements in Mine Tailing. J. Environ. Chem. Eng. 2022, 10, 107526. [Google Scholar] [CrossRef]
- Uugwanga, M.N.; Kgabi, N.A. Assessment of Metals Pollution in Sediments and Tailings of Klein Aub and Oamites Mine Sites, Namibia. Environ. Adv. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Ou, X.; Chen, Z.; Hong, B.; Wang, H.; Feng, L.; Liu, Y.; Zhu, M.; Chen, Z. Transport and Distribution of Residual Nitrogen in Ion-Adsorption Rare Earth Tailings. Environ. Res. 2023, 237, 116975. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Alaba, P.A.; Rashedi, A. Selected Performance of Alkali-Activated Mine Tailings as Cementitious Compo-sites: A Review. J. Build. Eng. 2022, 50, 104154. [Google Scholar] [CrossRef]
- Diosdado-Aragón, A.J.; Valenzuela-Díaz, M.J.; Dávila, J.M.; Becerra-Herrera, M.; Caraballo, M.A. Influence of Mine Tailings Mineralogy and Curing Conditions in the Cementation of Pastes for Mine Galleries Backfilling. Miner. Eng. 2025, 232, 109524. [Google Scholar] [CrossRef]
- Li, C.; Li, A.; Tang, J.; Yang, X.; Li, J.; Jiang, J. Preparation and Properties of Portland Cement from Secondary Recycle Waste of Rare Earth Tailing. Constr. Build. Mater. 2023, 406, 133337. [Google Scholar] [CrossRef]
- Huang, Q. The Effects of La series Trace Elements on Cement Clinker Formation. Mater. Sci. Eng. 1998, 4, 54–57. [Google Scholar]
- Xu, Y. Effects of Rare Earth on Formation of Cement Clinkers. Rare Earths 2000, 21, 41–45. [Google Scholar] [CrossRef]
- Huang, S.; Wu, B.; Xu, Y. Study on the sintering of Portland cement clinker by substitution of rare earth tailing for clay in batch mixing. China Mining Magazine 2006, 2, 54–58. [Google Scholar]
- Xiong, W.; Huang, Y.; Zhang, L.; Lin, H. Experimental Study on Calcination of Portland Cement Clinker with Rare Earth Tailings. Multipurp. Util. Miner. Resour. 2021, 5, 76–80. [Google Scholar]
- He, C.; Zhou, H.; Luo, Y. The effect of rare earth tailings on carbonate decomposition of cement raw materials. China Cement 2013, 12, 55–56. [Google Scholar]
- Zhang, N.; Tang, B.; Liu, X. Cementitious Activity of Iron Ore Tailing and Its Utilization in Cementitious Materials, Bricks and Concrete. Constr. Build. Mater. 2021, 288, 123022. [Google Scholar] [CrossRef]
- Jiang, M. Study on Preparation of Red Floor Tiles Using Rare Earth Tail Somewhere in Southern. Ceram. Eng. 1999, 33, 4–6+12. [Google Scholar]
- Yang, K.; Wang, Y.; Zhou, J.; Feng, X.; Zeng, Z. Preparation of building ceramic vitrified tiles with South Jiangxi rare-earth tailings. China Ceram. 2014, 50, 75–80. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zha, Y.; Yang, K. Study on Factors of Influencing Sinter-ability of Ceramic Vitrified Tiles Derived from South Jiangxi Rare Earth Tailings Preparation. China Ceram. 2015, 51, 72–76. [Google Scholar] [CrossRef]
- Zha, Y. Research of Preparation of Polished Tiles Derived from South Jiangxi Rare Earth Tailings. Master’s Thesis, Jingdezhen Ceramic Institute, Jingdezhen, China, 2015. [Google Scholar]
- Li, K.; Deng, J.; Zhu, Y.; Zhang, W.; Zhang, T.; Tian, C.; Ma, J.; Shao, Y.; Yang, Y.; Shao, Y. Utilization of Municipal Solid Waste Incineration Fly Ash with Different Pretreatments with Gold Tailings and Coal Fly Ash for Environmentally Friendly Geopolymers. Waste Manag. 2025, 194, 342–352. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, H.; Li, Y.; Liu, F.; Li, Q.; Mao, Y.; Yang, A. Geopolymers Prepared from Industrial Solid Waste: Compre-hensive Properties and Application Prospects. Environ. Res. 2025, 278, 121518. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Li, Y.; Yang, C. Solidification/Stabilization of Gold Ore Tailings Powder Using Sustainable Waste-Based Composite Geopolymer. Eng. Geol. 2022, 309, 106793. [Google Scholar] [CrossRef]
- Hu, S.; Zhong, L.; Yang, X.; Bai, H.; Ren, B.; Zhao, Y.; Zhang, W.; Ju, X.; Wen, H.; Mao, S.; et al. Synthesis of Rare Earth Tailing-Based Geopolymer for Efficiently Immobilizing Heavy Metals. Constr. Build. Mater. 2020, 254, 119273. [Google Scholar] [CrossRef]
- Yan, Y. Preparation of Ionic Rare Earth Based Geopolymer Porous Material and its Properties Research. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2016. [Google Scholar]
- Yan, Y.; Yan, Q.; Luo, X.; Jiao, X.; Wang, J. Research on utilizing ionic rare earth tailings for preparing geopolymer. Non-Met. Mines 2015, 38, 5–8. [Google Scholar]
- Jiao, X.; Cao, Z.; Li, T.; Luo, X.; Yan, Q.; Chen, Q.; Huang, Z. Compressive strength and efflorescence extent of rare earth tailings-based geopolymer with different alkaline activators. Bull. Chin. Ceram. Soc. 2016, 35, 3819–3825. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Zhong, L.; Bai, H. Modeling and optimization of rare earth tailing based geopolymer by response surface methodology. Metal Mine 2020, 49, 215–220. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Q.; Sun, W.; Han, X.; Zhang, K. Preparation and Sintering Mechanism of Foamed Ceramics from Iron Tailings and Feldspar Powder. Ceram. Int. 2025, 51, 24123–24135. [Google Scholar] [CrossRef]
- Li, K.; Kou, Y.; Wang, D.; Bai, R.; Luo, Q.; Yang, Z.; Cheng, Z. Preparation and Characterization of Iron Ore Tailings-Based Sound Absorbing Ceramics. Mater. Chem. Phys. 2025, 344, 131189. [Google Scholar] [CrossRef]
- Liang, J.; Wang, L.; Xu, G.; Meng, J.; Ding, Y. Far Infrared Radiation Property of Rare Earth Mineral Composite Materials. J. Rare Earths 2006, 24, 281–283. [Google Scholar] [CrossRef]
- Kazhugasalamoorthy, S.; Jegatheesan, P.; Mohandoss, R.; Giridharan, N.V.; Karthikeyan, B.; Joseyphus, R.J.; Dhanuskodi, S. Investigations on the Properties of Pure and Rare Earth Modified Bismuth Ferrite Ceramics. J. Alloys Compd. 2010, 493, 569–572. [Google Scholar] [CrossRef]
- Liu, J.; Meng, J.; Liang, J.; Duan, X.; Huo, X.; Tang, Q. Effect of Rare Earth Ce on the Far Infrared Radiation Property of Iron Ore Tailings Ceramics. Mater. Res. Bull. 2015, 66, 26–31. [Google Scholar] [CrossRef]
- Qiu, T.; Lu, J. Experiments on the application of tailings in ceramic materials. Multipurp. Util. Miner. Resour. 1996, 3, 46–48. [Google Scholar]
- Yuan, D. The Application of Rare Earth Tailings in Ceramic Bases and Glazes. Ceram. Res. 1991, 3, 121–127. [Google Scholar] [CrossRef]
- Ma, L.; Li, X. Study on the application of rare earth tailing in matle glaze. Foshan Ceram. 2022, 32, 21–25. [Google Scholar]
- Xu, J.; Yan, Y.; Yan, Q.; Jiao, X.; Luo, X. Effect of calcination temperature and Al/Si ratio on performance of the rare earth tailings based ceramsite. J. Ceram. 2014, 35, 598–602. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, Q.; Luo, X.; Jiao, X.; Xu, J. Effect of steam curing system on compressive strength of ceramsite from rare earth tailings and its application to waste water treatment. J. Ceram. 2016, 37, 158–162. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Liu, X. Study on Preparation of the Foamed Ceramics with the Rare Earth Tailings and the Wastes of Polished Tile. China Ceram. 2014, 50, 59–63. [Google Scholar] [CrossRef]
- Shen, S.; Ding, W.; Huang, Y.; Li, Y.; Long, Z.; Zhu, Y.; Wang, W. Preparation and properties of porous ceramics from rare earth tailings. Non-Met. Mines 2021, 44, 1–4. [Google Scholar]
- Meng, J.; Zhang, T.; Srinivasakannan, C.; Wei, X.; Duan, X.; Yang, Z.; Liu, F.; Liang, J. Phase Evolution, Microstructure and Properties of Glass-Ceramics Derived from Municipal Solid Waste Incineration Bottom Ash and Molybdenum Tailings. Ceram. Int. 2024, 50, 45353–45361. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.; Li, D. Study on Low-Cost Preparation of Glass–Ceramic from Municipal Solid Waste Incineration (MSWI) Fly Ash and Lead–Zinc Tailings. Constr. Build. Mater. 2022, 356, 129231. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Y.; Yang, X.; Zhang, X.; Zhao, M.; Chen, H.; Ouyang, S.; Li, B. Influence of Rare Earth Ions on Metal Ions Distribution and Corrosion Behavior of Tailing-Derived Glass-Ceramics. J. Non. Cryst. Solids 2018, 482, 105–115. [Google Scholar] [CrossRef]
- Bai, Q.; Liang, Z.; Liu, Y.; Lai, H.; Zhang, K. Heat Transfer, Crystallization and Properties of Bayan Obo Tailings-Based Nanocrystalline Glass-Ceramics Processed with Microwave Radiation. Mater. Today Commun. 2024, 38, 108005. [Google Scholar] [CrossRef]
- Zhao, T.; Li, B.W.; Gao, Z.Y.; Chang, D.Q. The Utilization of Rare Earth Tailing for the Production of Glass-Ceramics. Mater. Sci. Eng. B 2010, 170, 22–25. [Google Scholar] [CrossRef]
- Xie, J.; Cheng, J.; Ji, S. A study on sintered glass-ceramic decorative material made from rare-earth tailings. Glass Enamel 2008, 4, 9–12. [Google Scholar]
- Yang, Y.; Zhang, M.; Feng, L.; Huang, B.; Zhai, R.; Sun, X. Sustainable Reutilization of Ion-Adsorbed Rare Earth Tailings: Preparation of Low-Cost Functionalized Pigments. Ceram. Int. 2024, 50, 11575–11587. [Google Scholar] [CrossRef]
- Ray, A.R.; Mishra, S. Hydro Metallurgical Technique as Better Option for the Recovery of Rare Earths from Mine Tailings and Industrial Wastes. Sustain. Chem. Pharm. 2023, 36, 101311. [Google Scholar] [CrossRef]
- Lan, X.; Gao, J.; Li, Y.; Guo, Z. A Green Method of Respectively Recovering Rare Earths (Ce, La, Pr, Nd) from Rare-Earth Tailings under Super-Gravity. J. Hazard. Mater. 2019, 367, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, P.; Zhao, X.; Dong, Z. Potential and Characteristics of Rare-Earth Metals Acid Bioleaching from the Ra-re-Earth-Rich Tailings with the Enriched Functional Bacterial Consortium: Comparison between One-Step and Two-Step Processes. Chem. Eng. J. 2024, 495, 153492. [Google Scholar] [CrossRef]
- Famobuwa, V.; Talan, D.; Sanyal, O.; Grushecky, S.; Amini, H. A Review of Biomass-Based Adsorption for Rare Earth Elements Recovery. J. Rare Earths, 2025; in press. [Google Scholar] [CrossRef]
- Shuai, Z.; Zhu, Y.; Gao, P.; Han, Y. Rare Earth Elements Resources and Beneficiation: A Review. Miner. Eng. 2024, 218, 109011. [Google Scholar] [CrossRef]
- Hoshino, M.; Sanematsu, K.; Watanabe, Y. REE Mineralogy and Resources. In Handbook on the Physics and Chemistry of Rare Earths; Jean-Claude, B., Vitalij, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 129–291. ISBN 0168-1273. [Google Scholar]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- GB/T 30760-2024; Technical Specification for Co-Processing of Solid Waste in Cement Kiln. Standards Press of China: Beijing, China, 2024.
- GB/T 35605-2024; Green Product Assessment—Wall Material. Standards Press of China: Beijing, China, 2024.
- GB/T 30810-2014; Test methods for leachable ions of heavy metals in cement mortar. Standards Press of China: Beijing, China, 2014.
- HJ 557-2010; Solid Waste-Extraction Procedure for Leaching Toxicity-Horizontal Vibration Method. China Environmental Science Press: Beijing, China, 2010.
Samples | SiO2 | Al2O3 | K2O | Fe2O3 | Na2O | MgO | Others |
---|---|---|---|---|---|---|---|
Ore A | 62.18 | 25.12 | 5.57 | 4.89 | 0.24 | 0.30 | \ |
Ore B | 66.93 | 22.23 | 4.88 | 4.87 | 0.18 | 0.27 | 0.67 |
Ore C | 58.83 | 29.38 | 6.34 | 4.05 | 0.17 | 0.39 | 0.87 |
Ore D | 65.8 | 22.2 | 0.90 | 2.69 | 0.01 | 0.34 | 8.06 |
Ore E | 72.49 | 16.22 | 2.86 | 2.09 | 0.55 | 0.14 | 5.65 |
Ore F | 56.9 | 15.4 | 4.35 | 8.72 | 3.85 | 2.01 | 8.77 |
Ore G | 76.4 | 11.9 | 4.63 | 0.51 | 3.54 | 0.03 | 2.99 |
Ore H | 75.9 | 12.88 | 4.80 | 1.10 | 3.38 | 0.12 | 1.82 |
Ore I | 68.89 | 17.24 | 6.38 | 2.58 | 0.35 | 0.24 | 4.32 |
Samples | Fe | SiO2 | Al2O3 | TiO2 | K2O | Na2O | CaO | MgO |
Tailings A | 15.9 | 25.38 | 8.84 | 25.07 | \ | \ | 8.75 | 2.16 |
Tailings B | 1.66 | 57.25 | 23.60 | 0.04 | 3.88 | 0.19 | 0.038 | 0.10 |
Tailings C | 4.9 | 47.13 | 32.76 | 0.75 | 3.42 | 0.08 | 0.02 | 0.42 |
Samples | MnO | La2O3 | Nd2O3 | Nb2O5 | SO3 | Ce2O3 | Others | L.O.I |
Tailings A | 1.71 | 0.95 | 1.89 | 3.94 | 2.72 | 2.52 | \ | \ |
Tailings B | \ | \ | \ | \ | 4.69 | \ | \ | 12.87 |
Tailings C | \ | \ | \ | \ | 0.08 | \ | 0.34 | 10.1 |
Ref. | Tailing Location | Major Chemical Compositions of RETs (%) | Application | Mixtures | Production Conditions | Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | TiO2 | K2O | Na2O | F | TREO | ||||||
[67] | Jiangxi, China | 0.34 | 75.5 | 15.3 | 2.4 | — | 2.21 | 0.45 | — | 0.049 | Clinker | Replace clay | 1300~1450 °C | At >1400 °C, RETs significantly promote the diffusion of particles and the crystal growth of ore, improving the rock phase structure of clinker. |
[68] | Sichuan, China | 9.87 | 49.88 | 11.75 | 4.49 | — | — | — | — | 0.28 | Clinker | Replace clay by 0% and 7.5% | 1300~1450 °C, 30 min | RETs promote the decomposition of calcium carbonate and lower the mineral formation temperature of cement clinker. |
[69] | Yunnan, China | 0.46 | 62.75 | 16.29 | 7.2 | — | — | — | — | >0.10 | Clinker | Replace clay by 50% | Exploring carbonate decomposition temperature in cement | REEs greatly accelerate the formation rate of minerals and reduce the decomposition temperature of cement raw meal. |
[71] | Southern China | 3.26 | 46.16 | 20.29 | 13.18 | 2.07 | 4.22 | 0.12 | — | 0.02~0.07 | Red floor tiles | Mixed with porcelain clay, quartz, etc. | 1000~1150 °C, 60 min | REEs remaining in tailings can promote the firing of green bodies and improve the ceramic properties of the product. |
[72] | Ganzhou, Jiangxi, China | — | 79.15 | 17.6 | 2.12 | 0.41 | 0.26 | 0.28 | — | >0.02 | Ceramic vitrified tiles | 45~75% RET mixed with kaolin, sand, black talc, etc. | 1140~1230 °C, 10 min | High levels of fluxing components such as K2O and Na2O in RET No. 2 lower the firing temperature and increase the glass phase content, resulting in reduced flexural strength. Combining the two types of tailings performs well. |
0.17 | 68.75 | 18.51 | 3.06 | 0.68 | 7.3 | 1.12 | 0.17 | >0.01 | ||||||
[73] | Ganzhou, Jiangxi, China | 0.1 | 66.74 | 18.42 | 2.75 | 0.76 | 6.15 | 0.63 | — | — | Ceramic vitrified tiles | Mainly RET, mixed with black mud, sand, talc, etc. | 1150~1200 °C, 20 min | High proportions of K, Na, Ti, and Fe act as a strong flux, promoting the formation of a liquid phase at a lower temperature to fill the voids, thereby improving the density of the green bodies. |
[78] | Western Sichuan, China | 20.282 | 24.253 | 7.459 | 3.172 | 0.275 | 2.595 | 0.992 | 6.633 | >3.147 | Geopolymer | Metakaolin (MK), silica fume, NaOH | Cured at 60 °C for 8 h before room cured for 1, 3, and 7 d | When the Si/Al molar ratio was 1.875, Na/Al molar ratio 1.0, and RET content 20 wt.%, the 7 d compressive strength of the RET-based geopolymer was over 35 MPa. |
[79] | Jiangxi, China | 0.09 | 61.6 | 24.86 | 1.95 | — | 4.41 | 0.39 | — | >0.05 | Geopolymer | Water glass as the alkali activator | Pretreat (750 °C, 2 h) RET; 85 °C curing for 12 h followed by 7 d room curing | The Na/Al molar ratio has the greatest effect on the compressive strength of geopolymers. The main substance involved in the geopolymerization reaction in RETs is kaolinite. |
[81] | Jiangxi, China | 0.04 | 72.64 | 14.87 | 3.32 | 0.19 | 6.81 | 0.42 | 0.13 | >0.02 | Geopolymer | Metakaolin, alkaline activators | Cured at 50 °C for 24 h before room cured for 7 d | The optimal sample was prepared using the “KOH + silica gel powder” as alkaline activator. |
[82] | Sichuan, China | 20.887 | 24.409 | 7.585 | 3.218 | — | — | — | 6.574 | >3.345 | Geopolymer | Metakaolin, silica fume, alkaline activators | Cured at 60 °C for 12 h before room cured for 3 d | When the Si/Al molar ratio was 2.5, NaOH solution concentration 25 mol/L, and RET content 38.22%, the 3 d compressive strength of the geopolymer was 58.84 MPa. |
[88] | Ganzhou, Jiangxi, China | 0.7 | 49.6 | 30.96 | 2.85 | 0.2 | 3.77 | 0.18 | — | — | Ceramic | Tungsten gravity separation tailings | 1200 °C | Beautiful ceramic can be made by leveraging the complementary nature of tungsten tailings and RETs in terms of composition, as well as the coloring effect of certain elements in RETs; the firing rate is also relatively high. |
[89] | Ganzhou, Jiangxi, China | 0.2 | 76.75 | 13.99 | 0.85 | — | 4.34 | 0.32 | — | 0.02 | Ceramic | A special material | 1300–1340 °C | High-RET content (>75%) celadon was developed. The porcelain was white and delicate, with a smooth glaze surface and a color-changing effect, which was due to the special effect produced by the multiple trace REEs contained in the RETs. |
[90] | Not mentioned | 47.54 | 6.72 | 3.17 | 1.57 | 0.09 | 0.07 | 3.3 | 0.15 | 17.34 | Ceramic | 15 wt.% RET, potassium feldspar, quartz, calcite, etc. | 1300 °C, 20 min | Preparation of a matte glaze with a whiteness of 68.5%, a gloss of 18.0%, and a smooth glaze surface. |
[91] | Jiangxi, China | 0.09 | 61.6 | 30.6 | 2.79 | — | 4.41 | 0.39 | — | 0.02 | Ceramic | Al2O3, quartz | 1000~1080 °C, Al/Si of 0.66~0.30 | Temperature is inversely proportional to the water absorption rate and porosity of expanded clay aggregates, and directly proportional to their density and crushing strength. Increasing the Al/Si causes the water absorption rate and porosity of expanded clay aggregates to first decrease and then increase, while their density and crushing strength first increase and then decrease. |
[92] | Jiangxi, China | 0.09 | 61.6 | 30.6 | 1.95 | — | 4.41 | 0.39 | — | — | Ceramsite | Cement, lime, gypsum, Al powder | 40~70 °C | After curing for 12 h at 70 °C, the compressive strength of the expanded clay aggregate can reach 4.8 MPa. Tests on the leaching toxicity of the expanded clay aggregate indicate that the heavy metal concentrations in the leachate are all below the limit values, making it suitable for use as a water treatment filter material. |
[93] | Ganzhou, Jiangxi, China | 0.23 | 69.77 | 16.65 | 2.4 | 0.56 | 6.42 | 0.92 | — | — | Ceramic | Polished brick waste, low-temperature sand, black ceramic mud, talc, etc. | 1150 °C, 30 min | The lightweight foamed ceramic material prepared using 60 wt.% RETs exhibits excellent performance, with a bulk density of 0.31 g/cm3 and compressive strength of 5.63 MPa, meeting the requirements for practical application. |
[94] | Sichuan, China | 9.87 | 49.88 | 11.75 | 4.49 | — | 4.36 | 2.59 | — | TRE2O30.083 | Ceramic | Kaolin tailings, feldspar, silicon carbide | 1140 °C, 20 min | A high-performance porous ceramic material with a porosity of 73.5%, water absorption rate of 1.5%, and flexural strength of 1.72 MPa can be produced. |
[97] | Bayan Obo, China | 17.2 | 36.7 | 6.02 | 21.59 | — | 1.4 | 3.24 | 3.93 | REO 4.14 | Glass- ceramics | Fly ash, SiO2, MgO, and CaO (chemical grade) | Melted at 1450 °C for 3 h, molded, annealed at 600 °C for 2 h, nucleated and crystallized | The hardness, densification, and acid-resistance of glass-ceramics was improved by the addition of Ce4+, beneficial to the performance improvement. |
[98] | Bayan Obo, China | 17.2 | 36.7 | 6.02 | 21.59 | — | 1.4 | 3.24 | 3.93 | REO 4.14 | Glass- ceramics | Chemical reagents, such as SiO2 and CaO | Melted at 1450 °C for 3 h and then cast into a metal mold, microwaved for crystallization | The results showed that microwave heating had a higher heating rate than conventional heating. Tailing-based nanocrystalline glass-ceramics with excellent properties can be prepared in a short processing time by microwave heating. |
[99] | Bayan Obo, China | 25.95 | 17.67 | 3.68 | 21.9 | — | 0.46 | 1.36 | 13.85 | TReO 3.80 | Glass- ceramics | 10–70 wt.% tailing, pure chemical components | Melted at 1450 °C for 2 h, molded, preheated at 900 °C, annealed at around glass transition temperature | The RET is a series of effective nucleating agents. The grain size of the crystallized glass decreases with increasing the tailing content. |
[100] | Not mentioned | 18.35 | 1.78 | — | 9.37 | — | — | — | 13.32 | >21.21 | Glass- ceramics | Pure chemical components | Melting (1480~1500 °C, 1.5 h); crystallization (1140 °C, 2 h) | RETs can be used to produce glass-ceramics with an attractive appearance and excellent performance. The RET content can reach more than 20%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ni, W.; Li, J.; Zhang, S. Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials. Separations 2025, 12, 230. https://doi.org/10.3390/separations12090230
Wang X, Ni W, Li J, Zhang S. Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials. Separations. 2025; 12(9):230. https://doi.org/10.3390/separations12090230
Chicago/Turabian StyleWang, Xue, Wen Ni, Jiajie Li, and Siqi Zhang. 2025. "Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials" Separations 12, no. 9: 230. https://doi.org/10.3390/separations12090230
APA StyleWang, X., Ni, W., Li, J., & Zhang, S. (2025). Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials. Separations, 12(9), 230. https://doi.org/10.3390/separations12090230